首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate that bluegill (Lepomis macrochirus) introduced from their native North American source to Lake Biwa in Japan showed considerable trophic and morphological variations (morphs). Three morphs were found for larger bluegills, specialized in three distinct resources (i.e. plankton, benthic invertebrates and aquatic plant), and two morphs were found for smaller bluegills, specialized in two slightly different prey taxa (i.e. calanoid and cyclopoid plankton). These morphs, especially for the large size class, can be distinguished primarily by differences in midbody length and depth. The dietary specialization and morphological differentiation among individuals were considered to be a result of different requirements for efficient resource utilization, which is a unique example of trophic polymorphism occurring in an introduced fish species in a species-rich fish community.  相似文献   

2.
The extensive phenotypic polymorphism in the European whitefish has triggered evolutionary research in order to disentangle mechanisms underlying diversification. To illuminate the ecological distinctiveness in polymorphic whitefish, and evaluate taxonomic designations, we studied nine Norwegian lakes in three watercourses, which each harboured pairs of divergent whitefish morphs. We compared the morphology and life history of these morphs, documented the extent of genetic differentiation between them, and contrasted the niche use of sympatric morphs along both the habitat and resource axes. In all cases, sympatric morphs differed in the number of gill rakers, a highly heritable trait related to trophic utilization. Individual growth rate, age and size at maturity, diet and habitat use also differed between morphs within lakes, but were remarkably similar across lakes within the same morph. Microsatellite analyses confirmed for all but one pair that sympatric morphs were significantly genetically different, and that similar morphs from different lakes likely have a polyphyletic origin. These results are most compatible with the process of parallel evolution through recurrent postglacial divergence into pelagic and benthic niches in each of these lakes. We propose that sparsely and densely rakered whitefish sympatric pairs may be a likely case of ecological speciation, mediated in oligotrophic lakes with few trophic competitors.  相似文献   

3.
Understanding how a monophyletic lineage of a species diverges into several adaptive forms has received increased attention in recent years, but the underlying mechanisms in this process are still under debate. Postglacial fishes are excellent model organisms for exploring this process, especially the initial stages of ecological speciation, as postglacial lakes represent replicated discrete environments with variation in available niches. Here, we combine data of niche utilization, trophic morphology, and 17 microsatellite loci to investigate the diversification process of three sympatric European whitefish morphs from three northern Fennoscandian lakes. The morphological divergence in the gill raker number among the whitefish morphs was related to the utilization of different trophic niches and was associated with reproductive isolation within and across lakes. The intralacustrine comparison of whitefish morphs showed that these systems represent two levels of adaptive divergence: (1) a consistent littoral–pelagic resource axis; and (2) a more variable littoral–profundal resource axis. The results also indicate that the profundal whitefish morph has diverged repeatedly from the ancestral littoral whitefish morph in sympatry in two different watercourses. In contrast, all the analyses performed revealed clustering of the pelagic whitefish morphs across lakes suggesting parallel postglacial immigration with the littoral whitefish morph into each lake. Finally, the analyses strongly suggested that the trophic adaptive trait, number of gill rakers, was under diversifying selection in the different whitefish morphs. Together, the results support a complex evolutionary scenario where ecological speciation acts, but where both allopatric (colonization history) and sympatric (within watercourse divergence) processes are involved.  相似文献   

4.
Phenotypic plasticity, a widespread phenomenon in boreal freshwater fishes, is less apparent in the marine realm and the organism–environment interactions producing this variation are undetermined. A sample of 40 specimens of Trematomus newnesi, an inshore Antarctic fish from King George/25 de Mayo Island in the South Shetlands, was composed of 52.5% typical morphs, 27.5% large-mouth morphs and 20% intermediate morphs. Measurements of percentage buoyancy on the morphs of this sample were 3.73, 3.84 and 3.83%, respectively with no significant differences among means. Both mean dry skeletal weight as a percentage of body weight and mean oral jaw weight as a percentage of dry skeletal weight were significantly greater in large-mouth morphs compared to typical morphs. Diversification in head and jaw morphology is not accompanied by diversification in ecology as represented by buoyancy and, in spite of external appearances, measurements of buoyancy offer no support for the hypothesis that the large-mouth morph is more benthic than the typical semipelagic morph. Although a trophic basis for this polymorphism is possible, it has not yet been documented. Our discussion centers on the status of key open questions regarding morphism and highlights areas requiring more research.  相似文献   

5.
The serendipitous discovery of a body-size dimorphism amongst the sexually mature Arctic charr Salvelinus alpinus of Loch Tay is described. Sexually mature Arctic charr, collected by gill netting on spawning areas, showed a clear and distinct bimodal size distribution with no overlap in fork length distributions. The upper (19–29 cm L F) and lower modes (8–16 cm) were not solely the result of sex or age differences. Analysis of stable isotope ratios of C and N in muscle showed highly significant differences in mean δ13C and δ15N between populations, demonstrating a difference in trophic ecology between the two body-size morphs. Overlap in the range of δ13C and δ15N values for the two morphs, however, suggested that they occasionally shared a common diet. Data from other studies strongly indicated that the proximate and ultimate mechanisms that control body-size dimorphisms in Arctic charr differed between sites. Clear differences in trophic ecology in the Loch Tay Arctic charr suggested that the available feeding opportunity may differ for the two morphs. The most likely proximate mechanism resulting in this dimorphism is growth rate differences resulting from differences in food availability for the two subgroups occupying alternative foraging niches in Loch Tay.  相似文献   

6.
In polymorphic populations morphs usually diverge in morphology, ecology and life history, which is most likely driven by adaptations to different environments or resources. Sympatric morphs may develop differences in several life history traits to be able to maximize fitness in alternative niches and habitats. Here, the contrasting life history traits of three sympatric Arctic charr (Salvelinus alpinus (L.)) morphs in a deep and oligotrophic lake in sub-arctic Norway are addressed. The charr morphs differ in spawning habitat and trophic niche. One is a littoral spawning morph that feeds on benthic invertebrates and zooplankton in the littoral and pelagic zones (referred to as the LO-morph), and two other are profundal spawning morphs that either utilize profundal soft bottom benthos as food resource (the PB-morph) or are piscivorous (the PP-morph). The LO-morph typically had intermediate life-history traits relative to the two profundal morphs that had highly contrasting life history traits, especially in growth and age and size of maturity. The PB-morph matured at a young age (~3 years) and at a small body size (~8.5 cm), thereby increasing their fitness by investing in reproduction early in life, which results in a short generation time and decreased probability of being predated before first reproduction. The PP-morph on the other hand, matured at an old age (~9.2 years) and a large body size (~26 cm), thereby increasing their fitness by investing in somatic growth to enhance initial fecundity, and also to reach a large body size profitable for piscivory. The different trade-off regime between the PP- and PB-morphs seems to be caused by adaptation to alternative trophic niches, and appears to be an important factor for the co-occurrence of the two sister-morphs in the profundal zone.  相似文献   

7.
Divergent natural selection affecting specific trait combinations that lead to greater efficiency in resource exploitation is believed to be a major mechanism leading to trophic polymorphism and adaptive radiation. We present evidence of trophic polymorphism involving two benthic morphs within Percichthys trucha , a fish endemic to temperate South America. In a series of lakes located in the southern Andes, we found two morphs of P. trucha that could be distinguished on the basis of gill raker length and five other morphological measures, most of which are likely associated with the use of food resources. The differences were consistent across all lakes examined, and were correlated with habitat use and diet. Individuals with longer gill rakers were more abundant in the littoral zone (littoral morph) while the short gill-raker morph was more abundant at 10 m depth and deeper (deep benthic morph). Both morphs fed primarily on benthic invertebrates, but the littoral morph fed more on larval Anisoptera than did the deep benthic morph. Phenotypic correlations among traits were high for the littoral morph, but low and non-significant for the deep-benthic morph. We suggest that gill raker length may influence the relative efficiency of suction feeding for the two morphs. This is the first evidence of trophic polymorphism in fishes from temperate South America.  相似文献   

8.
The endemic cichlids of the Cuatro Cienegas Basin, Coahuila, Mexico are currently grouped in a single polymorphic species, Cichlasoma minckleyi . Two morphs of C. minckleyi were distinguished largely by features of the trophic apparatus, especially the pharyngeal dentition. Variation in body shape, based upon analysis of a set of linear measures, was continuous and did not allow recognition of discrete morphs. Individuals raised in the laboratory on several different diets indicated that trophic morphology had an important genetic component. Individuals raised in the laboratory, however, did not differentiate to the degree seen in comparably sized individuals collected at Cuatro Cienegas. This may be because snails used as food in the experiments were not as hard as endemic snails and indicated that some aspects of trophic morphology were also dependent upon environmental cues.  相似文献   

9.
Larval eastern long-toed salamanders, Ambystoma macrodactylum columbianum, exhibit trophic polymorphism whereby some individuals (referred to as cannibal morphs) possess a cannibalistic morphology and others (referred to as typical morphs) do not. In a series of laboratory experiments, we documented that typical morphs show an antipredator response when exposed to cannibal morphs but not when exposed to other typical morphs. The antipredator response of the typicals was not dependent on the cannibals being fed conspecifics, as has been shown in other predator-prey systems. In our experiments, the typicals responded regardless of whether the cannibals had been fed a diet of conspecifics or live Tubifex. Further experiments also showed that in the absence of visual cues, typicals still responded with an antipredator response. However, when only visual cues were available, typicals failed to exhibit a response. This suggests that chemical and/or mechanical cues are of prime importance in cannibal recognition by long-toed salamander larvae.  相似文献   

10.
The neotropical cichlid fish Cichlasoma citrinellum is polymorphic in the structure of its pharyngeal jaw apparatus and external morphology. The pharyngeal jaws are either gracile and bear slender, pointed teeth (papilliform) or robust with strong, rounded teeth (molariform). Molariform morphs have a ‘benthic’, and papilliform morphs a ‘limnetic’ body form. Furthermore, this species is also polychromatic, with yellow and black morphs. The molariform morphology of the pharyngeal jaw apparatus adapts the fish for cracking and feeding on snails. Based on analysis of stomach contents, 94% of the molariform morph ate snails whereas only 19%, of the papilliform morph did so. This result suggests that the morphs occupy different ecological niches. The morphology of the pharyngeal jaw apparatus does not correlate significantly with sex, but it does with body colouration (P<0.005). Cichlasoma citrinellum mate assortatively with their own colour; therefore a mating preference for colour may lead to genetic isolation of trophic morphs. The frequency of the molariform morph differs strikingly among populations of five Nicaraguan lakes and its abundance is correlated with the abundance of snails, the fishes' principal prey item. Among populations the frequency of molariform morphs decreases in the dry season. Morphology possibly changes reversibly within particular individuals between seasons. These results suggest that phenotypic plasticity and polymorphisms may be an adaptive characteristic of cichlid fishes. Patterns of intraspecific morphological variation match patterns of interspecific morphological diversification which suggests that universal developmental mechanisms canalize the possible expressions of morphology. The ability to respond morphologically to environmental shifts, in conjunction with genetically determined trophic polymorphisms and sexual selection via mate choice, could be the basis for speciation through intermediate stages of polymorphism of the impressive adaptive radiation of cichlid fishes.  相似文献   

11.
Whitefish, genus Coregonus, show exceptional levels of phenotypic diversity with sympatric morphs occurring in numerous postglacial lakes in the northern hemisphere. Here, we studied the effects of human‐induced eutrophication on sympatric whitefish morphs in the Swiss lake, Lake Thun. In particular, we addressed the questions whether eutrophication (i) induced hybridization between two ecologically divergent summer‐spawning morphs through a loss of environmental heterogeneity, and (ii) induced rapid adaptive morphological changes through changes in the food web structure. Genetic analysis based on 11 microsatellite loci of 282 spawners revealed that the pelagic and the benthic morph represent highly distinct gene pools occurring at different relative proportions on all seven known spawning sites. Gill raker counts, a highly heritable trait, showed nearly discrete distributions for the two morphs. Multilocus genotypes characteristic of the pelagic morph had more gill rakers than genotypes characteristic of benthic morph. Using Bayesian methods, we found indications of recent but limited introgressive hybridization. Comparisons with historical gill raker data yielded median evolutionary rates of 0.24 haldanes and median selection intensities of 0.27 for this trait in both morphs for 1948–2004 suggesting rapid evolution through directional selection at this trait. However, phenotypic plasticity as an alternative explanation for this phenotypic change cannot be discarded. We hypothesize that both the temporal shifts in mean gill raker counts and the recent hybridization reflect responses to changes in the trophic state of the lake induced by pollution in the 1960s, which created novel selection pressures with respect to feeding niches and spawning site preferences.  相似文献   

12.
Studies on north temperate fish species indicate that new habitat availability following the last ice sheet retreat has promoted ecological speciation in postglacial lakes. Extensive ecophenotypic polymorphisms observed among the North American Great Lakes ciscoes suggest that this fish group has radiated through trophic adaptation and reproductive isolation. This study aims at relating the ecomorphological and genetic polymorphisms expressed by the Lake Nipigon ciscoes to evaluate the likelihood of an intralacustrine divergence driven by the exploitation of alternative resources. Morphological variation and trophic and spatial niches are characterized and contrasted among 203 individuals. Genetic variation at six microsatellite loci is also analyzed to appraise the extent of genetic differentiation among these morphotypes. Ecomorphological data confirm the existence of four distinct morphotypes displaying various levels of trophic and depth niche overlap and specialization. However, ecological and morphological variations were not coupled as expected, suggesting that trophic morphology is not always predictive of ecology. Although extensive genetic variability was observed, little genetic differentiation was found among morphotypes, with only one morph being slightly but significantly differentiated. Contrasting patterns of morphological, ecological, and genetic polymorphisms did not support the hypothesis of ecological speciation: the most ecologically different forms were morphologically most similar, while the only genetically differentiated morph was the least ecologically specialized. The low levels of genetic differentiation and the congruence between θ and φ estimates altogether suggest a recent (most likely postglacial) process of divergence and/or high gene flow among morphs A, C, and D, whereas higher φ estimates for comparison involving morph B suggest that this morph may be derived from another colonizing lineage exchanging little genes with the other morphs. Patterns of ecophenotypic and genetic diversity are also compatible with a more complex evolutionary history involving hybridization and introgression.  相似文献   

13.
Infection patterns of trophically transmitted helminth parasites were compared with feeding ecology in two sympatric whitefish Coregonus lavaretus morphs from two lake systems in northern Norway. In both lakes, the pelagic morph was an obligate zooplanktivore, while the benthic morph utilized both the benthivore and zooplanktivore trophic niches. The differences in niche utilization between the two morphs were associated with differences in trophic morphology (gill raker numbers), suggesting that they were genetically dissimilar and reproductively isolated. The benthic morph had the highest number of helminth species, probably because they exhibited a broader niche width compared to the pelagic morph. In both lakes, the species composition and intensities of helminths reflected the trophic diversification of the whitefish ecotypes with respect to different habitat choice (benthic v . pelagic) and dietary specialization (benthivore v . zooplanktivore feeding strategies within the benthic whitefish morph). Zooplanktivorous fish from both morphs acquired parasites mainly from pelagic copepods and in almost equal quantities. The benthivore feeders within the benthic morph had the highest proportion of parasites with transmission stages from benthic organisms. Host feeding behaviour seemed to be a major determinant of the helminth community structure, and helminths appeared to be useful indicators of long-term trophic specialization of whitefish ecotypes.  相似文献   

14.
A study of body and head development in three sympatric reproductively isolated Arctic charr (Salvelinus alpinus (L.)) morphs from a subarctic lake (Skogsfjordvatn, northern Norway) revealed allometric trajectories that resulted in morphological differences. The three morphs were ecologically assigned to a littoral omnivore, a profundal benthivore and a profundal piscivore, and this was confirmed by genetic analyses (microsatellites). Principal component analysis was used to identify the variables responsible for most of the morphological variation of the body and head shape. The littoral omnivore and the profundal piscivore morph had convergent allometric trajectories for the most important head shape variables, developing bigger mouths and relatively smaller eyes with increasing head size. The two profundal morphs shared common trajectories for the variables explaining most of the body and head shape variation, namely head size relative to body size, placement of the dorsal and pelvic fins, eye size and mouth size. In contrast, the littoral omnivore and the profundal benthivore morphs were not on common allometric trajectories for any of the examined variables. The findings suggest that different selective pressures could have been working on traits related to their trophic niche such as habitat and diet utilization of the three morphs, with the two profundal morphs experiencing almost identical environmental conditions.  相似文献   

15.
Lizards are ideal for studying colour polymorphism, because some species are polymorphic and the morphs often have different ecological or reproductive strategies. We studied the feeding habits of six polymorphic populations of Podarcis muralis to test whether morphs differed in their diet. Some taxa were selected in a similar way by all morphs, but selection on other taxa varied and was characteristic of each morph. Diet was most different for the red and yellow morphs. Two hypotheses could explain these differences: active segregation in the trophic niche or active segregation in space dependent on spatial heterogeneity in prey availability. The former is improbable because P. muralis is considered an opportunistic feeder, whereas the latter could occur if the morphs adopted alternative territorial strategies with consequent spatial segregation.  相似文献   

16.
Resource partitioning within a species, trophic polymorphism is hypothesized to evolve by disruptive selection when intraspecific competition for certain resources is severe. However, in this study, we reported the secondary partitioning of oviposition resources without resource competition in the damselfly Ischnura senegalensis. In this species, females show color polymorphism that has been evolved as counteradaptation against sexual conflict. One of the female morphs is a blue‐green (andromorph, male‐like morph), whereas the other morph is brown (gynomorph). These female morphs showed alternative preferences for oviposition resources (plant tissues); andromorphs used fresh (greenish) plant tissues, whereas gynomorphs used decaying (brownish) plants tissues, suggesting that they chose oviposition resources on which they are more cryptic. In addition, the two‐color morphs had different egg morphologies. Andromorphs have smaller and more elongated eggs, which seemed to adapt to hard substrates compared with those of gynomorphs. The resource partitioning in this species is achieved by morphological and behavioral differences between the color morphs that allow them to effectively exploit different resources. Resource partitioning in this system may be a by‐product of phenotypic integration with body color that has been sexually selected, suggesting an overlooked mechanism of the evolution of resource partitioning. Finally, we discuss the evolutionary and ecological consequences of such resource partitioning.  相似文献   

17.
The expression of two or more discrete phenotypes amongst individuals within a species (morphs) provides multiple modes upon which selection can act semi‐independently, and thus may be an important stage in speciation. In the present study, we compared two sympatric morph systems aiming to address hypotheses related to their evolutionary origin. Arctic charr in sympatry in Loch Tay, Scotland, exhibit one of two discrete, alternative body size phenotypes at maturity (large or small body size). Arctic charr in Loch Awe segregate into two temporally segregated spawning groups (breeding in either spring or autumn). Mitochondrial DNA restriction fragment length polymorphism analysis showed that the morph pairs in both lakes comprise separate gene pools, although segregation of the Loch Awe morphs is more subtle than that of Loch Tay. We conclude that the Loch Awe morphs diverged in situ (within the lake), whereas Loch Tay morphs most likely arose through multiple invasions by different ancestral groups that segregated before post‐glacial invasion (i.e. in allopatry). Both morph pairs showed clear trophic segregation between planktonic and benthic resources (measured by stable isotope analysis) but this was significantly less distinct in Loch Tay than in Loch Awe. By contrast, both inter‐morph morphological and life‐history differences were more subtle in Loch Awe than in Loch Tay. The strong ecological but relatively weak morphological and life‐history divergence of the in situ derived morphs compared to morphs with allopatric origins indicates a strong link between early ecological and subsequent genetic divergence of sympatric origin emerging species pairs. The emergence of parallel specialisms despite distinct genetic origins of these morph pairs suggests that the effect of available foraging opportunities may be at least as important as genetic origin in structuring sympatric divergence in post‐glacial fishes with high levels of phenotypic plasticity. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

18.
Organisms with complex life cycles are characterized by a metamorphosis that allows for a major habitat shift and the exploitation of alternative resources. However, metamorphosis can be bypassed in some species through a process called paedomorphosis, resulting in the retention of larval traits at the adult stage and is considered important at both micro‐ and macroevolutionary scales. In facultatively paedomorphic populations of newts, some individuals retain gills and a fully aquatic life at the adult stage (paedomorphs), while others undergo complete metamorphosis (metamorphs), allowing for a terrestrial life‐stage. Because facultative paedomorphosis affects trophic structures and feeding mechanism of newts, one hypothesis is that it may be maintained as a trophic polymorphism, with the advantage to lessen intraspecific competition during the shared aquatic life‐stage. Here, we tested this hypothesis combining stomach content data with stable isotope techniques, using carbon and nitrogen stable isotopes, in facultatively paedomorphic alpine newts Ichthyosaura alpestris. Both stomach content and stable isotope analyses showed that paedomorphs had smaller trophic niches and were more reliant on pelagic resources, while metamorphs relied more on littoral resources, corresponding to a polyphenism along the littoral–pelagic axis and the extension of the population's trophic niche to otherwise ‘underused’ pelagic resources by paedomorphs. Interestingly, stable isotopes revealed that the trophic polyphenism was less marked in males than in females and potentially linked to sexual activity. Although paedomorphosis and metamorphosis are primarily seen as results of tradeoffs between the advantages of using aquatic versus terrestrial habitats, this study provides evidence that additional forces, such as intraspecific trophic niche differences between morphs and trophic niche expansion, may play an important role in the persistence of this dimorphism in heterogeneous environments. Moreover, the different patterns found in males and females show the importance of considering sex to understand the evolutionary ecology of trophic polymorphisms.  相似文献   

19.
Populations often contain discrete classes or morphs (e.g., sexual dimorphisms, wing dimorphisms, trophic dimorphisms) characterized by distinct patterns of trait expression. In quantitative genetic analyses, the different morphs can be considered as different environments within which traits are expressed. Genetic variances and covariances can then be estimated independently for each morph or in a combined analysis. In the latter case, morphs can be considered as separate environments in a bivariate analysis or entered as fixed effects in a univariate analysis. Although a common approach, we demonstrate that the latter produces downwardly biased estimates of additive genetic variance and heritability unless the quantitative genetic architecture of the traits concerned is perfectly correlated between the morphs. This result is derived for four widely used quantitative genetic variance partitioning methods. Given that theory predicts the evolution of genotype‐by‐environment (morph) interactions as a consequence of selection favoring different trait combinations in each morph, we argue that perfect correlations between the genetic architectures of the different morphs are unlikely. A sampling of the recent literature indicates that the majority of researchers studying traits expressed in different morphs recognize this and do estimate morph‐specific quantitative genetic architecture. However, ca. 16% of the studies in our sample utilized only univariate, fixed‐effects models. We caution against this approach and recommend that it be used only if supported by evidence that the genetic architectures of the different morphs do not differ.  相似文献   

20.
Some astigmatic mites display dimorphic deutonymphs (hypopus) which are facultatively intercalated in their development cycle between protonymph and tritonymph. Such species, among them Glycyphagus privatus and Glycyphagus ornatus show three potential developmental pathways: (1) to bypass the hypopus stage and develop directly from the protonymph to the tritonymph and the subsequent reproductive stage when conditions are favorable; (2) to leave the original site and disperse by means of a phoretic hypopus morph; or (3) to survive inimical life conditions in the natal environment by means of a sedentary hypopus morph. By producing both dispersing (and afterwards at the arrival site reproducing) and sedentary (drought-hardy and dormancy-prone) progeny each single parent attains a selective advantage through a risk-reducing insurance against irregularly fluctuating and often fatal life conditions of their temporary patch habitats. Both genetic heterogeneity and ecological plasticity for hypopus production adapt the Glycyphagus species to cope with variation in the environment. Both traits (for dispersal and survival) are extremely polymorphic with genotypes ranging from low to high propensities for production of each hypopus type. There is a substantial environmental effect on genetic expression such that expression of both morphs depends on the quality of food. This ecological response allows a fast reaction of the mite to the current trophic environment. Phoretic morphs are predominantly expressed at favorable trophic conditions and sedentary morphs at poor trophic conditions. Ecological influences may override genetic propensities and vice versa. Although selection imposed by changing environmental patterns adjusts the frequencies of genotypes over generations and provides for long-term adaptation, the short-term process of environmental induction adapts the population within a generation to transient-habitat disturbances. The interaction of genetic and ecological determinants explains the varying proportions of directly developing mites, phoretic hypopodes, and sedentary hypopodes, in a population at any moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号