首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The epithelial to mesenchymal transition (EMT) is characterized by a loss of cell polarity, a decrease in the epithelial cell marker E-cadherin, and an increase in mesenchymal markers including the zinc-finger E-box binding homeobox (ZEB1). The EMT is also associated with an increase in cell migration and anchorage-independent growth. Induction of a reversal of the EMT, a mesenchymal to epithelial transition (MET), is an emerging strategy being explored to attenuate the metastatic potential of aggressive cancer types, such as triple-negative breast cancers (TNBCs) and tamoxifen-resistant (TAMR) ER-positive breast cancers, which have a mesenchymal phenotype. Patients with these aggressive cancers have poor prognoses, quick relapse, and resistance to most chemotherapeutic drugs. Overexpression of extracellular signal-regulated kinase (ERK) 1/2 and ERK5 is associated with poor patient survival in breast cancer. Moreover, TNBC and tamoxifen resistant cancers are unresponsive to most targeted clinical therapies and there is a dire need for alternative therapies.In the current study, we found that MAPK3, MAPK1, and MAPK7 gene expression correlated with EMT markers and poor overall survival in breast cancer patients using publicly available datasets. The effect of ERK1/2 and ERK5 pathway inhibition on MET was evaluated in MDA-MB-231, BT-549 TNBC cells, and tamoxifen-resistant MCF-7 breast cancer cells. Moreover, TU-BcX-4IC patient-derived primary TNBC cells were included to enhance the translational relevance of our study. We evaluated the effect of pharmacological inhibitors and lentivirus-induced activation or inhibition of the MEK1/2-ERK1/2 and MEK5-ERK5 pathways on cell morphology, E-cadherin, vimentin and ZEB1 expression. Additionally, the effects of pharmacological inhibition of trametinib and XMD8-92 on nuclear localization of ERK1/2 and ERK5, cell migration, proliferation, and spheroid formation were evaluated. Novel compounds that target the MEK1/2 and MEK5 pathways were used in combination with the AKT inhibitor ipatasertib to understand cell-specific responses to kinase inhibition. The results from this study will aid in the design of innovative therapeutic strategies that target cancer metastases.  相似文献   

3.
The mitotic checkpoint gene CHFR (checkpoint with forkhead-associated (FHA) and RING finger domains) is silenced by promoter hypermethylation or mutated in various human cancers, suggesting that CHFR is an important tumor suppressor. Recent studies have reported that CHFR functions as an E3 ubiquitin ligase, resulting in the degradation of target proteins. To better understand how CHFR suppresses cell cycle progression and tumorigenesis, we sought to identify CHFR-interacting proteins using affinity purification combined with mass spectrometry. Here we show poly(ADP-ribose) polymerase 1 (PARP-1) to be a novel CHFR-interacting protein. In CHFR-expressing cells, mitotic stress induced the autoPARylation of PARP-1, resulting in an enhanced interaction between CHFR and PARP-1 and an increase in the polyubiquitination/degradation of PARP-1. The decrease in PARP-1 protein levels promoted cell cycle arrest at prophase, supporting that the cells expressing CHFR were resistant to microtubule inhibitors. In contrast, in CHFR-silenced cells, polyubiquitination was not induced in response to mitotic stress. Thus, PARP-1 protein levels did not decrease, and cells progressed into mitosis under mitotic stress, suggesting that CHFR-silenced cancer cells were sensitized to microtubule inhibitors. Furthermore, we found that cells from Chfr knockout mice and CHFR-silenced primary gastric cancer tissues expressed higher levels of PARP-1 protein, strongly supporting our data that the interaction between CHFR and PARP-1 plays an important role in cell cycle regulation and cancer therapeutic strategies. On the basis of our studies, we demonstrate a significant advantage for use of combinational chemotherapy with PARP inhibitors for cancer cells resistant to microtubule inhibitors.  相似文献   

4.
5.
Lai  Hongna  Wang  Rui  Li  Shunying  Shi  Qianfeng  Cai  Zijie  Li  Yudong  Liu  Yujie 《中国科学:生命科学英文版》2020,63(3):419-428
LIN9 functions to regulate cell mitotic process.Dysregulation of LIN9 expression is associated with development of human cancers.In this study we assessed the association of LIN9 expression with paclitaxel resistance and clarified the underlying mechanisms for the first time.LIN9 expression in breast cancer tissues was retrieved from publicly available online databases and statistically analyzed.Human TNBC cell lines MDA-MB-231 and MDA-MB-468 and their corresponding paclitaxelresistant sublines 231PTX and 468PTX were used to assess the expression of LIN9 by qRT-PCR and Western blot,cell growth by cell counting,cell viability by MTS assay,and cell apoptosis by flow cytometry.The data showed that high LIN9 expression in breast cancer patients receiving chemotherapy was related to poor overall survival (OS).LIN9 expression was upregulated in paclitaxel-resistant TNBC cells compared to their parental cells.Knockdown of LIN9 or treatment of paclitaxel-resistant TNBC cells with a bromo-and extra-terminal domain inhibitor (BETi) JQ1 which also decreased LIN9 expression enhanced the sensitivity of paclitaxel-resistant TNBC cells to paclitaxel.Mechanistically,decreased LIN9 in resistant cell lines reduced tumor cell viability,promoted multinucleated cells formation and induced tumor cell apoptosis,potentially by directly regulating microtubule-binding protein CCSAP.In conclusion,high LIN9 expression contributed to poor clinical outcomes and paclitaxel resistance in TNBC and BETi,targeting LIN9 expression,could be a reversible drug for PTX-resistant TNBC patients.  相似文献   

6.
7.
8.
TNBC is characterized by high incidence of visceral metastasis and lacks effective clinical targets. This study aims to delineate the molecular mechanisms of SENP1 in TNBC invasion and metastasis. By using IHC to test the SENP1 expression in TNBC tissues, we analyzed the relationship between SENP1 expression and TNBC prognosis. We showed that SENP1 expression was higher in TNBC tumor tissues and related to TNBC prognosis, supporting SENP1 as an independent risk factor. High expression of SENP1 was significantly associated with histologic grade and tumor lymph node invasion. Intriguingly, the expression levels of SENP1 in TNBC tumors were significantly correlated with that of CSN5, GATA1 and ZEB1. Importantly, SENP1 promoted TNBC cell migration and invasion by regulating ZEB1 deubiquitination and expression through CSN5. Further studies showed that deSUMOylation at lysine residue K137 of GATA1 enhanced the binding of GATA1 to the CSN5 promoter and transactivated CSN5 expression. In addition, we showed that ZEB1 is deubiquitinated at lysine residue K1108. Our in vivo studies also indicated that reduction in SENP1 expression upregulated GATA1 SUMOylation, and thus resulted in decreased expression of CSN5 and ZEB1 in the tumor microenvironment, which decelerated TNBC progression and metastasis. SENP1 promoted CSN5-mediated ZEB1 protein degradation via deSUMOylation of GATA1, and thus influenced TNBC progression. These findings suggest that SENP1 could be utilized as a potential target for blockade of TNBC development and thus provide a totally new approach for TNBC treatment.  相似文献   

9.
Triple-negative breast cancer (TNBC) is defined as a group of primary breast cancers lacking expression of estrogen, progesterone, and human epidermal growth factor receptor-2 (HER-2) receptors, characterized by higher relapse rate and lower survival compared with other subtypes. Due to lack of identified targets and molecular heterogeneity, conventional chemotherapy is the only available option for treatment of TNBC, but non-discordant positive therapeutic efficacy could not be achieved. Here, we demonstrated that these TNBC cells were sensitive to teriflunomide, which was a well-known immunomodulatory drug for treatment of relapsing multiple sclerosis (MS). Potent anti-cancer effects in TNBC in vitro, including proliferation inhibition, cell cycle delay, cell apoptosis, and suppression of cell motility and invasiveness, could be achieved with this agent. Of note, we showed that multiple signals involved in TNBC proliferation, survival, migratory, and invasive potential were under regulation by teriflunomide. Among them, we identified down-regulation of growth factor receptors to abolish growth maintenance, suppression of c-Myc, and cyclin D1 to contribute to its anti-proliferative effect, modulation of components of cell cycle to induce S-phase arrest, degradation of Bcl-xL, and up-regulation of BAX via activation of MAPK pathway to induce apoptosis, and inhibition of epithelial-mesenchymal transition (EMT) process, matrix metalloproteinase-9 (MMP9) expression, and inactivation of Src/FAK to reduce TNBC migration and invasion. The results identified teriflunomide may be of therapeutic benefit for the more aggressive and difficult-to-treat breast cancer subtype, indicating the use of teriflunomide for clinical trials for treatment of TNBC patients.  相似文献   

10.
DNAJB9, a member of the heat shock protein 40 family, acts as a multifunctional player involved in the maintenance of their client proteins and cellular homeostasis. However, the mechanistic action of DNAJB9 in human malignancies is yet to be fully understood. In this study, we found that ectopic restoration of DNAJB9 inhibits the migration, invasion, in vivo metastasis, and lung colonization of triple-negative breast cancer (TNBC) cells. Mechanistically, DNAJB9 stabilizes FBXO45 protein by suppressing self-ubiquitination and reduces the abundance of ZEB1 by Lys48-linked polyubiquitination to inhibit the epithelial–mesenchymal transition (EMT) and metastasis. Clinically, the reduction of DNAJB9 expression, concomitant with decreased FBXO45 abundance in breast cancer tissues, correlates with poorer clinical outcomes of patients with breast cancer. Taken together, our results provide a novel insight into the metastasis of TNBC and define a promising therapeutic strategy for cancers with overactive ZEB1 by regulating the DNAJB9–FBXO45 signaling axis.Subject terms: Breast cancer, Metastasis, Ubiquitylation, Tumour-suppressor proteins  相似文献   

11.
12.
Therapy resistance can be attributed to acquisition of anti-apoptotic mechanisms by the cancer cells. Therefore, developing approaches that trigger non-apoptotic cell death in cancer cells to compensate for apoptosis resistance will help to treat cancer effectively. Triple-negative breast cancers (TNBC) are among the most aggressive and therapy resistant to breast tumors. Here we report that manumycin A (Man A), an inhibitor of farnesyl protein transferase, reduces cancer cell viability through induction of non-apoptotic, non-autophagic cytoplasmic vacuolation death in TNBC cells. Man A persistently induced cytoplasmic vacuolation and cell death through the expression of microtubule-associated protein 1 light chain 3 (LC3) and p62 proteins along with endoplasmic reticulum (ER) stress markers, Bip and CHOP, and accumulation of ubiquitinated proteins. As inhibitors of apoptosis and autophagy failed to block cytoplasmic vacuolation and its associated protein expression or cell death, it appears that these processes are not involved in the death induced by Man A. Ability of thiol antioxidant, NAC in blocking Man A-induced vacuolation, death and its related protein expression suggests that sulfhydryl homeostasis may be the target of Man A. Surprisingly, normal human mammary epithelial cells failed to undergo cytoplasmic vacuolation and cell death, and grew normally in presence of Man A. In conjunction with its in vitro effects, Man A also reduced tumor burden in vivo in xenograft models that showed extensive cytoplasmic vacuoles and condensed nuclei with remarkable increase in the vacuolation-associated protein expression together with increase of p21, p27, PTEN and decrease of pAkt. Interestingly, Man A-mediated upregulation of p21, p27 and PTEN and downregulation of pAkt and tumor growth suppression were also mimicked by LC3 knockdown in MDA-MB-231 cells. Overall, these results suggest novel therapeutic actions by Man A through the induction of non-apoptotic and non-autophagic cytoplasmic vacuolation death by probably affecting ER stress, LC3 and p62 pathways in TNBC but not in normal mammary epithelial cells.  相似文献   

13.
Triple-negative breast cancer (TNBC) represents an aggressive cancer subtype characterized by the lack of expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). The independence of TNBC from these growth promoting factors eliminates the efficacy of therapies which specifically target them, and limits TNBC patients to traditional systemic neo/adjuvant chemotherapy. To better understand the growth advantage of TNBC – in the absence of ER, PR and HER2, we focused on the embryonic morphogen Nodal (associated with the cancer stem cell phenotype), which is re-expressed in aggressive breast cancers. Most notably, our previous data demonstrated that inhibition of Nodal signaling in breast cancer cells reduces their tumorigenic capacity. Furthermore, inhibiting Nodal in other cancers has resulted in improved effects of chemotherapy, although the mechanisms for this remain unknown. Thus, we hypothesized that targeting Nodal in TNBC cells in combination with conventional chemotherapy may improve efficacy and represent a potential new strategy. Our preliminary data demonstrate that Nodal is highly expressed in TNBC when compared to invasive hormone receptor positive samples. Treatment of Nodal expressing TNBC cell lines with a neutralizing anti-Nodal antibody reduces the viability of cells that had previously survived treatment with the anthracycline doxorubicin. We show that inhibiting Nodal may alter response mechanisms employed by cancer cells undergoing DNA damage. These data suggest that development of therapies which target Nodal in TNBC may lead to additional treatment options in conjunction with chemotherapy regimens – by altering signaling pathways critical to cellular survival.  相似文献   

14.
15.
Triple-negative breast cancer (TNBC) is an aggressive malignant disease that is responsible for approximately 15% of breast cancers. The standard of care relies on surgery and chemotherapy but the prognosis is poor and there is an urgent need for new therapeutic strategies. Recent in silico studies have revealed an inverse correlation between recurrence-free survival and the level of cyclin-dependent kinase 8 (CDK8) in breast cancer patients. CDK8 is known to have a role in natural killer (NK) cell cytotoxicity, but its function in TNBC progression and immune cell recognition or escape has not been investigated. We have used a murine model of orthotopic breast cancer to study the tumor-intrinsic role of CDK8 in TNBC. Knockdown of CDK8 in TNBC cells impairs tumor regrowth upon surgical removal and prevents metastasis. In the absence of CDK8, the epithelial-to-mesenchymal transition (EMT) is impaired and immune-mediated tumor-cell clearance is facilitated. CDK8 drives EMT in TNBC cells in a kinase-independent manner. In vivo experiments have confirmed that CDK8 is a crucial regulator of NK-cell-mediated immune evasion in TNBC. The studies also show that CDK8 is involved in regulating the checkpoint inhibitor programmed death-ligand 1 (PD-L1). The CDK8–PD-L1 axis is found in mouse and human TNBC cells, underlining the importance of CDK8-driven immune cell evasion in these highly aggressive breast cancer cells. Our data link CDK8 to PD-L1 expression and provide a rationale for investigating the possibility of CDK8-directed therapy for TNBC.Subject terms: Breast cancer, Immune evasion  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号