首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Zika virus (ZIKV) and dengue virus (DENV) flaviviruses exhibit similar replicative processes but have distinct clinical outcomes. A systematic understanding of virus–host protein–pro-tein interaction networks can reveal cellular pathways critical to viral replication and disease patho-genesis. Here we employed three independent systems biology approaches toward this goal. First, protein array analysis of direct interactions between individual ZIKV/DENV viral proteins and 20,240 human proteins revealed multiple conserved cellular pathways and protein complexes, including proteasome complexes. Second, an RNAi screen of 10,415 druggable genes identified the host proteins required for ZIKV infection and uncovered that proteasome proteins were crucial in this process. Third, high-throughput screening of 6016 bioactive compounds for ZIKV inhibition yielded 134 effective compounds, including six proteasome inhibitors that suppress both ZIKV and DENV replication. Integrative analyses of these orthogonal datasets pinpoint proteasomes as crit-ical host machinery for ZIKV/DENV replication. Our study provides multi-omics datasets for fur-ther studies of flavivirus–host interactions, disease pathogenesis, and new drug targets.  相似文献   

2.
The endoplasmic reticulum (ER) is exploited by several diverse viruses during their infectious life cycles. Flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), utilize the ER as a source of membranes to establish their replication organelles and to facilitate their assembly and eventual maturation along the secretory pathway. To maintain normal homeostasis, host cells have evolved highly efficient processes to dynamically regulate the ER, such as through reticulophagy, a selective form of autophagy that leads to ER degradation. Here, we identify the ER-localized reticulophagy receptor FAM134B as a host cell restriction factor for both DENV and ZIKV. We show that RNAi-mediated depletion of FAM134B significantly enhances both DENV and ZIKV replication at an early stage of the viral life cycle. Consistent with its role as an antiviral host factor, we found that several flaviviruses including DENV, ZIKV, and West Nile virus (WNV), utilize their NS3 virally-encoded proteases to directly cleave FAM134B at a single site within its reticulon homology domain (RHD). Mechanistically, we show that NS3-mediated cleavage of FAM134B blocks the formation of ER and viral protein-enriched autophagosomes, suggesting that the cleavage of FAM134B serves to specifically suppress the reticulophagy pathway. These findings thus point to an important role for FAM134B and reticulophagy in the regulation of flavivirus infection and suggest that these viruses specifically target these pathways to promote viral replication.  相似文献   

3.
Dengue virus (DENV) and Zika virus (ZIKV) are flaviviruses transmitted to humans by their common vector, Aedes mosquitoes. DENV infection represents one of the most widely spread mosquito‐borne diseases whereas ZIKV infection occasionally re‐emerged in the past causing outbreaks. Although there have been considerable advances in understanding the pathophysiology of these viruses, no effective vaccines or antiviral drugs are currently available. In this study, we evaluated the antiviral activity of carnosine, an endogenous dipeptide (β‐alanyl‐l ‐histidine), against DENV serotype 2 (DENV2) and ZIKV infection in human liver cells (Huh7). Computational studies were performed to predict the potential interactions between carnosine and viral proteins. Biochemical and cell‐based assays were performed to validate the computational results. Mode‐of‐inhibition, plaque reduction, and immunostaining assays were performed to determine the antiviral activity of carnosine. Exogenous carnosine showed minimal cytotoxicity in Huh7 cells and rescued the viability of infected cells with EC50 values of 52.3 and 59.5 μM for DENV2 and ZIKV infection, respectively. Based on the mode‐of‐inhibition assays, carnosine inhibited DENV2 mainly by inhibiting viral genome replication and interfering with virus entry. Carnosine antiviral activity was verified with immunostaining assay where carnosine treatment diminished viral fluorescence signal. In conclusion, carnosine exhibited significant inhibitory effects against DENV2 and ZIKV replication in human liver cells and could be utilized as a lead peptide for the development of effective and safe antiviral agents against DENV and ZIKV.  相似文献   

4.
Cytosolic lipid droplets are central organelles in the Hepatitis C Virus (HCV) life cycle. The viral capsid protein core localizes to lipid droplets and initiates the production of viral particles at lipid droplet–associated ER membranes. Core is thought to encapsidate newly synthesized viral RNA and, through interaction with the two envelope proteins E1 and E2, bud into the ER lumen. Here, we visualized the spatial distribution of HCV structural proteins core and E2 in vicinity of small lipid droplets by three-color 3D super-resolution microscopy. We observed and analyzed small areas of colocalization between the two structural proteins in HCV-infected cells with a diameter of approximately 100 nm that might represent putative viral assembly sites.  相似文献   

5.
BackgroundSerological diagnosis of Zika virus (ZIKV) infection is challenging because of the antibody cross-reactivity among flaviviruses. At the same time, the role of Nucleic Acid Testing (NAT) is limited by the low proportion of symptomatic infections and the low average viral load. Here, we compared the diagnostic performance of commercially available IgM, IgAM, and IgG ELISAs in sequential samples during the ZIKV and chikungunya (CHIKV) epidemics and co-circulation of dengue virus (DENV) in Brazil and Venezuela.Methodology/Principal findingsAcute (day of illness 1–5) and follow-up (day of illness ≥ 6) blood samples were collected from nine hundred and seven symptomatic patients enrolled in a prospective multicenter study between June 2012 and August 2016. Acute samples were tested by RT-PCR for ZIKV, DENV, and CHIKV. Acute and follow-up samples were tested for IgM, IgAM, and IgG antibodies to ZIKV using commercially available ELISAs. Among follow-up samples with a RT-PCR confirmed ZIKV infection, anti-ZIKV IgAM sensitivity was 93.5% (43/46), while IgM and IgG exhibited sensitivities of 30.3% (10/33) and 72% (18/25), respectively. An additional 24% (26/109) of ZIKV infections were detected via IgAM seroconversion in ZIKV/DENV/CHIKV RT-PCR negative patients. The specificity of anti-ZIKV IgM was estimated at 93% and that of IgAM at 85%.Conclusions/SignificanceOur findings exemplify the challenges of the assessment of test performance for ZIKV serological tests in the real-world setting, during co-circulation of DENV, ZIKV, and CHIKV. However, we can also demonstrate that the IgAM immunoassay exhibits superior sensitivity to detect ZIKV RT-PCR confirmed infections compared to IgG and IgM immunoassays. The IgAM assay also proves to be promising for detection of anti-ZIKV seroconversions in sequential samples, both in ZIKV PCR-positive as well as PCR-negative patients, making this a candidate assay for serological monitoring of pregnant women in future ZIKV outbreaks.  相似文献   

6.
Zika virus (ZIKV) has been associated with morbidities such as Guillain‐Barré, infant microcephaly, and ocular disease. The spread of this positive‐sense, single‐stranded RNA virus and its growing public health threat underscore gaps in our understanding of basic ZIKV virology. To advance knowledge of the virus replication cycle within mammalian cells, we use serial section 3‐dimensional electron tomography to demonstrate the widespread remodelling of intracellular membranes upon infection with ZIKV. We report extensive structural rearrangements of the endoplasmic reticulum and reveal stages of the ZIKV viral replication cycle. Structures associated with RNA genome replication and virus assembly are observed integrated within the endoplasmic reticulum, and we show viruses in transit through the Golgi apparatus for viral maturation, and subsequent cellular egress. This study characterises in detail the 3‐dimensional ultrastructural organisation of the ZIKV replication cycle stages. Our results show close adherence of the ZIKV replication cycle to the existing flavivirus replication paradigm.  相似文献   

7.
The currently spreading arbovirus epidemic is having a severe impact on human health worldwide. The two most common flaviviruses, dengue virus (DENV) and Zika virus (ZIKV), are transmitted through the same viral vector, Aedes spp. mosquitoes. Since the discovery of DENV in 1943, this virus has been reported to cause around 390 million human infections per year, approximately 500,000 of which require hospitalization and over 20,000 of which are lethal. The present DENV epidemic is primarily concentrated in Southeast Asia. ZIKV, which was discovered in 1952, is another important arthropod-borne flavivirus. The neurotropic role of ZIKV has been reported in infected newborns with microcephaly and in adults with Guillain-Barre syndrome. Despite DENV and ZIKV sharing the same viral vector, their complex pathogenic natures are poorly understood, and the infections they cause do not have specific treatments or effective vaccines. Therefore, this review will describe what is currently known about the clinical characteristics, pathogenesis mechanisms, and transmission of these two viruses. Better understanding of the interrelationships between DENV and ZIKV will provide a useful perspective for developing an effective strategy for controlling both viruses in the future.  相似文献   

8.
Dengue viruses (DENV serotypes 1–4) and Zika virus (ZIKV) are related flaviviruses that continue to be a public health concern, infecting hundreds of millions of people annually. The traditional live-attenuated virus vaccine approach has been challenging for the four DENV serotypes because of the need to achieve balanced replication of four independent vaccine components. Subunit vaccines represent an alternative approach that may circumvent problems inherent with live-attenuated DENV vaccines. In mature virus particles, the envelope (E) protein forms a homodimer that covers the surface of the virus and is the major target of neutralizing antibodies. Many neutralizing antibodies bind to quaternary epitopes that span across both E proteins in the homodimer. For soluble E (sE) protein to be a viable subunit vaccine, the antigens should be easy to produce and retain quaternary epitopes recognized by neutralizing antibodies. However, WT sE proteins are primarily monomeric at conditions relevant for vaccination and exhibit low expression yields. Previously, we identified amino acid mutations that stabilize the sE homodimer from DENV2 and dramatically raise expression yields. Here, we tested whether these same mutations raise the stability of sE from other DENV serotypes and ZIKV. We show that the mutations raise thermostability for sE from all the viruses, increase production yields from 4-fold to 250-fold, stabilize the homodimer, and promote binding to dimer-specific neutralizing antibodies. Our findings suggest that these sE variants could be valuable resources in the efforts to develop effective subunit vaccines for DENV serotypes 1 to 4 and ZIKV.  相似文献   

9.
Chikungunya virus (CHIKV) caused a large outbreak in Puerto Rico in 2014, followed by a Zika virus (ZIKV) outbreak in 2016. Communities Organized for the Prevention of Arboviruses (COPA) is a cohort study in southern Puerto Rico, initiated in 2018 to measure arboviral disease risk and provide a platform to evaluate interventions. To identify risk factors for infection, we assessed prevalence of previous CHIKV infection and recent ZIKV and DENV infection in a cross-sectional study among COPA participants. Participants aged 1–50 years (y) were recruited from randomly selected households in study clusters. Each participant completed an interview and provided a blood specimen, which was tested by anti-CHIKV IgG ELISA assay and anti-ZIKV and anti-DENV IgM MAC-ELISA assays. We assessed individual, household, and community factors associated with a positive result for CHIKV or ZIKV after adjusting for confounders. During 2018–2019, 4,090 participants were enrolled; 61% were female and median age was 28y (interquartile range [IQR]: 16–41). Among 4,035 participants tested for CHIKV, 1,268 (31.4%) had evidence of previous infection. CHIKV infection prevalence was lower among children 1–10 years old compared to people 11 and older (adjusted odds ratio [aOR] 2.30; 95% CI 1.71–3.08). Lower CHIKV infection prevalence was associated with home screens (aOR 0.51; 95% CI 0.42–0.61) and air conditioning (aOR 0.64; 95% CI 0.54–0.77). CHIKV infection prevalence also varied by study cluster of residence and insurance type. Few participants (16; 0.4%) had evidence of recent DENV infection by IgM. Among 4,035 participants tested for ZIKV, 651 (16%) had evidence of recent infection. Infection prevalence increased with older age, from 7% among 1–10y olds up to 19% among 41–50y olds (aOR 3.23; 95% CI 2.16–4.84). Males had an increased risk of Zika infection prevalence compared with females (aOR 1.31; 95% CI 1.09–1.57). ZIKV infection prevalence also decreased with the presence of home screens (aOR 0.66; 95% CI 0.54–0.82) and air conditioning (aOR 0.69; 95% CI 0.57–0.84). Similar infection patterns were observed for recent ZIKV infection prevalence and previous CHIKV infection prevalence by age, and the presence of screens and air conditioners in the home decreased infection risk from both viruses by as much as 50%.  相似文献   

10.

Dengue virus and Zika virus are arthropod-borne flaviviruses that cause millions of infections worldwide. The co-circulation of both viruses makes serological diagnosis difficult as they share high amino acid similarities in viral proteins. Antigens are one of the key reagents in the differential diagnosis of these viruses through the detection of IgG antibodies in serological assays during the convalescent-phase of infections. Here, we report the expression of Dengue virus (DENV) and Zika virus (ZIKV) antigens containing non-conserved and immunodominant amino acid sequences using the baculovirus expression vector system in insect cells. We designed DENV and ZIKV antigens based on the domain III of the E protein (EDIII) after analyzing previously reported epitopes and by multiple alignment of the most important flaviviruses. The ZIKV and DENV multi-epitope genes were designed as tandem repeats or impaired repeats separated by tetra- or hexa-glycine linkers. The biochemical analyses revealed adequate expression of the antigens. Then, the obtained multi-epitope antigens were semi-purified in a sucrose gradient and tested using patients’ sera collected during the convalescent-phase that were previously diagnosed positive for anti-DENV and -ZIKV IgG antibodies. The optimal serum dilution was 1:200, and the mean absorbance values in the preliminary tests show that multi-epitope antigens have been recognized by human sera. The production of both antigens using the multi-epitope strategy in the eukaryotic system and based on the EDIII regions provide a proof of concept for the use of antigens in the differentiation between DENV and ZIKV.

  相似文献   

11.
The endoplasmic reticulum (ER) and mitochondria are structurally connected with each other at specific sites termed mitochondria-associated membranes (MAMs). These physical links are composed of several tethering proteins and are important during varied cellular processes, such as calcium homeostasis, lipid metabolism and transport, membrane biogenesis, and organelle remodeling. However, the attributes of specific tethering proteins in these cellular functions remain debatable. Here, we present data to show that one such tether protein, glucose regulated protein 75 (GRP75), is essential in increasing ER–mitochondria contact during palmitate-induced apoptosis in pancreatic insulinoma cells. We demonstrate that palmitate increased GRP75 levels in mouse and rat pancreatic insulinoma cells as well as in mouse primary islet cells. This was associated with increased mitochondrial Ca2+ transfer, impaired mitochondrial membrane potential, increased ROS production, and enhanced physical coupling between the ER and mitochondria. Interestingly, GRP75 inhibition prevented these palmitate-induced cellular aberrations. Additionally, GRP75 overexpression alone was sufficient to impair mitochondrial membrane potential, increase mitochondrial Ca2+ levels and ROS generation, augment ER–mitochondria contact, and induce apoptosis in these cells. In vivo injection of palmitate induced hyperglycemia and hypertriglyceridemia, as well as impaired glucose and insulin tolerance in mice. These animals also exhibited elevated GRP75 levels accompanied by enhanced apoptosis within the pancreatic islets. Our findings suggest that GRP75 is critical in mediating palmitate-induced ER–mitochondrial interaction leading to apoptosis in pancreatic islet cells.  相似文献   

12.
Recently, Zika virus (ZIKV) emerged as a global public health concern and is distinct from other flaviviruses in many aspects, for example, causing transplacental infection, fetal abnormalities and vector-independent transmission through body fluids in humans. The capsid (C) protein is a multifunctional protein, since it binds to viral RNA in the process of nucleocapsid assembly and plays important roles in virus infection processes by interacting with cellular proteins, modulating cellular metabolism, apoptosis and immune response. Here we solved the crystal structure of ZIKV C protein at a resolution of 1.9 Å. The ZIKV C protein structure contains four α helices with a long pre-α1 loop and forms dimers. The unique long pre-α1 loop in ZIKV C contributes to the tighter association of dimeric assembly and renders a divergent hydrophobic feature at the lipid bilayer interface in comparison with the known C structures of West Nile and dengue viruses. We reported the interaction between the ZIKV C protein and lipid droplets through confocal microscopy analysis. Substitutions of key amino acids in the pre-α1 loop of ZIKV C disrupted the interaction with lipid droplets, indicating that the loop is critical for membrane association. We also recognized that ZIKV C protein possesses broad binding capability to different nucleotide types, including single-stranded and double-stranded RNAs or DNAs. Furthermore, the highly positively charged interface, mainly formed by α4 helix, is proposed to be responsible for nucleotide binding. These findings will greatly enhance our understanding of ZIKV C protein, providing information for anti-ZIKV drug design targeting the C protein.  相似文献   

13.
Dengue virus (DENV) and Zika virus (ZIKV) belong to the same viral family, the Flaviviridae. They cause recurring threats to the public health systems of tropical countries such as Brazil. The primary Brazilian vector of both viruses is the mosquito Aedes aegypti. After the mosquito ingests a blood meal from an infected person, the viruses infect and replicate in the midgut, disseminate to secondary tissues and reach the salivary gland (SG), where they are ready to be transmitted to a vertebrate host. It is thought that the intrinsic discrepancies among mosquitoes could affect their ability to deal with viral infections. This study confirms that the DENV and ZIKV infection patterns of nine Ae. aegypti field populations found in geographically separate health districts of an endemic Brazilian city vary. We analyzed the infection rate, disseminated infection, vector competence, and viral load through quantitative PCR. Mosquitoes were challenged using the membrane-feeding assay technique and were tested seven and fourteen days post-infection (early and late infection phases, respectively). The infection responses varied among the Ae. aegypti populations for both flaviviruses in the two infection phases. There was no similarity between DENV and ZIKV vector competencies or viral loads. According to the results of our study, the risk of viral transmission overtime after infection either increases or remains unaltered in ZIKV infected vectors. However, the risk may increase, decrease, or remain unaltered in DENV-infected vectors depending on the mosquito population. For both flaviviruses, the viral load persisted in the body even until the late infection phase. In contrast to DENV, the ZIKV accumulated in the SG over time in all the mosquito populations. These findings are novel and may help direct the development of control strategies to fight dengue and Zika outbreaks in endemic regions, and provide a warning about the importance of understanding mosquito responses to arboviral infections.  相似文献   

14.
Characterizing ecological relationships between viruses, bacteria and protists in the ocean are critical to understanding ecosystem function, yet these relationships are infrequently investigated together. We evaluated these relationships through microbial association network analysis of samples collected approximately monthly from March 2008 to January 2011 in the surface ocean (0–5 m) at the San Pedro Ocean Time series station. Bacterial, T4-like myoviral and protistan communities were described by Automated Ribosomal Intergenic Spacer Analysis and terminal restriction fragment length polymorphism of the gene encoding the major capsid protein (g23) and 18S ribosomal DNA, respectively. Concurrent shifts in community structure suggested similar timing of responses to environmental and biological parameters. We linked T4-like myoviral, bacterial and protistan operational taxonomic units by local similarity correlations, which were then visualized as association networks. Network links (correlations) potentially represent synergistic and antagonistic relationships such as viral lysis, grazing, competition or other interactions. We found that virus–bacteria relationships were more cross-linked than protist–bacteria relationships, suggestive of increased taxonomic specificity in virus–bacteria relationships. We also found that 80% of bacterial–protist and 74% of bacterial–viral correlations were positive, with the latter suggesting that at monthly and seasonal timescales, viruses may be following their hosts more often than controlling host abundance.  相似文献   

15.
The recent explosive outbreak of Zika virus (ZIKV) infection has been reported in South and Central America and the Caribbean. Neonatal microcephaly associated with ZIKV infection has already caused a public health emergency of international concern. No specific vaccines or drugs are currently available to treat ZIKV infection. The ZIKV helicase, which plays a pivotal role in viral RNA replication, is an attractive target for therapy. We determined the crystal structures of ZIKV helicase-ATP-Mn2+ and ZIKV helicase-RNA. This is the first structure of any flavivirus helicase bound to ATP. Comparisons with related flavivirus helicases have shown that although the critical P-loop in the active site has variable conformations among different species, it adopts an identical mode to recognize ATP/Mn2+. The structure of ZIKV helicase-RNA has revealed that upon RNA binding, rotations of the motor domains can cause significant conformational changes. Strikingly, although ZIKV and dengue virus (DENV) apo-helicases share conserved residues for RNA binding, their different manners of motor domain rotations result in distinct individual modes for RNA recognition. It suggests that flavivirus helicases could have evolved a conserved engine to convert chemical energy from nucleoside triphosphate to mechanical energy for RNA unwinding, but different motor domain rotations result in variable RNA recognition modes to adapt to individual viral replication.  相似文献   

16.
During the process of translation, an aminoacyl tRNA is selected in the A site of the decoding center of the small subunit based on the correct codon–anticodon base pairing. Though selection is usually accurate, mutations in the ribosomal RNA and proteins and the presence of some antibiotics like streptomycin alter translational accuracy. Recent crystallographic structures of the ribosome suggest that cognate tRNAs induce a “closed conformation” of the small subunit that stabilizes the codon–anticodon interactions at the A site. During formation of the closed conformation, the protein interface between rpS4 and rpS5 is broken while new contacts form with rpS12. Mutations in rpS12 confer streptomycin resistance or dependence and show a hyperaccurate phenotype. Mutations reversing streptomycin dependence affect rpS4 and rpS5. The canonical rpS4 and rpS5 streptomycin independent mutations increase translational errors and were called ribosomal ambiguity mutations (ram). The mutations in these proteins are proposed to affect formation of the closed complex by breaking the rpS4-rpS5 interface, which reduces the cost of domain closure and thus increases translational errors. We used a yeast two-hybrid system to study the interactions between the small subunit ribosomal proteins rpS4 and rpS5 and to test the effect of ram mutations on the stability of the interface. We found no correlation between ram phenotype and disruption of the interface.  相似文献   

17.
Zika virus (ZIKV) emerged in Brazil during 2013–2014 causing an epidemic of previously unknown congenital abnormalities. The frequency of severe congenital abnormalities after maternal ZIKV infection revealed an unexplained geographic variability, especially between the Northeast and the rest of Brazil. Several reasons for this variability have been discussed. Prior immunity against Dengue virus (DENV) affecting ZIKV seems to be the most likely explanation. Here we summarise the current evidence regarding this prominent co-factor to potentially explain the geographic variability.This systematic review followed the PRISMA guidelines. The search was conducted up to May 15th, 2020, focussing on immunological interactions from Zika virus with previous Dengue virus infections as potential teratogenic effect for the foetus.Eight out of 339 screened studies reported on the association between ZIKV, prior DENV infection and microcephaly, mostly focusing on antibody-dependent enhancement (ADE) as potential pathomechanism. Prior DENV infection was associated with enhancement for ZIKV infection and increased neurovirulence in one included in vitro study only. Interestingly, the seven in vivo studies exhibited a heterogeneous picture with three studies showing a protective effect of prior DENV infections and others no effect at all. According to several studies, socio-economic factors are associated with increased risk for microcephaly.Very few studies addressed the question of unexplained variability of infection-related microcephaly. Many studies focussed on ADE as mechanism without measuring microcephaly as endpoint. Interestingly, three of the included studies reported a protective effect of prior DENV infection against microcephaly. This systematic review strengthens the hypothesis that immune priming after recent DENV infection is the crucial factor for determining protection or enhancement activity. It is of high importance that the currently ongoing prospective studies include a harmonised assessment of the potential candidate co-factors.  相似文献   

18.
19.
RNA-binding proteins (RBPs) regulate the expression of large cohorts of RNA species to produce programmatic changes in cellular phenotypes. To describe the function of RBPs within a cell, it is key to identify their mRNA-binding partners. This is often done by crosslinking nucleic acids to RBPs, followed by chemical release of the nucleic acid fragments for analysis. However, this methodology is lengthy, which involves complex processing with attendant sample losses, thus large amounts of starting materials and prone to artifacts. To evaluate potential alternative technologies, we tested “exclusion-based” purification of immunoprecipitates (IFAST or SLIDE) and report here that these methods can efficiently, rapidly, and specifically isolate RBP–RNA complexes. The analysis requires less than 1% of the starting material required for techniques that include crosslinking. Depending on the antibody used, 50% to 100% starting protein can be retrieved, facilitating the assay of endogenous levels of RBPs; the isolated ribonucleoproteins are subsequently analyzed using standard techniques, to provide a comprehensive portrait of RBP complexes. Using exclusion-based techniques, we show that the mRNA-binding partners for RBP IGF2BP1 in cultured mammary epithelial cells are enriched in mRNAs important for detoxifying superoxides (specifically glutathione peroxidase [GPX]-1 and GPX-2) and mRNAs encoding mitochondrial proteins. We show that these interactions are functionally significant, as loss of function of IGF2BP1 leads to destabilization of GPX mRNAs and reduces mitochondrial membrane potential and oxygen consumption. We speculate that this underlies a consistent requirement for IGF2BP1 for the expression of clonogenic activity in vitro.  相似文献   

20.
Dengue virus (DENV) is the etiologic agent for dengue fever, for which there is no approved vaccine or specific anti-viral drug. As a remedy for this, we explored the use of compounds that interfere with the action of required host factors and describe here the characterization of a kinase inhibitor (SFV785), which has selective effects on NTRK1 and MAPKAPK5 kinase activity, and anti-viral activity on Hepatitis C, DENV and yellow fever viruses. SFV785 inhibited DENV propagation without inhibiting DENV RNA synthesis or translation. The compound did not cause any changes in the cellular distribution of non-structural 3, a protein critical for DENV RNA synthesis, but altered the distribution of the structural envelope protein from a reticulate network to enlarged discrete vesicles, which altered the co-localization with the DENV replication complex. Ultrastructural electron microscopy analyses of DENV-infected SFV785-treated cells showed the presence of viral particles that were distinctly different from viable enveloped virions within enlarged ER cisternae. These viral particles were devoid of the dense nucleocapsid. The secretion of the viral particles was not inhibited by SFV785, however a reduction in the amount of secreted infectious virions, DENV RNA and capsid were observed. Collectively, these observations suggest that SFV785 inhibited the recruitment and assembly of the nucleocapsid in specific ER compartments during the DENV assembly process and hence the production of infectious DENV. SFV785 and derivative compounds could be useful biochemical probes to explore the DENV lifecycle and could also represent a new class of anti-virals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号