首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Facile syntheses of 3-O-carbamoyl, -sulfamoyl, or -pivaloyl derivatives of 13α-oestrone and its 17-deoxy counterpart have been carried out. Microwave-induced, Ni-catalysed Suzuki–Miyaura couplings of the newly synthesised phenol esters with phenylboronic acid afforded 3-deoxy-3-phenyl-13α-oestrone derivatives. The carbamate and pivalate esters proved to be suitable for regioselective arylations. 2-(4-Substituted) phenyl derivatives were synthesised via Pd-catalysed, microwave-assisted C–H activation reactions. An efficient, one-pot, tandem methodology was elaborated for the introduction of the carbamoyl or pivaloyl group followed by regioselective C-2-arylation and subsequent removal of the directing group. The antiproliferative properties of the novel 13α-oestrone derivatives were evaluated in vitro on five human adherent cancer cell lines of gynaecological origin. 3-Sulfamate derivatives displayed substantial cell growth inhibitory potential against certain cell lines. The newly identified antiproliferative compounds having hormonally inactive core might be promising candidates for the design of more active anticancer agents.  相似文献   

2.
The purpose of our study was to explore the effect and intrinsic mechanism of wild-type IDH1 and its substrate α-KG on renal cell carcinoma (RCC). IDH1 was observed lower expression in RCC cell lines. Phenotype experiment was carried out in the wild-type IDH1 and mutant IDH1R132H plasmid treated cell line. The results showed that the wild-type IDH1 could significantly inhibit the proliferation, migration and promote the apoptosis of RCC cell lines, which were consistent with the IDH1''s substrate α-KG. The mutant IDH1R132H was found to lose this biological function of IDH1. Moreover, we verified the proliferation inhibition of IDH1 in vivo. In addition, we verified the correlation between IDH1 and hypoxia signal-related proteins in vitro and in vivo, specifically, IDH1 overexpression could significantly reduce the expression of HIF-1α and HIF-2α proteins and its downstream proteins (VEGF, TGF-α). Furthermore, we preliminarily verified the possibility of α-KG in the RCC''s treatment by injecting α-KG into the xenograft model. α-KG significantly reduced tumor size and weight in tumor-bearing mice. This study provided a new therapeutic target and small molecule for the study of the treatment and mechanism of RCC.  相似文献   

3.
Different oleanolic acid (OA) oxime ester derivatives (3a-3t) were designed and synthesised to develop inhibitors against α-glucosidase and α-amylase. All the synthesised OA derivatives were evaluated against α-glucosidase and α-amylase in vitro. Among them, compound 3a showed the highest α-glucosidase inhibition with an IC50 of 0.35 µM, which was ∼1900 times stronger than that of acarbose, meanwhile compound 3f exhibited the highest α-amylase inhibitory with an IC50 of 3.80 µM that was ∼26 times higher than that of acarbose. The inhibition kinetic studies showed that the inhibitory mechanism of compounds 3a and 3f were reversible and mixed types towards α-glucosidase and α-amylase, respectively. Molecular docking studies analysed the interaction between compound and two enzymes, respectively. Furthermore, cytotoxicity evaluation assay demonstrated a high level of safety profile of compounds 3a and 3f against 3T3-L1 and HepG2 cells.

Highlights

  1. Oleanolic acid oxime ester derivatives (3a–3t) were synthesised and screened against α-glucosidase and α-amylase.
  2. Compound 3a showed the highest α-glucosidase inhibitory with IC50 of 0.35 µM.
  3. Compound 3f presented the highest α-amylase inhibitory with IC50 of 3.80 µM.
  4. Kinetic studies and in silico studies analysed the binding between compounds and α-glucosidase or α-amylase.
  相似文献   

4.
In this paper, bis (indol-3-yl) methanes (BIMs) were synthesised and evaluated for their inhibitory activity against α-glucosidase and α-amylase. All synthesised compounds showed potential α-glucosidase and α-amylase inhibitory activities. Compounds 5 g (IC50: 7.54 ± 1.10 μM), 5e (IC50: 9.00 ± 0.97 μM), and 5 h (IC50: 9.57 ± 0.62 μM) presented strongest inhibitory activities against α-glucosidase, that were ∼ 30 times stronger than acarbose. Compounds 5 g (IC50: 32.18 ± 1.66 µM), 5 h (IC50: 31.47 ± 1.42 µM), and 5 s (IC50: 30.91 ± 0.86 µM) showed strongest inhibitory activities towards α-amylase, ∼ 2.5 times stronger than acarbose. The mechanisms and docking simulation of the compounds were also studied. Compounds 5 g and 5 h exhibited bifunctional inhibitory activity against these two enzymes. Furthermore, compounds showed no toxicity against 3T3-L1 cells and HepG2 cells.

Highlights

  1. A series of bis (indol-3-yl) methanes (BIMs) were synthesised and evaluated inhibitory activities against α-glucosidase and α-amylase.
  2. Compound 5g exhibited promising activity (IC50 = 7.54 ± 1.10 μM) against α-glucosidase.
  3. Compound 5s exhibited promising activity (IC50 = 30.91 ± 0.86 μM) against α-amylase.
  4. In silico studies were performed to confirm the binding interactions of synthetic compounds with the enzyme active site.
  相似文献   

5.
The serine/threonine protein kinases CDK2 and GSK-3β are key oncotargets in breast cancer cell lines, therefore, in the present study three series of oxindole-benzofuran hybrids were designed and synthesised as dual CDK2/GSK-3β inhibitors targeting breast cancer (5a–g, 7a–h, and 13a–b). The N1-unsubstituted oxindole derivatives, series 5, showed moderate to potent activity on both MCF-7 and T-47D breast cancer cell lines. Compounds 5d–f showed the most potent cytotoxic activity with IC50 of 3.41, 3.45 and 2.27 μM, respectively, on MCF-7 and of 3.82, 4.53 and 7.80 μM, respectively, on T-47D cell lines, in comparison to the used reference standard (staurosporine) IC50 of 4.81 and 4.34 μM, respectively. On the other hand, the N1-substituted oxindole derivatives, series 7 and 13, showed moderate to weak cytotoxic activity on both breast cancer cell lines. CDK2 and GSK-3β enzyme inhibition assay of series 5 revealed that compounds 5d and 5f are showing potent dual CDK2/GSK-3β inhibitory activity with IC50 of 37.77 and 52.75 nM, respectively, on CDK2 and 32.09 and 40.13 nM, respectively, on GSK-3β. The most potent compounds 5d–f caused cell cycle arrest in the G2/M phase in MCF-7 cells inducing cell apoptosis because of the CDK2/GSK-3β inhibition. Molecular docking studies showed that the newly synthesised N1-unsubstituted oxindole hybrids have comparable binding patterns in both CDK2 and GSK-3β. The oxindole ring is accommodated in the hinge region interacting through hydrogen bonding with the backbone CO and NH of the key amino acids Glu81 and Leu83, respectively, in CDK2 and Asp133 and Val135, respectively, in GSK-3β. Whereas, in series 7 and 13, the N1-substitutions on the oxindole nucleus hinder the compounds from achieving these key interactions with hinge region amino acids what rationalises their moderate to low anti-proliferative activity.  相似文献   

6.
The nitric oxide synthase interacting protein (NOSIP), an E3-ubiquitin ligase, is involved in various processes like neuronal development, craniofacial development, granulopoiesis, mitogenic signaling, apoptosis, and cell proliferation. The best-characterized function of NOSIP is the regulation of endothelial nitric oxide synthase activity by translocating the membrane-bound enzyme to the cytoskeleton, specifically in the G2 phase of the cell cycle. For this, NOSIP itself has to be translocated from its prominent localization, the nucleus, to the cytoplasm. Nuclear import of NOSIP was suggested to be mediated by the canonical transport receptors importin α/β. Recently, we found NOSIP in a proteomic screen as a potential importin 13 cargo. Here, we describe the nuclear shuttling characteristics of NOSIP in living cells and in vitro and show that it does not interact directly with importin α. Instead, it formed stable complexes with several importins (−β, −7, −β/7, −13, and transportin 1) and was also imported into the nucleus in digitonin-permeabilized cells by these factors. In living HeLa cells, transportin 1 seems to be the major nuclear import receptor for NOSIP. A detailed analysis of the NOSIP-transportin 1 interaction revealed a high affinity and an unusual binding mode, involving the N-terminal half of transportin 1. In contrast to nuclear import, nuclear export of NOSIP seems to occur mostly by passive diffusion. Thus, our results uncover additional layers in the larger process of endothelial nitric oxide synthase regulation.  相似文献   

7.
α6β2 Nicotinic acetylcholine receptors (nAChRs) expressed by dopaminergic neurons in the CNS are potential therapeutic targets for the treatment of several neuropsychiatric diseases, including nicotine addiction and Parkinson disease. However, recent studies indicate that the α6 subunit can also associate with the β4 subunit to form α6β4 nAChRs that are difficult to pharmacologically distinguish from α6β2, α3β4, and α3β2 subtypes. The current study characterized a novel 16-amino acid α-conotoxin (α-CTx) TxIB from Conus textile whose sequence is GCCSDPPCRNKHPDLC-amide as deduced from gene cloning. The peptide and an analog with an additional C-terminal glycine were chemically synthesized and tested on rat nAChRs heterologously expressed in Xenopus laevis oocytes. α-CTx TxIB blocked α6/α3β2β3 nAChR with an IC50 of 28 nm. In contrast, the peptide showed little or no block of other tested subtypes at concentrations up to 10 μm. The three-dimensional solution structure of α-CTx TxIB was determined using NMR spectroscopy. α-CTx TxIB represents a uniquely selective ligand for probing the structure and function of α6β2 nAChRs.  相似文献   

8.
The voltage-gated Na+ channel β1 subunit, encoded by SCN1B, regulates cell surface expression and gating of α subunits and participates in cell adhesion. β1 is cleaved by α/β and γ-secretases, releasing an extracellular domain and intracellular domain (ICD), respectively. Abnormal SCN1B expression/function is linked to pathologies including epilepsy, cardiac arrhythmia, and cancer. In this study, we sought to determine the effect of secretase cleavage on β1 function in breast cancer cells. Using a series of GFP-tagged β1 constructs, we show that β1-GFP is mainly retained intracellularly, particularly in the endoplasmic reticulum and endolysosomal pathway, and accumulates in the nucleus. Reduction in endosomal β1-GFP levels occurred following γ-secretase inhibition, implicating endosomes and/or the preceding plasma membrane as important sites for secretase processing. Using live-cell imaging, we also report β1ICD-GFP accumulation in the nucleus. Furthermore, β1-GFP and β1ICD-GFP both increased Na+ current, whereas β1STOP-GFP, which lacks the ICD, did not, thus highlighting that the β1-ICD is necessary and sufficient to increase Na+ current measured at the plasma membrane. Importantly, although the endogenous Na+ current expressed in MDA-MB-231 cells is tetrodotoxin (TTX)-resistant (carried by Nav1.5), the Na+ current increased by β1-GFP or β1ICD-GFP was TTX-sensitive. Finally, we found β1-GFP increased mRNA levels of the TTX-sensitive α subunits SCN1A/Nav1.1 and SCN9A/Nav1.7. Taken together, this work suggests that the β1-ICD is a critical regulator of α subunit function in cancer cells. Our data further highlight that γ-secretase may play a key role in regulating β1 function in breast cancer.  相似文献   

9.
Staphylococcus aureus is currently a significant multidrug-resistant bacterium, causing severe healthcare-associated and community-acquired infections worldwide. The current antibiotic regimen against this pathogen is becoming ineffective due to resistance, in addition, they disrupt the normal microbiota. It highlights the urgent need for a pathogen-specific drug with high antibacterial efficacy against S. aureus. α-Viniferin, a bioactive phytochemical compound, has been reported to have excellent anti-Staphylococcus efficacy as a topical agent. However, so far, there were no clinical trials that have been conducted to elucidate its efficacy. The present study aimed to investigate the antibacterial efficacy of α-viniferin against S. aureus in a ten-day clinical trial. Based on the results, α-viniferin showed 50% minimum inhibitory concentrations (MIC50 values) of 7.8 μg/ml in culture broth medium. α-Viniferin was administered in the nares three times a day for ten days using a sterile cotton swab stick. Nasal swab specimens were collected before (0 days) and after finishing the trial (10th day), and then analyzed. In the culture and RT-PCR-based analysis, S. ureus was reduced significantly: 0.01. In addition, 16S ribosomal RNA-based amplicon sequencing analysis showed that S. aureus reduced from 51.03% to 23.99% at the genus level. RNA-seq analysis was also done to gain insights into molecular mechanisms of α-viniferin against S. aureus, which revealed that some gene groups were reduced in 5-fold FC cutoff at two times MIC conditions. The study results demonstrate α-viniferin as a potential S. aureus-specific drug candidate.  相似文献   

10.
Tamgermanitin, a unique N-trans-Isoferuloyltyramine, together with the hitherto unknown polyphenolics, 2,4-di-O-galloyl-(α/β)-glucopyranose and kaempferide 3,7-disulphate have been isolated from the leaf aqueous ethanol extract of the false tamarisk, Myricaria germanica DESV. In addition, 18 known phenolics were also separated and characterized. All structures were elucidated on the basis of detailed analysis of 1D- 1H and 13C NMR, COSY, HSQC, HMBC and HRFTESIMS spectral data. The extract, its chromatographic column fractions and the isolated isoferuloyltyramine, tamgermanetin demonstrated potential cytotoxic effect against three different tumor cell lines, namely liver (Huh-7), breast (MCF-7) and prostate (PC-3). The IC50''s were found to be substantially low with low-resistance possibility. DNA flow-cytometic analysis indicated that column fractions and tamgermanetin enhanced pre-G apoptotic fraction. Both materials showed inhibiting activity against PARP enzyme activity. In conclusion, we report the isolation and identification of a novel compound, tamgermanitin, from the aqueous ethanol extract of Myricaria germanica leaves. Further, different fractions of the extract and tamgermanitin exhibit potent cytotoxic activities which warrant further investigations.  相似文献   

11.
Glycogen synthase kinase 3β (GSK-3β) catalyses the hyperphosphorylation of tau protein in the Alzheimer’s disease (AD) pathology. A series of novel thieno[3,2-c]pyrazol-3-amine derivatives were designed and synthesised and evaluated as potential GSK-3β inhibitors by structure-guided drug rational design approach. The thieno[3,2-c]pyrazol-3-amine derivative 16b was identified as a potent GSK-3β inhibitor with an IC50 of 3.1 nM in vitro and showed accepted kinase selectivity. In cell levels, 16b showed no toxicity on the viability of SH-SY5Y cells at the concentration up to 50 μM and targeted GSK-3β with the increased phosphorylated GSK-3β at Ser9. Western blot analysis indicated that 16b decreased the phosphorylated tau at Ser396 in a dose-dependent way. Moreover, 16b effectively increased expressions of β-catenin as well as the GAP43, N-myc, and MAP-2, and promoted the differentiated neuronal neurite outgrowth. Therefore, the thieno[3,2-c]pyrazol-3-amine derivative 16b could serve as a promising GSK-3β inhibitor for the treatment of AD.  相似文献   

12.
Metallothioneins (MTs) are proteins devoted to the control of metal homeostasis and detoxification, and therefore, MTs have been crucial for the adaptation of the living beings to variable situations of metal bioavailability. The evolution of MTs is, however, not yet fully understood, and to provide new insights into it, we have investigated the MTs in the diverse classes of Mollusks. We have shown that most molluskan MTs are bimodular proteins that combine six domains—α, β1, β2, β3, γ, and δ—in a lineage-specific manner. We have functionally characterized the Neritimorpha β3β1 and the Patellogastropoda γβ1 MTs, demonstrating the metal-binding capacity of the new γ domain. Our results have revealed a modular organization of mollusk MT, whose evolution has been impacted by duplication, loss, and de novo emergence of domains. MTs represent a paradigmatic example of modular evolution probably driven by the structural and functional requirements of metal binding.  相似文献   

13.
α-Conotoxin LvIA (α-CTx LvIA) is a small peptide from the venom of the carnivorous marine gastropod Conus lividus and is the most selective inhibitor of α3β2 nicotinic acetylcholine receptors (nAChRs) known to date. It can distinguish the α3β2 nAChR subtype from the α6β2* (* indicates the other subunit) and α3β4 nAChR subtypes. In this study, we performed mutational studies to assess the influence of residues of the β2 subunit versus those of the β4 subunit on the binding of α-CTx LvIA. Although two β2 mutations, α3β2[F119Q] and α3β2[T59K], strongly enhanced the affinity of LvIA, the β2 mutation α3β2[V111I] substantially reduced the binding of LvIA. Increased activity of LvIA was also observed when the β2-T59L mutant was combined with the α3 subunit. There were no significant difference in inhibition of α3β2[T59I], α3β2[Q34A], and α3β2[K79A] nAChRs when compared with wild-type α3β2 nAChR. α-CTx LvIA displayed slower off-rate kinetics at α3β2[F119Q] and α3β2[T59K] than at the wild-type receptor, with the latter mutant having the most pronounced effect. Taken together, these data provide evidence that the β2 subunit contributes to α-CTx LvIA binding and selectivity. The results demonstrate that Val111 is critical and facilitates LvIA binding; this position has not previously been identified as important to binding of other 4/7 framework α-conotoxins. Thr59 and Phe119 of the β2 subunit appear to interfere with LvIA binding, and their replacement by the corresponding residues of the β4 subunit leads to increased affinity.  相似文献   

14.
The β2 integrins and intercellular adhesion molecule-1 (ICAM-1) are important for monocyte migration through inflammatory endothelium. Here we demonstrate that the integrin αvβ3 is also a key player in this process. In an in vitro transendothelial migration assay, monocytes lacking β3 integrins revealed weak migratory ability, whereas monocytes expressing β3 integrins engaged in stronger migration. This migration could be partially blocked by antibodies against the integrin chains αL, β2, αv, or IAP, a protein functionally associated with αvβ3 integrin. Transfection of β3 integrin chain cDNA into monocytes lacking β3 integrins resulted in expression of the αvβ3 integrin and conferred on these cells an enhanced ability to transmigrate through cell monolayers expressing ICAM-1. These monocytes also engaged in αLβ2-dependent locomotion on recombinant ICAM-1 which was enhanced by αvβ3 integrin occupancy. Antibodies against IAP were able to revert this αvβ3 integrin-dependent cell locomotion to control levels. Finally, adhesion assays revealed that occupancy of αvβ3 integrin could decrease monocyte binding to ICAM-1.In conclusion, we show that αvβ3 integrin modulates αLβ2 integrin-dependent monocyte adhesion to and migration on ICAM-1. This could represent a novel mechanism to promote monocyte motility on vascular ICAM-1 and initiate subsequent transendothelial migration.  相似文献   

15.
We reported previously that our designed polypeptide α3 (21 residues), which has three repeats of a seven-amino-acid sequence (LETLAKA)3, forms not only an amphipathic α-helix structure but also long fibrous assemblies in aqueous solution. To address the relationship between the electrical states of the polypeptide and its α-helix and fibrous assembly formation, we characterized mutated polypeptides in which charged amino acid residues of α3 were replaced with Ser. We prepared the following polypeptides: 2Sα3 (LSTLAKA)3, in which all Glu residues were replaced with Ser residues; 6Sα3 (LETLASA)3, in which all Lys residues were replaced with Ser; and 2S6Sα3 (LSTLASA)3; in which all Glu and Lys residues were replaced with Ser. In 0.1M KCl, 2Sα3 formed an α-helix under basic conditions and 6Sα3 formed an α-helix under acid conditions. In 1M KCl, they both formed α-helices under a wide pH range. In addition, 2Sα3 and 6Sα3 formed fibrous assemblies under the same buffer conditions in which they formed α-helices. α-Helix and fibrous assembly formation by these polypeptides was reversible in a pH-dependent manner. In contrast, 2S6Sα3 formed an α-helix under basic conditions in 1M KCl. Taken together, these findings reveal that the charge states of the charged amino acid residues and the charge state of the Leu residue located at the terminus play an important role in α-helix formation.  相似文献   

16.
The ζ subunit is a novel inhibitor of the F1FO-ATPase of Paracoccus denitrificans and related α-proteobacteria. It is different from the bacterial (ϵ) and mitochondrial (IF1) inhibitors. The N terminus of ζ blocks rotation of the γ subunit of the F1-ATPase of P. denitrificans (Zarco-Zavala, M., Morales-Ríos, E., Mendoza-Hernández, G., Ramírez-Silva, L., Pérez-Hernández, G., and García-Trejo, J. J. (2014) FASEB J. 24, 599–608) by a hitherto unknown quaternary structure that was first modeled here by structural homology and protein docking. The F1-ATPase and F1-ζ models of P. denitrificans were supported by cross-linking, limited proteolysis, mass spectrometry, and functional data. The final models show that ζ enters into F1-ATPase at the open catalytic αEE interface, and two partial γ rotations lock the N terminus of ζ in an “inhibition-general core region,” blocking further γ rotation, while the ζ globular domain anchors it to the closed αDPDP interface. Heterologous inhibition of the F1-ATPase of P. denitrificans by the mitochondrial IF1 supported both the modeled ζ binding site at the αDPDP/γ interface and the endosymbiotic α-proteobacterial origin of mitochondria. In summary, the ζ subunit blocks the intrinsic rotation of the nanomotor by inserting its N-terminal inhibitory domain at the same rotor/stator interface where the mitochondrial IF1 or the bacterial ϵ binds. The proposed pawl mechanism is coupled to the rotation of the central γ subunit working as a ratchet but with structural differences that make it a unique control mechanism of the nanomotor to favor the ATP synthase activity over the ATPase turnover in the α-proteobacteria.  相似文献   

17.
18.
19.
20.
Washingtonia filifera seeds have revealed to possess antioxidant properties, butyrylcholinesterase and xanthine oxidase inhibition activities. The literature has indicated a relationship between Alzheimer’s disease (AD) and type-2 diabetes (T2D). Keeping this in mind, we have now evaluated the inhibitory properties of W. filifera seed extracts on α-amylase, α-glucosidase enzyme activity and the Islet Amyloid Polypeptide (IAPP) fibrils formation.Three extracts from seeds of W. filifera were evaluated for their enzyme inhibitory effect and IC50 values were calculated for all the extracts. The inhibition mode was investigated by Lineweaver-Burk plot analysis and the inhibition of IAPP aggregate formation was monitored.W. filifera methanol seed extract appears as the most potent inhibitor of α-amylase, α-glucosidase, and for the IAPP fibril formation.Current findings indicate new potential of this extract that could be used for the identification or development of novel potential agents for T2D and AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号