首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epigenetic marks are fundamental to normal development, but little is known about signals that dictate their placement. Insights have been provided by studies of imprinted loci in mammals, where monoallelic expression is epigenetically controlled. Imprinted expression is regulated by DNA methylation programmed during gametogenesis in a sex-specific manner and maintained after fertilization. At Rasgrf1 in mouse, paternal-specific DNA methylation on a differential methylation domain (DMD) requires downstream tandem repeats. The DMD and repeats constitute a binary switch regulating paternal-specific expression. Here, we define sequences sufficient for imprinted methylation using two transgenic mouse lines: One carries the entire Rasgrf1 cluster (RC); the second carries only the DMD and repeats (DR) from Rasgrf1. The RC transgene recapitulated all aspects of imprinting seen at the endogenous locus. DR underwent proper DNA methylation establishment in sperm and erasure in oocytes, indicating the DMD and repeats are sufficient to program imprinted DNA methylation in germlines. Both transgenes produce a DMD-spanning pit-RNA, previously shown to be necessary for imprinted DNA methylation at the endogenous locus. We show that when pit-RNA expression is controlled by the repeats, it regulates DNA methylation in cis only and not in trans. Interestingly, pedigree history dictated whether established DR methylation patterns were maintained after fertilization. When DR was paternally transmitted followed by maternal transmission, the unmethylated state that was properly established in the female germlines could not be maintained. This provides a model for transgenerational epigenetic inheritance in mice.  相似文献   

2.
《Epigenetics》2013,8(4):241-247
A subset of mammalian genes exhibits genomic imprinting, whereby one parental allele is preferentially expressed. Differential DNA methylation at imprinted loci serves both to mark the parental origin of the alleles and to regulate their expression. In mouse, the imprinted gene Rasgrf1 is associated with a paternally methylated imprinting control region which functions as an enhancer blocker in its unmethylated state. Because Rasgrf1 is imprinted in a tissue-specific manner, we investigated the methylation pattern in monoallelic and biallelic tissues to determine if methylation of this region is required for both imprinted and non-imprinted expression. Our analysis indicates that DNA methylation is restricted to the paternal allele in both monoallelic and biallelic tissues of somatic and extraembryonic lineages. Therefore, methylation serves to mark the paternal Rasgrf1 allele throughout development, but additional factors are required for appropriate tissue-specific regulation of expression at this locus.  相似文献   

3.
4.
5.
Evolution and control of imprinted FWA genes in the genus Arabidopsis   总被引:2,自引:0,他引:2  
A central question in genomic imprinting is how a specific sequence is recognized as the target for epigenetic marking. In both mammals and plants, imprinted genes are often associated with tandem repeats and transposon-related sequences, but the role of these elements in epigenetic gene silencing remains elusive. FWA is an imprinted gene in Arabidopsis thaliana expressed specifically in the female gametophyte and endosperm. Tissue-specific and imprinted expression of FWA depends on DNA methylation in the FWA promoter, which is comprised of two direct repeats containing a sequence related to a SINE retroelement. Methylation of this element causes epigenetic silencing, but it is not known whether the methylation is targeted to the SINE-related sequence itself or the direct repeat structure is also necessary. Here we show that the repeat structure in the FWA promoter is highly diverse in species within the genus Arabidopsis. Four independent tandem repeat formation events were found in three closely related species. Another related species, A. halleri, did not have a tandem repeat in the FWA promoter. Unexpectedly, even in this species, FWA expression was imprinted and the FWA promoter was methylated. In addition, our expression analysis of FWA gene in vegetative tissues revealed high frequency of intra-specific variation in the expression level. In conclusion, we show that the tandem repeat structure is dispensable for the epigenetic silencing of the FWA gene. Rather, SINE-related sequence is sufficient for imprinting, vegetative silencing, and targeting of DNA methylation. Frequent independent tandem repeat formation events in the FWA promoter led us to propose that they may be a consequence, rather than cause, of the epigenetic control. The possible significance of epigenetic variation in reproductive strategies during evolution is also discussed.  相似文献   

6.
7.
8.
The mouse chromosome 7C, orthologous to the human 15q11–q13 has an imprinted domain, where most of the genes are expressed only from the paternal allele. The imprinted domain contains paternally expressed genes, Snurf/Snrpn, Ndn, Magel2, Mkrn3, and Frat3, C/D-box small nucleolar RNAs (snoRNAs), and the maternally expressed gene, Ube3a. Imprinted expression in this large (approximately 3–4 Mb) domain is coordinated by a bipartite cis-acting imprinting center (IC), located upstream of the Snurf/Snrpn gene. The molecular mechanism how IC regulates gene expression of the whole domain remains partially understood. Here we analyzed the relationship between imprinted gene expression and DNA methylation in the mouse chromosome 7C using DNA methyltransferase 1 (DNMT1)-null mutant embryos carrying Dnmt1ps alleles, which show global loss of DNA methylation and embryonic lethality. In the DNMT1-null embryos at embryonic day 9.5, the paternally expressed genes were biallelically expressed. Bisulfite DNA methylation analysis revealed loss of methylation on the maternal allele in the promoter regions of the genes. These results demonstrate that DNMT1 is necessary for monoallelic expression of the imprinted genes in the chromosome 7C domain, suggesting that DNA methylation in the secondary differentially methylated regions (DMRs), which are acquired during development serves primarily to control the imprinted expression from the maternal allele in the mouse chromosome 7C.  相似文献   

9.
The monoallelic expression of imprinted genes is controlled by epigenetic factors including DNA methylation and histone modifications. In mouse, the imprinted gene Gtl2 is associated with two differentially methylated regions: the IG-DMR, which serves as a gametic imprinting mark at which paternal allele-specific DNA methylation is inherited from sperm, and the Gtl2-DMR, which acquires DNA methylation on the paternal allele after fertilization. The timeframe during which DNA methylation is acquired at secondary DMRs during post-fertilization development and the relationship between secondary DMRs and imprinted expression have not been well established. In order to better understand the role of secondary DMRs in imprinting, we examined the methylation status of the Gtl2-DMR in pre- and post-implantation embryos. Paternal allele-specific DNA methylation of this region correlates with imprinted expression of Gtl2 during post-implantation development but is not required to implement imprinted expression during pre-implantation development, suggesting that this secondary DMR may play a role in maintaining imprinted expression. Furthermore, our developmental profile of DNA methylation patterns at the Cdkn1c- and Gtl2-DMRs illustrates that the temporal acquisition of DNA methylation at imprinted genes during post-fertilization development is not universally controlled.Key words: genomic imprinting, DNA methylation, Gtl2, secondary DMR, epigenetics  相似文献   

10.
Imprinting within domains occurs through epigenetic alterations to imprinting centers (ICs) that result in the establishment of parental-specific differences in gene expression. One candidate IC lies within the imprinted domain on human chromosome region 6q24. This domain contains two paternally expressed genes, the zinc finger protein gene PLAGL1 (ZAC/LOT1) and an untranslated mRNAcalled HYMAI. The putative IC overlaps exon 1 of HYMAI and is differentially methylated in somatic tissues. In humans, loss of methylation within this region is seen in some patients with transient neonatal diabetes mellitus, and hypermethylation of this region is found in ovarian cancer and is associated with changes in expression of PLAGL1, suggesting that it plays a key role in regulating gene expression. Differential methylation within this region is conserved in the homologous region on mouse chromosome 10A and is present on the maternal allele. In this paper, we report that DNA methylation is established during the growth phase of oogenesis and that this coincides with the establishment of monoallelic expression from this region lending further support to the hypothesis that this region functions as an IC.  相似文献   

11.
12.
The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. To date, four paternally methylated DMRs have been identified in screens based on conventional approaches. These DMRs are linked to the imprinted genes H19, Gtl2 (IG-DMR), Rasgrf1 and, most recently, Zdbf2 which encodes zinc finger, DBF-type containing 2. In this study, we applied a novel methylated-DNA immunoprecipitation-on-chip (meDIP-on-chip) method to genomic DNA from mouse parthenogenetic- and androgenetic-derived stem cells and sperm and identified 458 putative DMRs. This included the majority of known DMRs. We further characterized the paternally methylated Zdbf2/ZDBF2 DMR. In mice, this extensive germ line DMR spanned 16 kb and possessed an unusual tripartite structure. Methylation was dependent on DNA methyltransferase 3a (Dnmt3a), similar to H19 DMR and IG-DMR. In both humans and mice, the adjacent gene, Gpr1/GPR1, which encodes a G-protein-coupled receptor 1 protein with transmembrane domain, was also imprinted and paternally expressed. The Gpr1-Zdbf2 domain was most similar to the Rasgrf1 domain as both DNA methylation and the actively expressed allele were in cis on the paternal chromosome. This work demonstrates the effectiveness of meDIP-on-chip as a technique for identifying DMRs.  相似文献   

13.
Imprinted genes are characterized by monoallelic expression that is dependent on parental origin. Comparative analysis of imprinted genes between species is a powerful tool for understanding the biological significance of genomic imprinting. The slc38a4 gene encodes a neutral amino acid transporter and is identified as imprinted in mice. In this study, the imprinting status of SLC38A4 was assessed in bovine adult tissues and placenta using a polymorphism-based approach. Results indicate that SLC38A4 is not imprinted in eight adult bovine tissues including heart, liver, spleen, lung, kidney, muscle, fat, and brain. It was interesting to note that SLC38A4 showed polymorphic status in five heterogeneous placentas, with three exhibiting paternal monoallelic expression and two exhibiting biallelic expression. Monoallelic expression of imprinted genes is generally associated with allele-specific differentially methylation regions (DMRs) of CpG islands (CGIs)-encompassed promoter; therefore, the DNA methylation statuses of three CGIs in the SLC38A4 promoter and exon 1 region were tested in three placentas (two exhibiting paternal monoallelic and one showing biallelic expression of SLC38A4) and their corresponding paternal sperms. Unexpectedly, extreme hypomethylation (<?3%) of the DNA was observed in all the three detected placentas and their corresponding paternal sperms. The absence of DMR in bovine SLC38A4 promoter region implied that DNA methylation of these three CGIs does not directly or indirectly affect the polymorphic imprinting of SLC38A4 in bovine placenta. This suggested other epigenetic features other than DNA methylation are needed in regulating the imprinting of bovine SLC38A4, which is different from that of mouse with respect to a DMR existence at the mouse’s slc38a4 promoter region. Although further work is needed, this first characterization of polymorphic imprinting status of SLC38A4 in cattle placenta provides valuable information on investigating the genomic imprinting phenomenon itself.  相似文献   

14.
15.
Wu MY  Jiang M  Zhai X  Beaudet AL  Wu RC 《PloS one》2012,7(4):e34348
Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11-q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings open the opportunity for a novel approach to the treatment of PWS.  相似文献   

16.
17.
《Epigenetics》2013,8(8):1012-1020
The monoallelic expression of imprinted genes is controlled by epigenetic factors including DNA methylation and histone modifications. In mouse, the imprinted gene Gtl2 is associated with two differentially methylated regions: the IG-DMR, which serves as a gametic imprinting mark at which paternal allele-specific DNA methylation is inherited from sperm, and the Gtl2-DMR, which acquires DNA methylation on the paternal allele after fertilization. The timeframe during which DNA methylation is acquired at secondary DMRs during post-fertilization development and the relationship between secondary DMRs and imprinted expression have not been well established. In order to better understand the role of secondary DMRs in imprinting, we examined the methylation status of the Gtl2-DMR in pre- and post-implantation embryos. Paternal allele-specific DNA methylation of this region correlates with imprinted expression of Gtl2 during post-implantation development but is not required to implement imprinted expression during pre-implantation development, suggesting that this secondary DMR may play a role in maintaining imprinted expression. Furthermore, our developmental profile of DNA methylation patterns at the Cdkn1c- and Gtl2-DMRs illustrates that the temporal acquisition of DNA methylation at imprinted genes during post-fertilization development is not universally controlled.  相似文献   

18.
Epigenetic programming is critical for normal development of mammalian embryos. Errors cause misexpression of genes and aberrant development (E. Li, C. Beard, and R. Jaenisch, Nature 366:362-365, 1993). Imprinted genes are important targets of epigenetic regulation, but little is known about how the epigenetic patterns are established in the parental germ lines and maintained in the embryo. Paternal allele-specific expression at the imprinted Rasgrf1 locus in mice is controlled by paternal allele-specific methylation at a differentially methylated domain (DMD). DMD methylation is in turn controlled by a direct repeat sequence immediately downstream of the DMD which is required for establishing Rasgrf1 methylation in the male germ line (B. J. Yoon et al., Nat. Genet. 30:92-96, 2002). To determine if these repeats have a role in methylation maintenance, we developed a conditional deletion of the repeat sequence in mice and showed that the repeats are also required during a narrow interval to maintain paternal methylation of Rasgrf1 in developing embryos. Removing the repeats upon fertilization caused a total loss of methylation by the morula stage, but by the epiblast stage, the repeats were completely dispensable for methylation maintenance. This developmental interval coincides with genome-wide demethylation and remethylation in mice which most imprinted genes resist. Our data show that the Rasgrf1 repeats serve at least two functions: first, to establish Rasgrf1 DNA methylation in the male germ line, and second, to resist global demethylation in the preimplantation embryo.  相似文献   

19.
20.
Imprinted genes play important roles in mammalian growth, development and behavior. The Rasgrf1 (Ras protein-specific guanine nucleotide exchange factor 1) gene has been identified as an imprinted gene in mouse and rat. In the present study, we detected its sequence, imprinting status and expression pattern in the domestic pigs. A 228 bp partial sequence located in exon 14 and a 193 bp partial sequence located in exon 1 of the Rasgrf1 gene in domestic pigs were obtained. A G/A transition, was identified in Rasgrf1 exon 14, and then, the reciprocal Berkshire × Wannan black F1 hybrid model and the RT-PCR-RFLP method were used to detect the imprinting status of porcine Rasgrf1 gene at the developmental stage of 1-day-old. The expression profile results indicated that the porcine Rasgrf1 mRNA was highly expressed in brain, pituitary and pancreas, followed by kidney, stomach, lung, testis, small intestine, ovary, spleen and liver, and at low levels of expression in longissimus dorsi, heart, and backfat. The expression levels of Rasgrf1 gene in brain, pituitary and pancreas tissues were significantly different between the two reciprocal F1 hybrids. Imprinting analysis showed that porcine Rasgrf1 gene was maternally expressed in the liver, small intestine, paternally expressed in the lung, but biallelically expressed in brain, heart, spleen, kidney, stomach, pancreas, backfat, testis, ovary, longissimus dorsi and pituitary tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号