首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
《Free radical research》2013,47(2):161-169
Mitochondrial dysfunction contributes to cell damage in a number of human diseases. One significant mechanism by which mitochondria damage cells is by producing reactive oxygen species from the respiratory chain. In this study we measured the production of reactive oxygen species by leukocyte mitochondria in blood from rheumatoid arthritis patients. To do this we used the chemiluminescence of lucigenin, which is accumulated by mitochondria within cells and reacts with superoxide to form a chemiluminescent product. By using specific inhibitors we could distinguish between the production of reactive oxygen species by mitochondria and by NADPH oxidase. There was a five-fold increase in mitochondrial reactive oxygen species production in whole blood and monocytes from patients with rheumatoid arthritis, when compared to healthy subjects or patients with non-rheumatic diseases. There was no increase in mitochondrial reactive oxygen species production by neutrophils from rheumatoid arthritis patients. The enhanced mitochondrial radical production in rheumatoid arthritis patients correlated significantly with increased levels of tumor necrosis factor alpha in plasma (p<0.0001). As tumor necrosis factor alpha is known to increase mitochondrial reactive oxygen species production the elevated mitochondrial radical formation seen in rheumatoid arthritis patients may be due to activation of the mitochondrial radical production. These data suggest that elevated mitochondrial oxidative stress contributes to the pathology of rheumatoid arthritis.  相似文献   

2.
Pharmacological mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)) opening protects against ischemic damage and mimics ischemic preconditioning. However, physiological and pathological signaling events that open this channel are still not fully understood. We found that catalase, which removes H(2)O(2), is capable of reversing the beneficial effects of ischemic preconditioning but not of mitoK(ATP) agonist diazoxide. On the other hand, 2-mercaptopropionylglycine prevented cardioprotection in both cases, suggesting that this compound may present effects other than scavenging of reactive oxygen species. Indeed, 2-mercaptopropionylglycine and a second thiol-reducing agent, dithiothreitol, impair diazoxide-mediated activation of mitoK(ATP) in isolated heart mitochondria. This demonstrates that mitoK(ATP) activity is regulated by thiol redox status. Furthermore, stimulating the generation of endogenous mitochondrial reactive oxygen species or treating samples with H(2)O(2) strongly enhances mitoK(ATP) activity, in a manner probably dependent on redox sensors located in the channel's sulfonylurea receptor. We also demonstrate that mitoK(ATP) channel activity effectively prevents mitochondrial reactive oxygen release. Collectively, our results suggest that mitoK(ATP) acts as a reactive oxygen sensor that decreases mitochondrial free radical generation in response to enhanced local levels of oxidants. As a result, these channels regulate mitochondrial redox state under physiological conditions and prevent oxidative stress under pathological conditions such as ischemia/reperfusion.  相似文献   

3.
Cellular oxidative stress results from the increased generation of reactive oxygen species and/or the dysfunction of the antioxidant systems. Most intracellular reactive oxygen species derive from superoxide radical although the majority of the biological effects of reactive oxygen species are mediated by hydrogen peroxide. In this contribution we overview the major cellular sites of reactive oxygen species production, with special emphasis in the mitochondrial pathways. Reactive oxygen species regulate signaling pathways involved in promoting survival and cell death, proliferation, metabolic regulation, the activation of the antioxidant response, the control of iron metabolism and Ca2 + signaling. The reversible oxidation of cysteines in transducers of reactive oxygen species is the primary mechanism of regulation of the activity of these proteins. Next, we present the mitochondrial H+-ATP synthase as a core hub in energy and cell death regulation, defining both the rate of energy metabolism and the reactive oxygen species-mediated cell death in response to chemotherapy. Two main mechanisms that affect the expression and activity of the H+-ATP synthase down-regulate oxidative phosphorylation in prevalent human carcinomas. In this context, we emphasize the prominent role played by the ATPase Inhibitory Factor 1 in human carcinogenesis as an inhibitor of the H+-ATP synthase activity and a mediator of cell survival. The ATPase Inhibitory Factor 1 promotes metabolic rewiring to an enhanced aerobic glycolysis and the subsequent production of mitochondrial reactive oxygen species. The generated reactive oxygen species are able to reprogram the nucleus to support tumor development by arresting cell death. Overall, we discuss the cross-talk between reactive oxygen species signaling and mitochondrial function that is crucial in determining the cellular fate. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

4.
An important role in atherogenesis is played by oxidative stress, which may be induced by common risk factors. Mitochondria are both sources and targets of reactive oxygen species, and there is growing evidence that mitochondrial dysfunction may be a relevant intermediate mechanism by which cardiovascular risk factors lead to the formation of vascular lesions. Mitochondrial DNA is probably the most sensitive cellular target of reactive oxygen species. Damage to mitochondrial DNA correlates with the extent of atherosclerosis. Several cardiovascular risk factors are demonstrated causes of mitochondrial damage. Oxidized low density lipoprotein and hyperglycemia may induce the production of reactive oxygen species in mitochondria of macrophages and endothelial cells. Conversely, reactive oxygen species may favor the development of type 2 diabetes mellitus, mainly through the induction of insulin resistance. Similarly - in addition to being a cause of endothelial dysfunction, reactive oxygen species and subsequent mitochondrial dysfunction - hypertension may develop in the presence of mitochondrial DNA mutations. Finally, other risk factors, such as aging, hyperhomocysteinemia and cigarette smoking, are also associated with mitochondrial damage and an increased production of free radicals. So far clinical studies have been unable to demonstrate that antioxidants have any effect on human atherogenesis. Mitochondrial targeted antioxidants might provide more significant results.  相似文献   

5.
Humans are exposed to many carcinogens, but the most significant may be the reactive species derived from metabolism of oxygen and nitrogen. Nitric oxide seems unlikely to damage DNA directly, but nitrous acid produces deamination and peroxynitrite leads to both deamination and nitration. Scavenging of reactive nitrogen species generated in the stomach may be an important role of flavonoids, flavonoids and other plant-derived phenolic compounds. Different reactive oxygen species produce different patterns of damage to DNA bases, e.g., such patterns have been used to implicate hydroxyl radical as the ultimate agent in H(2)O(2)-induced DNA damage. Levels of steady-state DNA damage in vivo are consistent with the concept that such damage is a major contributor to the age-related development of cancer and so such damage can be used as a biomarker to study the effects of diet or dietary supplements on risk of cancer development, provided that reliable assays are available. Methodological questions addressed in this article include the validity of measuring 8-hydroxydeoxyguanosine (8OHdG) in cellular DNA or in urine as a biomarker of DNA damage, the extent of artifact formation during analysis of oxidative DNA damage by gas chromatography-mass spectrometry and the levels of oxidative damage in mitochondrial DNA.  相似文献   

6.
Mitochondrial free radical generation, oxidative stress, and aging   总被引:38,自引:0,他引:38  
Mitochondria have been described as "the powerhouses of the cell" because they link the energy-releasing activities of electron transport and proton pumping with the energy conserving process of oxidative phosphorylation, to harness the value of foods in the form of ATP. Such energetic processes are not without dangers, however, and the electron transport chain has proved to be somewhat "leaky." Such side reactions of the mitochondrial electron transport chain with molecular oxygen directly generate the superoxide anion radical (O2*-), which dismutates to form hydrogen peroxide (H2O2), which can further react to form the hydroxyl radical (HO*). In addition to these toxic electron transport chain reactions of the inner mitochondrial membrane, the mitochondrial outer membrane enzyme monoamine oxidase catalyzes the oxidative deamination of biogenic amines and is a quantitatively large source of H2O2 that contributes to an increase in the steady state concentrations of reactive species within both the mitochondrial matrix and cytosol. In this article we review the mitochondrial rates of production and steady state levels of these reactive oxygen species. Reactive oxygen species generated by mitochondria, or from other sites within or outside the cell, cause damage to mitochondrial components and initiate degradative processes. Such toxic reactions contribute significantly to the aging process and form the central dogma of "The Free Radical Theory of Aging." In this article we review current understandings of mitochondrial DNA, RNA, and protein modifications by oxidative stress and the enzymatic removal of oxidatively damaged products by nucleases and proteases. The possible contributions of mitochondrial oxidative polynucleotide and protein turnover to apoptosis and aging are explored.  相似文献   

7.
The potency of UVA radiation, representing 90% of solar UV light reaching the earth׳s surface, to induce human skin cancer is the subject of continuing controversy. This study was undertaken to investigate the role of reactive oxygen species in DNA damage produced by the exposure of human cells to UVA radiation. This knowledge is important for better understanding of UV-induced carcinogenesis. We measured DNA single-strand breaks and alkali-labile sites in human lymphocytes exposed ex vivo to various doses of 365-nm UV photons compared to X-rays and hydrogen peroxide using the comet assay. We demonstrated that the UVA-induced DNA damage increased in a linear dose-dependent manner. The rate of DNA single-strand breaks and alkali-labile sites after exposure to 1 J/cm2 was similar to the rate induced by exposure to 1 Gy of X-rays or 25 μM hydrogen peroxide. The presence of either the hydroxyl radical scavenger dimethyl sulfoxide or the singlet oxygen quencher sodium azide resulted in a significant reduction in the UVA-induced DNA damage, suggesting a role for these reactive oxygen species in mediating UVA-induced DNA single-strand breaks and alkali-labile sites. We also showed that chromatin relaxation due to hypertonic conditions resulted in increased damage in both untreated and UVA-treated cells. The effect was the most significant in the presence of 0.5 M Na+, implying a role for histone H1. Our data suggest that the majority of DNA single-strand breaks and alkali-labile sites after exposure of human lymphocytes to UVA are produced by reactive oxygen species (the hydroxyl radical and singlet oxygen) and that the state of chromatin may substantially contribute to the outcome of such exposures.  相似文献   

8.
Ischemia followed by reperfusion results in impairment of cellular and mitochondrial functionality due to opening of mitochondrial permeability transition pores. On the other hand, activation of mitochondrial ATP-sensitive K+ channels (mitoKATP) protects the heart against ischemic damage. This study examined the effects of mitoKATP and mitochondrial permeability transition on isolated rat heart mitochondria and cardiac cells submitted to simulated ischemia and reperfusion (cyanide/aglycemia). Both mitoKATP opening, using diazoxide, and the prevention of mitochondrial permeability transition, using cyclosporin A, protected against cellular damage, without additive effects. MitoKATP opening in isolated rat heart mitochondria slightly decreased Ca2+ uptake and prevented mitochondrial reactive oxygen species production, most notably in the presence of added Ca2+. In ischemic cells, diazoxide decreased ROS generation during cyanide/aglycemia while cyclosporin A prevented oxidative stress only during simulated reperfusion. Collectively, these studies indicate that opening mitoKATP prevents cellular death under conditions of ischemia/reperfusion by decreasing mitochondrial reactive oxygen species release secondary to Ca2+ uptake, inhibiting mitochondrial permeability transition.  相似文献   

9.
Lee SM  Huh TL  Park JW 《Biochimie》2001,83(11-12):1057-1065
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) through supply of NADPH for antioxidant systems. When exposed to various reactive oxygen species such as hydrogen peroxide, singlet oxygen generated by photoactivated dye, superoxide anion, and hydroxyl radical produced by metal-catalyzed Fenton reactions, ICDH was susceptible to oxidative modification and damage, which was indicated by the loss of activity, fragmentation of the peptide as well as by the formation of carbonyl groups. Oxidative damage to ICDH was inhibited by antioxidant enzymes, free radical scavengers, and spin-trapping agents. The structural alterations of modified enzymes were indicated by the increase in thermal instability and binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid (ANSA). The reactive oxygen species-mediated damage to ICDH may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.  相似文献   

10.
Cytokines impair the function and decrease the viability of insulin-producing β-cells by a pathway that requires the expression of inducible nitric oxide synthase (iNOS) and generation of high levels of nitric oxide. In addition to nitric oxide, excessive formation of reactive oxygen species, such as superoxide and hydrogen peroxide, has been shown to cause β-cell damage. Although the reaction of nitric oxide with superoxide results in the formation of peroxynitrite, we have shown that β-cells do not have the capacity to produce this powerful oxidant in response to cytokines. When β-cells are forced to generate peroxynitrite using nitric oxide donors and superoxide-generating redox cycling agents, superoxide scavenges nitric oxide and prevents the inhibitory and destructive actions of nitric oxide on mitochondrial oxidative metabolism and β-cell viability. In this study, we show that the β-cell response to nitric oxide is regulated by the location of superoxide generation. Nitric oxide freely diffuses through cell membranes, and it reacts with superoxide produced within cells and in the extracellular space, generating peroxynitrite. However, only when it is produced within cells does superoxide attenuate nitric oxide-induced mitochondrial dysfunction, gene expression, and toxicity. These findings suggest that the location of radical generation and the site of radical reactions are key determinants in the functional response of β-cells to reactive oxygen species and reactive nitrogen species. Although nitric oxide is freely diffusible, its biological function can be controlled by the local generation of superoxide, such that when this reaction occurs within β-cells, superoxide protects β-cells by scavenging nitric oxide.  相似文献   

11.
Incubation of freshly isolated rat liver mitochondria in the presence of oxygen free radical generating hypoxanthine —xanthine oxidase system led to swelling of mitochondria as measured by the change in optical density, which was reversed by the addition of superoxide dismutase. O2 in the presence of CaCl2 enhanced the peroxidative decomposition of mitochondrial membrane lipids along with swelling of the organelle. Free radical generation led to enhancement of monoamine oxidase activity while glutathione peroxidase and cytochrome c oxidase were inhibited. Tertbutyl hydroperoxide (t-BHP) caused mitochondrial swelling through oxidative stress. Incorporation of ruthenium red, which is a Ca2+ transport blocker, during assay abolished peroxidative membrane damage and swelling. Dithiothreitol (DTT) accorded protection against t-BHP induced mitochondrial swelling. The above in vitro data suggest a possible interrelationship of active oxygen species, membrane damage and calcium dynamics.  相似文献   

12.
The biological effects of ultraviolet radiation (UV), such as DNA damage, mutagenesis, cellular aging, and carcinogenesis, are in part mediated by reactive oxygen species (ROS). The major intracellular ROS intermediate is hydrogen peroxide, which is synthesized from superoxide anion (O2) and further metabolized into the highly reactive hydroxyl radical. In this study, we examined the involvement of mitochondria in the UV‐induced H2O2 accumulation in a keratinocyte cell line HaCaT. Respiratory chain blockers (cyanide‐p‐trifluoromethoxy‐phenylhydrazone and oligomycin) and the complex II inhibitor (theonyltrifluoroacetone) prevented H2O2 accumulation after UV. Antimycin A that inhibits electron flow from mitochondrial complex III to complex IV increased the UV‐induced H2O2 synthesis. The same effect was seen after incubation with rotenone, which blocks electron flow from NADH‐reductase (complex I) to ubiquinone. UV irradiation did not affect mitochondrial transmembrane potential (ΔΨm). These data indicate that UV‐induced ROS are produced at complex III via complex II (succinate‐Q‐reductase). J. Cell. Biochem. 80:216–222, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

13.
Oxidative damage of mammalian mitochondria induced by Ca2+ and prooxidants is mediated by the attack of mitochondria-generated reactive oxygen species on membrane protein thiols promoting oxidation and cross-linkage that leads to the opening of the mitochondrial permeability transition pore (Castilho et al., 1995). In this study, we present evidence that deenergized potato tuber (Solanum tuberosum) mitochondria, which do not possess a Ca2+ uniport, undergo inner membrane permeabilization when treated with Ca2+ (>0.2 mM), as indicated by mitochondrial swelling. Similar to rat liver mitochondria, this permeabilization is enhanced by diamide, a thiol oxidant that creates a condition of oxidative stress by oxidizing pyridine nucleotides. This is inhibited by the antioxidants catalase and dithiothreitol. Potato mitochondrial membrane permeabilization is not inhibited by ADP, cyclosporin A, and ruthenium red, and is partially inhibited by Mg2+ and acidic pH, well known inhibitors of the mammalian mitochondrial permeability transition. The lack of inhibition of potato mitochondrial permeabilization by cyclosporin A is in contrast to the inhibition of the peptidylprolyl cis–trans isomerase activity, that is related to the cyclosporin A-binding protein cyclophilin. Interestingly, the monofunctional thiol reagent mersalyl induces an extensive cyclosporin A-insensitive potato mitochondrial swelling, even in the presence of lower Ca2+ concentrations (>0.01 mM). In conclusion, we have identified a cyclosporin A-insensitive permeability transition pore in isolated potato mitochondria that is induced by reactive oxygen species.  相似文献   

14.
Oxidative stress and living cells   总被引:1,自引:0,他引:1  
  相似文献   

15.
Over the last few decades, many different groups have been engaged in studies of new roles for mitochondria, particularly the coupling of alterations in the redox pathway with the inflammatory responses involved in different diseases, including Alzheimer’s disease, Parkinson's disease, atherosclerosis, cerebral cavernous malformations, cystic fibrosis and cancer. Mitochondrial dysfunction is important in these pathological conditions, suggesting a pivotal role for mitochondria in the coordination of pro-inflammatory signaling from the cytosol and signaling from other subcellular organelles. In this regard, mitochondrial reactive oxygen species are emerging as perfect liaisons that can trigger the assembly and successive activation of large caspase-1- activating complexes known as inflammasomes. This review offers a glimpse into the mechanisms by which inflammasomes are activated by mitochondrial mechanisms, including reactive oxygen species production and mitochondrial Ca2+ uptake, and the roles they can play in several inflammatory pathologies.  相似文献   

16.
Cardiolipin (CL) is a phospholipid predominantly found in the mitochondrial inner membrane and is associated structurally with individual complexes of the electron transport chain (ETC). Because the ETC is the major mitochondrial reactive oxygen species (ROS)-generating site, the proximity to the ETC and bisallylic methylenes of the PUFA chains of CL make it a likely target of ROS in the mitochondrial inner membrane. Oxidized cellular CL products, uniquely derived from ROS-induced autoxidation, could serve as biomarkers for the presence of the ROS and could help in the understanding of the mechanism of oxidative stress. Because major CL species have four unsaturated acyl chains, whereas other phospholipids usually have only one in the sn-2 position, characterization of oxidized CL is highly challenging. In the current study, we exposed CL, under aerobic conditions, to singlet oxygen (1O2), the radical initiator 2,2′-azobis(2-methylpropionamidine) dihydrochloride, or room air, and the oxidized CL species were characterized by HPLC-tandem mass spectrometry (MS/MS). Our reverse-phase ion-pair HPLC-MS/MS method can characterize the major and minor oxidized CL species by detecting distinctive fragment ions associated with specific oxidized species. The HPLC-MS/MS results show that monohydroperoxides and bis monohydroperoxides were generated under all three conditions. However, significant amounts of CL dihydroperoxides were produced only by 1O2-mediated oxidation. These products were barely detectable from radical oxidation either in a liposome bilayer or in thin film. These observations are only possible due to the chromatographic separation of the different oxidized species.  相似文献   

17.
Abstract

Oxidative damage is thought to play an important role in many disease states. Damage caused by reactive oxygen species has been linked to degenerative conditions such as cancer, atherosclerosis, inflammatory disease, lens tissue disease, Alzheimer's disease and motor neurone disease, as well as to the aging process itself. Damage could arise through increased levels of reactive species or through alterations in levels of free radical scavenger molecules such as superoxide dismutase.  相似文献   

18.
《Autophagy》2013,9(3):405-408
Mitochondria are the primary site of energy production in animal cells. In mitochondria, the flow of electrons through the electron transport chain creates a potential difference across the inner membrane, which is utilized for ATP production. However, due to inherent inefficiencies in electron transport, reactive oxygen species are also produced, which damage mitochondrial proteins and nucleic acids, and impair mitochondrial function.1 Decreased mitochondrial function causes increased reactive oxygen species generation, a decline in cellular function, and potentially cell death.2 Therefore, to maintain cellular homeostasis, mechanisms have evolved to selectively eliminate defective mitochondria.3 Mitochondria are constantly undergoing cycles of fission and fusion, and this process appears to have a role in mitochondrial quality control. Following fission, daughter mitochondria are produced, which can differ in their membrane polarization. Depolarized mitochondria are less likely to undergo subsequent fusion, and more likely to undergo autophagic clearance.4 As would be predicted, given the potential for cytochrome c release, depolarization is a powerful stimulus for mitochondrial clearance. Depolarization causes recruitment of the E3 ubiquitin ligase Parkin to mitochondria, which is required for their subsequent engulfment by autophagosomes.5 Macroautophagy pathways also appear to have a role, as hepatocytes deficient for the E1-like enzyme Atg7 accumulate abnormal mitochondria.6 Finally, recent studies in a developmental model have yielded insight into this process. Newly-formed erythrocytes, also known as reticulocytes, eliminate their entire cohort of mitochondria during development.7 This process depends on the mitochondrial protein NIX, is partially dependent on autophagy, and is independent of mitochondrial depolarization.8-10 Here we describe the use of reticulocytes to study mitochondrial clearance.  相似文献   

19.
《Journal of molecular biology》2019,431(6):1250-1266
Oxidative stress is a common challenge to mitochondrial function where reactive oxygen species are capable of significant organelle damage. The generation of mitochondrial reactive oxygen species occurs in the inner membrane and matrix compartments as a consequence of subunit function in the electron transport chain and citric acid cycle, respectively. Maintenance of mitochondrial proteostasis and stress response is facilitated by compartmentalized proteases that couple the energy of ATP hydrolysis to unfolding and the regulated removal of damaged, misfolded, or aggregated proteins. The mitochondrial protease YME1L functions in the maintenance of proteostasis in the intermembrane space. YME1L is an inner membrane-anchored hexameric protease with distinct N-terminal, transmembrane, AAA + (ATPases associated with various cellular activities), and C-terminal M41 zinc-dependent protease domains. The effect of oxidative stress on enzymes such as YME1L tasked with maintaining proteostasis is currently unclear. We report here that recombinant YME1L undergoes a reversible conformational change in response to oxidative stress that involves the interaction of one hydrogen peroxide molecule per YME1L monomer with affinities equal to 31 ± 2 and 26 ± 1 mM for conditions lacking or including nucleotide, respectively. Our data also reveal that oxidative stress does not significantly impact nucleotide binding equilibria, but does stimulate a 2-fold increase in the rate constant for high-affinity ATP binding from (8.9 ± 0.2) × 105 M−1 s−1 to (1.5 ± 0.1) × 106 M−1 s−1. Taken together, these data may suggest a mechanism for the regulated processing of YME1L by other inner membrane proteases such as OMA1.  相似文献   

20.
Reactive oxygen species (ROS) generation in mitochondria as a side product of electron and proton transport through the inner membrane is important for normal cell operation as well as development of pathology. Matrix and cytosol alkalization stabilizes semiquinone radical, a potential superoxide producer, and we hypothesized that proton deficiency under the excess of electron donors enhances reactive oxygen species generation. We tested this hypothesis by measuring pH dependence of reactive oxygen species released by mitochondria. The experiments were performed in the media with pH varying from 6 to 8 in the presence of complex II substrate succinate or under more physiological conditions with complex I substrates glutamate and malate. Matrix pH was manipulated by inorganic phosphate, nigericine, and low concentrations of uncoupler or valinomycin. We found that high pH strongly increased the rate of free radical generation in all of the conditions studied, even when DeltapH=0 in the presence of nigericin. In the absence of inorganic phosphate, when the matrix was the most alkaline, pH shift in the medium above 7 induced permeability transition accompanied by the decrease of ROS production. ROS production increase induced by the alkalization of medium was observed with intact respiring mitochondria as well as in the presence of complex I inhibitor rotenone, which enhanced reactive oxygen species release. The phenomena revealed in this report are important for understanding mechanisms governing mitochondrial production of reactive oxygen species, in particular that related with uncoupling proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号