共查询到20条相似文献,搜索用时 11 毫秒
1.
Cu,Zn-superoxide dismutase-dependent apoptosis induced by nitric oxide in neuronal cells 总被引:9,自引:0,他引:9
Ciriolo MR De Martino A Lafavia E Rossi L Carrì MT Rotilio G 《The Journal of biological chemistry》2000,275(7):5065-5072
Nitric oxide (NO) challenge to human neuroblastoma cells (SH-SY5Y) ultimately results in apoptosis. Tumor suppressor protein p53 and cell cycle inhibitor p21 accumulate as an early sign of S-nitrosoglutathione-mediated toxicity. Cytochrome c release from mitochondria and caspase 3 activation also occurred. Cells transfected with either wild type (WT) or mutant (G93A) Cu, Zn-superoxide dismutase (Cu,Zn-SOD) produced comparable amounts of nitrite/nitrate but showed different degree of apoptosis. G93A cells were the most affected and WT cells the most protected; however, Cu, Zn-SOD content of these two cell lines was 2-fold the SH-SY5Y cells under both resting and treated conditions. We linked decreased susceptibility of the WT cells to higher and more stable Bcl-2 and decreased reactive oxygen species. Conversely, we linked G93A susceptibility to increased reactive oxygen species production since simultaneous administration of S-nitrosoglutathione and copper chelators protects from apoptosis. Furthermore, G93A cells showed a significant decrease of Bcl-2 expression and, as target of NO-derived radicals, showed lower cytochrome c oxidase activity. These results demonstrate that resistance to NO-mediated apoptosis is strictly related to the level and integrity of Cu,Zn-SOD and that the balance between reactive nitrogen and reactive oxygen species regulates neuroblastoma apoptosis. 相似文献
2.
The balance between Cu,Zn-superoxide dismutase and catalase affects the sensitivity of mouse epidermal cells to oxidative stress. 总被引:13,自引:0,他引:13
P Amstad A Peskin G Shah M E Mirault R Moret I Zbinden P Cerutti 《Biochemistry》1991,30(38):9305-9313
Oxidants are toxic, but at low doses they can stimulate rather than inhibit the growth of mammalian cells and play a role in the etiology of cancer and fibrosis. The effect of oxidants on cells is modulated by multiple interacting antioxidant defense systems. We have studied the individual roles and the interaction of Cu,Zn-superoxide dismutase (SOD) and catalase (CAT) in transfectants with human cDNAs of mouse epidermal cells JB6 clone 41. Since only moderate increases in these enzymes are physiologically meaningful, we chose the following five clones for in-depth characterization: CAT 4 and CAT 12 with 2.6-fold and 4.2-fold increased catalase activities, respectively, SOD 15 and SOD 3 with 2.3-fold and 3.6-fold increased Cu,Zn-SOD activities, respectively, and SOCAT 3 with a 3-fold higher catalase activity and 1.7-fold higher Cu,Zn-SOD activity than the parent JB6 clone 41. While the increases in enzyme activities were moderate, the human cDNAs were highly expressed in the transfectants. As demonstrated for the clone SOD 15, this discordance between message concentrations and enzyme activities may be due to the low stability of the human Cu,Zn-SOD mRNA in the mouse recipient cells. According to immunoblots the content of Mn-SOD was unaltered in the transfectants. While the activities of glutathione peroxidase were comparable in all strains, the concentrations of reduced glutathione (GSH) were significantly lower in SOD 3 and SOD 15. This decrease in GSH may reflect a chronic prooxidant state in these Cu,Zn-SOD overproducers.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
4.
Cytochrome c oxidase, Cu,Zn-superoxide dismutase, and ceruloplasmin activities in copper-deficient bovines 总被引:1,自引:0,他引:1
Cerone SI Sansinanea AS Streitenberger SA Garcia MC Auza NJ 《Biological trace element research》2000,73(3):269-278
The activity of several cuproenzymes in relation to the immune system was examined in serum and blood cells from bovines with
molybdenum-induced copper deficiency. Five female cattle were given molybdenum (30 ppm) and sulfate (225 ppm) to induce experimental
secondary copper deficiency. Ceruloplasmin activity was determined in serum. The Cu,Zn-superoxide dismutase and cytochrome
c oxidase activities were measured in peripheral blood lymphocytes, neutrophils, and monocyte-derived macrophages. Copper deficiency
was confirmed from decreased serum copper levels and the animals with values less than 5.6 μmol/L were considered deficient.
The content of intracellular copper decreased between 40% and 70% in deficient cells compared with the controls. In copper-deficient
animals, the serum ceruloplasmin activity decreased to half of the control value. Both of them, the Cu,Zn-superoxide dismutase
and the cytochrome c oxidase activities, undergo a significant reduction in leukocytes, showing differences among diverse cell populations. We
concluded that the copper deficiency alters the activity of several enzymes, which mediate antioxidant defenses and ATP formation.
These effects may impair the cell immune functionality, affecting the bactericidal capacity and making the animals more susceptible
to infection. 相似文献
5.
Oxidative modifications and aggregation of Cu,Zn-superoxide dismutase associated with Alzheimer and Parkinson diseases 总被引:8,自引:0,他引:8
Choi J Rees HD Weintraub ST Levey AI Chin LS Li L 《The Journal of biological chemistry》2005,280(12):11648-11655
Although oxidative stress has been strongly implicated in the pathogenesis of Alzheimer disease (AD) and Parkinson disease (PD), the identities of specific protein targets of oxidative damage remain largely unknown. Here, we report that Cu,Zn-superoxide dismutase (SOD1), a key antioxidant enzyme whose mutations have been linked to autosomal dominant neurodegenerative disorder familial amyotrophic lateral sclerosis (ALS), is a major target of oxidative damage in AD and PD brains. By using a combination of two-dimensional gel electrophoresis, immunoblot analysis, and mass spectrometry, we have identified four human brain SOD1 isoforms with pI values of 6.3, 6.0, 5.7, and 5.0, respectively. Of these, the SOD1 pI 6.0 isoform is oxidatively modified by carbonylation, and the pI 5.0 isoform is selectively accumulated in AD and PD. Moreover, Cys-146, a cysteine residue of SOD1 that is mutated in familial ALS, is oxidized to cysteic acid in AD and PD brains. Quantitative Western blot analyses demonstrate that the total level of SOD1 isoforms is significantly increased in both AD and PD. Furthermore, immunohistochemical and double fluorescence labeling studies reveal that SOD1 forms proteinaceous aggregates that are associated with amyloid senile plaques and neurofibrillary tangles in AD brains. These findings implicate, for the first time, the involvement of oxidative damage to SOD1 in the pathogenesis of sporadic AD and PD. This work suggests that AD, PD, and ALS may share a common or overlapping pathogenic mechanism(s) that could potentially be targeted by similar therapeutic strategies. 相似文献
6.
7.
M A Simonian D M Gevorkian V G Mkhitarian 《Biulleten' eksperimental'no? biologii i meditsiny》1987,103(3):306-308
The contents of Cu, Zn-superoxide dismutase and catalase isolated and purified from the rat liver at the terminal stages of alloxan diabetes were decreased by 40% and 15%, respectively, as compared to the control. It can be concluded that the decrease in superoxide dismutase and catalase activity in experimental alloxan diabetes is mainly connected with the decline in the content of these proteins at the terminal stages of the disease, this, probably, being the result of DNA degradation and RNA transport disturbances under the effect of oxygen active forms. 相似文献
8.
9.
Umansky V Rocha M Breitkreutz R Hehner S Bucur M Erbe N Dröge W Ushmorov A 《Journal of cellular biochemistry》2000,78(4):578-587
We have previously reported that nitric oxide (NO) stimulates apoptosis in different human neoplastic lymphoid cell lines through mitochondrial damage (including degradation of cardiolipin, a major mitochondrial lipid) followed by activation of caspases. Here we demonstrate that Jurkat human leukemia cells which survive after 24 h treatment with NO form subpopulations with higher and lower cardiolipin content (designated as NAO(high) and NAO(low), respectively). Sorted NAO(high) cells were found to survive in culture whereas sorted NAO(low) cells died. Moreover, NAO(high) cells acquired an increased resistance to the exposure to NO donors which remained unchanged during long-term culture. These cells showed a similar cardiolipin content and expressed the same level of anti-apoptotic proteins Bcl-2 and Bcl-x(L) as APO-S unsorted cells but contained significantly higher concentration of the antioxidant glutathione. Depletion of glutathione in these cells with buthionine-sulfoximine (BSO) correlated with a significant stimulation of NO-mediated apoptosis whereas the exposure of NO-sensitive APO-S cells to the glutathione precursor N-acetylcysteine (NAC) resulted in a substantial suppression of this effect. Our data suggest a complex mechanism of the resistence to NO-induced apoptosis in Jurkat human leukemia cells in which glutathione plays an important role. 相似文献
10.
Andonis Karachitos Malgorzata Wojtkowska Olgierd Stobienia Hanna Kmita 《FEBS letters》2009,583(2):449-455
Available data suggest that a copper-and zinc-containing dismutase (CuZnSOD) plays a significant role in protecting eukaryotic cells against oxidative modifications which may contribute to cell aging. Here we demonstrated that depletion of CuZnSOD in Saccharomyces cerevisiae cells (Δsod1 cells) affected distinctly channel activity of VDAC (voltage dependent anion selective channel) and resulted in a moderate reduction in VDAC levels as well as in levels of protein crucial for VDAC import into mitochondria, namely Tob55/Sam50 and Tom40. The observed alterations may result in mitochondriopathy and subsequently in the shortening of the replicative life span observed for S. cerevisiaeΔsod1 cells. 相似文献
11.
The clinical efficacy and safety of realgar (arsenic sulfide, As(4)S(4)) in the treatment of acute promyelocytic leukemia in China have given rise to an upsurge in research on the underlying mechanism. We prepared realgar nanoparticles (RNPs) to examine their effect on the differentiation of HL-60 cells. Treatment with RNPs at 6 microM for 72 h induced cell differentiation that was assessed by morphological change, NBT reductive ability, and elevation of CD11b expression at both mRNA and protein levels. The RNP-induced differentiation was synergized, enhanced and suppressed by the inhibition of p38 MAPK, JNK and ERK pathways, respectively. Our findings demonstrate that MAPK signaling pathways are closely related to the RNP-induced differentiation in HL-60 cells. 相似文献
12.
To evaluate the regulation of endothelial cell Cu,Zn-SOD, we have exposed bovine pulmonary artery endothelial cells in culture to hyperoxia and hypoxia, second messengers or related agonists, hormones, free radical generating systems, endotoxin, and cytokines and have measured Cu,Zn-SOD protein of these cells by an ELISA developed in our laboratory. Control preconfluent and confluent cells in room air contained 196 +/- 18 ng Cu,Zn-SOD/10(6) cells. A23187 (0.33 microM), forskolin (10 microM), isobutylmethylxanthine (0.1 mM), dexamethasone (1 microM), triiodothyronine (1 microM) and retinoic acid (1 microM) failed to alter this level of Cu,Zn-SOD. Exposure to anoxia and hyperoxia both elevated the level approximately 1.5-2.0-fold over 20% oxygen-exposed controls at 48-72 hr. Similarly, exposures to glucose oxidase (0.0075 units/ml), menadione (12.5 microM), xanthine-xanthine oxidase (10 microM, 0.03 units/ml) and H2O2 (0.0005%) increased the level up to two-threefold over controls at 24-48 hr. Lipopolysaccharide, TGF beta 1, TNF alpha, and Il-1 also increased levels of cellular Cu,Zn-SOD, but only in proliferating cells. Il-2, Il-4, interferon-gamma, and GM-CSF had no effect on Cu,Zn-SOD. All treatments that elevated SOD resulted in inhibition of cellular growth, but decreased growth of cells at confluence alone was not associated with increased Cu,Zn-SOD. We propose from these studies that Cu,Zn-SOD of endothelial cells is not under conventional second messenger or hormonal regulation, but that up-regulation of the enzyme is associated with (and perhaps stimulated by) free-radical or oxidant production that also may be influenced by availability of certain cytokines under replicating conditions. 相似文献
13.
J P Barque S Lagaye A Ladoux V Della Valle J P Abita C J Larsen 《Biochemical and biophysical research communications》1987,147(3):993-999
PSL(p55) is a nuclear 55kD antigen present in various mammalian cell systems, which has been first identified by use of human autoimmune antibodies (Barque et al. 1983, EMBO J. 2, 743). It has been shown to be associated with interphase chromatine and to be synthesized in during the S phase of the cell cycle. In this work, we have analysed the status of PSL in promyelocytic HL-60 human cells in exponential or stationary growth, or undergoing granulocytic differentiation in presence of Retinoic acid. By use of 2-dimensional electrophoresis, PSL was found to be composed of two acidic proteins designated p55A and p55B. Unexpectedly, estimated 10-20 fold higher amounts of each species were found in cells treated for 5 days with 10(-6)M Retinoic acid, than in asynchronously growing cells or resting cells. Moreover, the p55A protein was phosphorylated during the process. On the basis of these results, PSL appears to be involved in some steps of the granulocytic differentiation process. 相似文献
14.
More than 100 different mutations in the gene encoding Cu,Zn-superoxide dismutase (SOD1) cause preferential motor neuron degeneration in familial amyotrophic lateral sclerosis (ALS). Although the cellular target(s) of mutant SOD1 toxicity have not been precisely specified, evidence to date supports the hypothesis that ALS-related mutations may increase the burden of partially unfolded SOD1 species. Influences that may destabilize SOD1 in vivo include impaired metal ion binding, reduction of the intrasubunit disulfide bond, or oxidative modification. In this study, we observed that metal-deficient as-isolated SOD1 mutants (H46R, G85R, D124V, D125H, and S134N) with disordered electrostatic and zinc-binding loops exhibited aberrant binding to hydrophobic beads in the absence of other destabilizing agents. Other purified ALS-related mutants that can biologically incorporate nearly normal amounts of stabilizing zinc ions (A4V, L38V, G41S, D90A, and G93A) exhibited maximal hydrophobic behavior after exposure to both a disulfide reducing agent and a metal chelator, while normal SOD1 was more resistant to these agents. Moreover, we detected hydrophobic SOD1 species in lysates from affected tissues in G85R and G93A mutant but not wildtype SOD1 transgenic mice. These findings suggest that a susceptibility to the cellular disulfide reducing environment and zinc loss may convert otherwise stable SOD1 mutants into metal-deficient forms with locally destabilized electrostatic and zinc-binding loops. These abnormally hydrophobic SOD1 species may promote aberrant interactions of the enzyme with itself or with other cellular constituents to produce toxicity in familial ALS. 相似文献
15.
Diminished serotonin uptake in platelets of transgenic mice with increased Cu/Zn-superoxide dismutase activity. 总被引:5,自引:2,他引:5 下载免费PDF全文
Reduced levels of the neurotransmitter serotonin in blood platelets is a clinical symptom characteristic of individuals with Down's syndrome. To investigate the possible involvement of the Cu/Zn-superoxide dismutase (CuZnSOD) gene, which resides at the Down locus on chromosome no. 21, in the etiology of that symptom, we examined blood platelets of transgenic mice harboring the human CuZnSOD gene. It was found that platelets of transgenic CuZnSOD animals, which overexpress the transgene, contain lower levels of serotonin than nontransgenic littermate mice, due to a reduced rate of uptake of the neurotransmitter by the dense granules of the platelets. We found that the pH gradient (delta pH) across the dense granule membrane, which is the main driving force for serotonin transport, was diminished in dense granules of transgenic-CuZnSOD. Furthermore, a significantly lower than normal serotonin accumulation rate was also detected in dense granules isolated from blood platelets of Down's syndrome individuals. These findings suggest that CuZnSOD gene dosage is affecting the dense granule transport system and is thereby involved in the depressed level of blood serotonin found in patients born with Down's syndrome. 相似文献
16.
《Free radical biology & medicine》2007,42(12):1837-1846
Human Cu,Zn-superoxide dismutase (hSOD1) has 4 cysteines per subunit. Cys57 and Cys148 are involved in an intrasubunit disulfide bond, while Cys6 and Cys111 are free. Cys6 is buried within the protein while Cys111 is on the surface, near the dimer interface. We examined by liquid chromatography-mass spectrometry the commercially purchased hSOD1 isolated from erythrocytes as well as hSOD1s isolated from human erythrocytes, brain, and hSOD1 expressed in Sf9, yeast, and E. coli. Our goal was to ascertain whether the Cys111 modification occurred naturally in vivo. Only the Sigma erythrocyte hSOD1 appeared to contain a trisulfide crosslink between the Cys111 residues. Thus it failed to react with N-ethylmaleimide, showed absorbtion at 325 nm that was eliminated by 2-mercaptoethanol, and had a mass 30 units more than expected for the native dimer. We examined the possibility that different purification methods might cause this modification in erythrocyte hSOD1. None of the procedures examined for hSOD1 purification produced such a trisulfide. In disagreement with Liu et al. [Biochemistry, 2000, 39, 8125-8132], complete derivitization of both Cys111s of hSOD1 from Sf9 cells with N-ethylmaleimide, 4-vinylpyridine, and by 5,5′-dithiobis(2-nitrobenzoic acid) were readily achieved; indicating that steric hindrance was not a problem. 相似文献
17.
Although antioxidants are used to treat an overdose of the analgaesic/antipyretic drug APAP (acetaminophen), roles of antioxidant enzymes in APAP-induced hepatotoxicity remain controversial. Our objective was to determine impacts of knockout of SOD1 (superoxide dismutase; Cu,Zn-SOD) alone or in combination with selenium-dependent GPX1 (glutathione peroxidase-1) on APAP-induced hepatotoxicity. All SOD1-null (SOD1-/-) and SOD1- and GPX1-double-knockout mice survived an intraperitoneal injection of 600 mg of APAP per kg of body mass, whereas 75% of WT (wild-type) and GPX1-null mice died within 20 h. Survival time of SOD1-/- mice injected with 1200 mg of APAP per kg of body mass was longer than that of the WT mice (934 compared with 315 min, P<0.05). The APAP-treated SOD1-/- mice had less (P<0.05) plasma ALT (alanine aminotransferase) activity increase and attenuated (P<0.05) hepatic glutathione depletion than the WT mice. The protection conferred by SOD1 deletion was associated with a block of the APAP-mediated hepatic protein nitration and a 50% reduction (P<0.05) in activity of a key APAP metabolism enzyme CYP2E1 (cytochrome P450 2E1) in liver. The SOD1 deletion also caused moderate shifts in the APAP metabolism profiles. In conclusion, deletion of SOD1 alone or in combination with GPX1 greatly enhanced mouse resistance to APAP overdose. Our results suggest a possible pro-oxidant role for the physiological level of SOD1 activity in APAP-mediated hepatotoxicity. 相似文献
18.
Human Cu,Zn-superoxide dismutase (hSOD1) has 4 cysteines per subunit. Cys57 and Cys148 are involved in an intrasubunit disulfide bond, while Cys6 and Cys111 are free. Cys6 is buried within the protein while Cys111 is on the surface, near the dimer interface. We examined by liquid chromatography-mass spectrometry the commercially purchased hSOD1 isolated from erythrocytes as well as hSOD1s isolated from human erythrocytes, brain, and hSOD1 expressed in Sf9, yeast, and E. coli. Our goal was to ascertain whether the Cys111 modification occurred naturally in vivo. Only the Sigma erythrocyte hSOD1 appeared to contain a trisulfide crosslink between the Cys111 residues. Thus it failed to react with N-ethylmaleimide, showed absorbtion at 325 nm that was eliminated by 2-mercaptoethanol, and had a mass 30 units more than expected for the native dimer. We examined the possibility that different purification methods might cause this modification in erythrocyte hSOD1. None of the procedures examined for hSOD1 purification produced such a trisulfide. In disagreement with Liu et al. [Biochemistry, 2000, 39, 8125-8132], complete derivitization of both Cys111s of hSOD1 from Sf9 cells with N-ethylmaleimide, 4-vinylpyridine, and by 5,5′-dithiobis(2-nitrobenzoic acid) were readily achieved; indicating that steric hindrance was not a problem. 相似文献
19.
Recently we reported that the joint expression of cassava Cu/Zn superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) prolonged the shelf life of cassava storage-roots by the stabilization of reactive oxygen species (ROS) homeostasis after harvest. Since oxidative damage is a major feature of plants exposed to environmental stresses, transgenic cassava showing increased expression of the cytosolic MeCu/ZnSOD and the peroxisomal MeCAT1 should have improved resistance against other abiotic stresses. After cold treatment, the transgenic cassava maintained higher SOD and CAT activities and lower malendialdehyde content than those of wild type plants (WT). Detached leaves of transgenic cassava also showed slower transpirational water loss than those of WT. When plants were not watered for 30 d, transgenic lines exhibited a significant increase in water retention ability, accumulated 13% more proline and 12% less malendialdehyde than WT’s, and showed enhanced activity of SOD and CAT. These results imply that manipulation of the antioxidative mechanism allows the development of staple crops with improved tolerance to abiotic stresses. 相似文献
20.
Sylwia Pawlak Anna Firych Katarzyna Rymer Joanna Deckert 《Acta Physiologiae Plantarum》2009,31(4):741-747
The cadmium (Cd2+) and lead (Pb2+)-induced changes in Cu,Zn-SOD gene expression on the level of mRNA accumulation and enzyme activity were analyzed in roots of soybean (Glycine
max) seedlings. The Cd2+ caused the induction of copper–zinc superoxide dismutase (Cu,Zn-SOD) mRNA accumulation, at each analyzed metal concentration
(5–25 mg/l), whereas in Pb2+-treated roots this effect was observed only at the medium metal concentrations (50–100 mg/l of Pb2+). The analysis of Cu,Zn-SOD activity proved an increase in enzyme activity during Cd2+/Pb2+ stresses, however in Pb2+-treated plants the activity of enzyme was not correlated with respective mRNAs level. Presented data suggest that different
metals may act on various level of Cu,Zn-SOD expression in plants exposed to heavy metals stress. 相似文献