首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Established RAW264.7 cell lines for osteoclastic differentiation has been widely engaged in bone homeostasis research, however, the efficacy of RANKL independently stimulating has rarely been defined, because protocols were usually developed and modified by various laboratories. Otherwise, problematic issues are also lie in the cell's seeding density, RANKL stimulating time point, and distinguishing osteoclastogenesis ability of RANKL-treated RAW264.7 cells. Therefore, in the current study, we examined the efficacy of various concentrations of RANKL-treated RAW264.7 for its osteoclastic differentiation with or without pretreated other costimulators such as: LPS and/or M-CSF. The oteoclastogenesis ability of RANKL-treated RAW264.7 cells was demonstrated by bone resorption pit, F-actin, and osteoclastogenesis specific marker studies. Besides that, through tartrate-resistant acid phosphatase (TRAP) staining, we clarified to start the treatment with 30 ng/ml RANKL at 12 hr after seeded RAW264.7 with the density of 6.25 × 10 3 cells/cm 2 manifested an significantly increased number of multinucleated osteoclastic cells. Overall, our results establishing an optimal method for RANKL independently inducing RAW 264.7 cell osteoclastic differentiation, which could efficiently generate osteoclasts in vitro for significant advances in our understanding of bone biology.  相似文献   

2.
Murine long-term bone marrow cultures (LTBMCs) were used to generate hematopoietic cells free from marrow stromal cells. These progenitor cells were treated with GM-CSF (5 U/ml) with or without rat bone osteocalcin or rat serum albumin in either α-MEM with 2% heat-inactivated horse serum alone (α) or supplemented with 10% L-cell-conditioned medium (as a source of M-CSF) (L10). Few substrate-attached cells survived in basal α medium, but when treated with L10 medium or GM-CSF, they survived and proliferated. Osteocalcin did not significantly affect survival or proliferation. Subcultures of cells treated with GM-CSF had large numbers of multinucleated cells, more than half of which were tartrate-resistant acid phosphatase–positive (TRAP). Osteocalcin further promoted the development of TRAP-positive multinucleated cells; a dose of 0.7 μg/ml osteocalcin promoted osteoclastic differentiation by 60%. Using a novel microphotometric assay, we detected significantly more tartrate-resistant acid phosphatase activity in the osteocalcin plus GM-CSF group (75.6 ± 14.2) than in GM-CSF alone (53.3 ± 7.3). In the absence of M-CSF, GM-CSF stimulated tartrate-resistant acid phosphatase activity, but osteocalcin did not have an additional effect. These studies indicate that osteocalcin promotes osteoclastic differentiation of a stromal-free subpopulation of hematopoietic progenitors in the presence of GM-CSF and L-cell-conditioned medium. These results are consistent with the hypothesis that this bone-matrix constituent plays a role in bone resorption. © 1994 Wiley-Liss, Inc.  相似文献   

3.
4.
The biologic characteristics of mesenchymal stem cells (MSCs) isolated from two distinct tissues, bone marrow and adipose tissue were evaluated in these studies. MSCs derived from human and non-human primate (rhesus monkey) tissue sources were compared. The data indicate that MSCs isolated from rhesus bone marrow (rBMSCs) and human adipose tissue (hASCs) had more similar biologic properties than MSCs of rhesus adipose tissue (rASCs) and human bone marrow MSCs (hBMSCs). Analyses of in vitro growth kinetics revealed shorter doubling time for rBMSCs and hASCs. rBMSCs and hASCs underwent significantly more population doublings than the other MSCs. MSCs from all sources showed a marked decrease in telomerase activity over extended culture; however, they maintained their mean telomere length. All of the MSCs expressed embryonic stem cell markers, Oct-4, Rex-1, and Sox-2 for at least 10 passages. Early populations of MSCs types showed similar multilineage differentiation capability. However, only the rBMSCs and hASCs retain greater differentiation efficiency at higher passages. Overall in vitro characterization of MSCs from these two species and tissue sources revealed a high level of common biologic properties. However, the results demonstrate clear biologic distinctions, as well.  相似文献   

5.
This study examined the effects of a specific pulsed electromagnetic field (PEMF) stimulation on osteoclast formation in bone marrow cells from ovariectomized rats and to determine if the signal modulates the production of cytokines associated with osteoclast formation. Adult female Wistar rats were subjected to bilateral or sham ovariectomy, and primary bone marrow cells were harvested at 4 days (Subgroup I) and 7 days (Subgroup II) after surgery. Primary bone marrow cells were subsequently placed in chamber slides and set inside solenoids powered by a pulse generator (300 micros, 7.5 Hz) for 1 h per day for 9 days (OVX + PEMF group). Others (INT, SHAM, and OVX groups) were cultured under identical conditions, but no signal was applied. Recruitment and authentication of osteoclast-like cells were evaluated by determining multinuclear, tartrate-resistant acid phosphatase (TRAP) positive cells on day 10 of culture and by pit formation assay, respectively. The PEMF signal caused significant reductions in osteoclast formation in both Subgroups I (-55%) and II (-43%). Tumor necrosis factor-alpha (TNF-alpha), interleukin 1beta (IL-1beta), and interleukin 6 (IL-6) in OVX + PEMF group of Subgroup I were significantly reduced at 5, 7, and 9 days as compared to OVX group. The results found in this study suggest that osteoclastogenesis can be inhibited by PEMF stimulation, putatively due to a concomitant decrease in local factor production. Bioelectromagnetics 25:134-141, 2004.  相似文献   

6.
7.
Osteoporosis is a disease in which bone mineral density decreases due to abnormal activity of osteoclasts, and is commonly found in post-menopausal women who have decreased levels of female hormones. Sphingosylphosphorylcholine (SPC) is an important biological lipid that can be converted to sphingosine-1-phosphate (S1P) by autotaxin. S1P is known to be involved in osteoclast activation by stimulating osteoblasts, but bone regulation by SPC is not well understood. In this study, we found that SPC strongly inhibits RANKL-induced osteoclast differentiation. SPC-induced inhibitory effects on osteoclast differentiation were not affected by several antagonists of S1P receptors or pertussis toxin, suggesting cell surface receptor independency. However, SPC inhibited RANKL-induced calcineurin activation and subsequent NFATc1 activity, leading to decrease of the expression of Trap and Ctsk. Moreover, we found that bone loss in an experimental osteoporosis mouse model was recovered by SPC injection. SPC also blocked ovariectomy-induced body weight increase and Nfatc1 gene expression in mice. We also found that SPC inhibits RANKL-induced osteoclast differentiation in human macrophages. Since currently available treatments for osteoporosis, such as administration of female hormones or hormone receptor modulators, show serious side effects, SPC has potential as a new agent for osteoporosis treatment.  相似文献   

8.
The matrix remodeling associated 7 (MXRA7) gene had been ill-studied and its biology remained to be discovered. Inspired by our previous findings and public datasets concerning MXRA7, we hypothesized that the MXRA7 gene might be involved in bone marrow mesenchymal stem cells (BMSCs) functions related to bone formation, which was checked by utilizing in vivo or in vitro methodologies. Micro-computed tomography of MXRA7-deficient mice demonstrated retarded osteogenesis, which was reflected by shorter femurs, lower bone mass in both trabecular and cortical bones compared with wild-type (WT) mice. Histology confirmed the osteopenia-like feature including thinner growth plates in MXRA7-deficient femurs. Immunofluorescence revealed less osteoblasts in MXRA7-deficient femurs. Polymerase chain reaction or western blot analysis showed that when WT BMSCs were induced to differentiate toward osteoblasts or adipocytes in culture, MXRA7 messenger RNA or protein levels were significantly increased alongside osteoblasts induction, but decreased upon adipocytes induction. Cultured MXRA7-deficient BMSCs showed decreased osteogenesis upon osteogenic differentiation induction as reflected by decreased calcium deposition or lower expression of genes responsible for osteogenesis. When recombinant MXRA7 proteins were supplemented in a culture of MXRA7-deficient BMSCs, osteogenesis or gene expression was fully restored. Upon osteoblast induction, the level of active β-catenin or phospho-extracellular signal-regulated kinase in MXRA7-deficient BMSCs was decreased compared with that in WT BMSCs, and these impairments could be rescued by recombinant MXRA7 proteins. In adipogenesis induction settings, the potency of MXRA7-deficient BMSCs to differentiate into adipocytes was increased over the WT ones. In conclusion, this study demonstrated that MXRA7 influences bone formation via regulating the balance between osteogenesis and adipogenesis in BMSCs.  相似文献   

9.
Adipose cells have been recognized as an integral component of the bone marrow hematopoietic microenvironment in vivo and as an essential cell type required for in vitro maintenance of stem cells. Four stromal cell lines obtained from the adherent cell population of murine bone marrow cultures have been enriched and purified by multiple trypsinizations. We noted that these cell lines exhibited an accumulation of vacuoles of lipid, the extent of which varied be-tween cell lines in response to a change from medium containing 10% fetal calf serum to medium containing 20% horse serum. The lipid was lost when the cell lines were transferred back into the medium supplemented with fetal calf serum. In light of the reported lipogenic and antilipolytic effects of insulin on fibroblasts and adipocytes, we investigated the ability of insulin to induce adipocyte transformation of these bone marrow stromal cell populations. Three cell lines were exposed to bovine insulin at concentrations ranging from 10?9 to 10?6 M. All three cell lines responded to the insulin by accumulating lipid, but the extent of accumulation and the insulin concentration at which maximum lipid content was attained were population specific. One cell line (MC1) responded fully at physiological levels of insulin (10?9 M), whereas the other two showed lipid accumulation only at pharmacological concentrations. The initial growth of MC1 was inhibited in the presence of 10?9 M insulin which is compatible with the observed differentiation to adipocytes. The growth of MC3 was unaltered in the presence of physiological concentrations of insulin, whereas that of MC4 was accelerated. Grafts of organ cultures of the cell lines under the kidney capsule of syngeneic mice developed specific characteristics rep-resentative of the different cell lines. In particular, the majority of the grafts of MC1 consisted primarily of fat cells which were not observed in the grafts of MC3 and MC4. These data strongly suggest that these cell lines comprise cells with different potentialities and that the MC1 line represents a preadipocyte stromal cell of bone marrow.  相似文献   

10.
Mechanical unloading causes detrimental effects on the skeleton, but the underlying mechanisms are still unclear. We investigated the effect of microgravity on osteoblast ability to regulate osteoclastogenesis. Mouse osteoblast primary cultures were grown for 24 h at unit gravity or under simulated microgravity, using the NASA-developed Rotating Wall Vessel bioreactor. Conditioned media (CM) from osteoblasts subjected to microgravity increased osteoclastogenesis and bone resorption in mouse bone marrow cultures. In these osteoblasts, the RANKL/OPG ratio was higher relative to 1g. Consistently, treatment with high concentrations of OPG-inhibited osteoclastogenesis and bone resorption in the presence of CM arising from osteoblasts cultured under microgravity. Microgravity failed to affect osteoblast differentiation and function in the time frame of the experiment, as we found no effect on alkaline phosphatase mRNA and activity, nor on Runx2, osteocalcin, osteopontin, and collagen1A2 mRNA expression. In contrast, microgravity induced a time dependent increase of ERK-1/2 phosphorylation, while phospho-p38 and phospho-JNK remained unchanged. Apoptosis, revealed by bis-benzimide staining, was similar among the various gravity conditions, while it was increased under microgravity after treatment with the MEK-1/2 inhibitor, PD98059, suggesting a protection role by ERK-1/2 against cell death. In conclusion, microgravity is capable to indirectly stimulate osteoclast formation and activity by regulating osteoblast secretion of crucial regulatory factors such as RANKL and OPG. We hypothesize that this mechanism could contribute to bone loss in individuals subjected to weightlessness and other unloading conditions.  相似文献   

11.
Cellular populations with phenotypes similar to multipotent mesenchymal stromal cells were isolated from two different sources, including human bone marrow (BM) and subcutaneous adipose tissue (SAT). Comparative analysis of the efficiency of differentiation in the direction of osteogenesis has revealed morphological changes confirmed by staining with Alizarin red and von Kossa in bone marrow cells at the 14th day and in adipose tissue cells at the 28th day of cultivation in the medium with inductors. Analysis of expression of the osteopontin, osteocalcin, and bone sialoprotein genes in RT-PCR reactions has detected essential differences in the potential of these cells to differentiate into bone tissue cells. Cells isolated from BM of both the control and experimental groups were positive for octeopontin (OP) on the 14th day. Unlike these cells, in cells isolated from SAT in medium without an inductor, no product of OP gene expression was identified. In the cells subjected to differentiation, OP appeared at day 14. In the BM cells, octeocalcin (OC) was found at the 14th day, while the bone sialoprotein (BS) was found at the 21st day of cultivation in induction medium. In cells isolated from SAT, OC, and BS were not detected, even at the 28th day after the beginning of induction.  相似文献   

12.
The purinergic receptor P2Y, G protein coupled, 14 (P2Y14) receptor for UDP-glucose and other UDP-sugars has been implicated in the regulation of the stem cell compartment as well as neuroimmune function. However, the role of P2Y14 in osteoclast formation is completely unknown. We found that RANKL selectively induced P2Y14 among seven mammalian P2Y receptors when analysed at both the mRNA and protein level, but inhibitors of the mitogenactivated protein (MAP) kinase pathway suppressed induction of P2Y14 proteins. Extracellular addition of UDP-sugars such as UDP-glucose, UDP-galactose, UDP-glucuronic acid, and UDP-N-acetyl glucosamine promoted RANKL-induced osteoclastogenesis, while P2Y14 downregulation by RNA interference inhibited osteoclast formation. Taken together, these results suggest that P2Y14 may act as the receptor for UDP-sugars in osteoclast precusors and may regulate RANKL-induced osteoclastogenesis.  相似文献   

13.
Human mesenchymal stem cells (MSCs) have the potential for improving cardiac function following myocardial infarction (MI). This study was performed to explore the cardioprotection of bone marrow mesenchymal stem cells (BMMSCs), adipose tissue-derived mesenchymal stem cells (ADMSCs), and umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) for myocardium in rats after MI. MI models were established in rats, which were injected with PBS, BMMSCs, ADMSCs, and UCMSCs. Cardiac function was detected by ultrasonic cardiogram. TTC staining, TUNEL staining, and immunohistochemistry were adopted to determine infarction area, cardiomyocyte apoptosis, and microvascular density (MVD), respectively. Exosomes were derived from BMMSCs, ADMSCs, and UCBMSCs, and identified by morphological observation and CD63 expression detection. Neonatal rat cardiomyocytes (NRCMs) were isolated and cultured with hypoxia, subjected to PBS and exosomes derived from BMMSCs, ADMSCs, and UCMSCs. Flow cytometry and enzyme-linked immunosorbent assay were used to determine NRCM apoptosis and the levels of angiogenesis-related markers (VEGF, bFGF, and HGF). According to ultrasonic cardiogram, BMMSCs, ADMSCs, and UCMSCs facilitated the cardiac function of MI rats. Furthermore, three kinds of MSCs inhibited cardiomyocyte apoptosis, infarction area, and increased MVD. NRCMs treated with exosomes derived from BMMSCs, ADMSCs, and UCMSCs reduced the NRCM apoptosis and promoted angiogenesis by increasing levels of VEGF, bFGF, and HGF. Notably, exosomes from ADMSCs had the most significant effect. On the basis of the results obtained from this study, exosomes derived from BMMSCs, ADMSCs, and UCBMSCs inhibited the cardiomyocyte apoptosis and promoted angiogenesis, thereby improving cardiac function and protecting myocardium. Notably, exosomes from ADMSCs stimulated most of the cardioprotection factors.  相似文献   

14.
Embryonic stem cells (ES cells), bone marrow-derived mesenchymal stem cells, umbilical cord blood-derived mesenchymal stem cells, and hepatic stem cells in liver have been known as a useful source that can induce to differentiate into hepatocytes. In this study, we examined whether human adipose tissue-derived stromal cells (hADSC) can differentiate into hepatic lineage in vitro. hADSC, that were induced to differentiate into hepatocyte-like cells by the treatment of HGF and OSM, had morphology similar to hepatocytes. Addition of DMSO enhanced differentiation into hepatocytes. RT-PCR and immunocytochemical analysis showed that hADSC express albumin and alpha-fetoprotein during differentiation. Differentiated hADSC showed LDL uptake and production of urea. Additionally, transplanted hADSC to CCl4-injured SCID mouse model were able to be differentiated into hepatocytes and they expressed albumin in vivo. Mesenchymal stem cells isolated from human adipose tissue are immunocompatible and are easily isolated. Therefore, hADSC may become an alternative source to hepatocyte regeneration or liver cell transplantation.  相似文献   

15.
Osteoporosis is a devastating disease that features reduced bone quantity and microstructure, which causes fragility fracture and increases mortality, especially in the aged population. Due to the long-term side-effects of current drugs for osteoporosis, it is of importance to find other safe and effective medications. Ellagic acid (EA) is a phenolic compound found in nut galls, plant extracts, and fruits, and exhibits antioxidant and antineoplastic effects. Here, we showed that EA attenuated the formation and function of osteoclast dose-dependently. The underlying mechanism was further discovered by western blot, immunofluorescence assay, and luciferase assay, which elucidated that EA suppressed osteoclastogenesis and bone resorption mainly through attenuating receptor activator of nuclear factor-κB (NF-κB) ligand-induced NF-κB activation and extracellular signal-regulated kinase signaling pathways, accompanied by decreased protein expression of nuclear factor of activated T-cells calcineurin-dependent 1 and c-Fos. Moreover, EA inhibits osteoclast marker genes expression including Dc-stamp, Ctsk, Atp6v0d2, and Acp5. Intriguingly, we also found that EA treatment could significantly protect ovariectomy-induced bone loss in vivo. Conclusively, this study suggested that EA might have the therapeutic potentiality for preventing or treating osteoporosis.  相似文献   

16.
Osteoporosis is a form of osteolytic disease caused by an imbalance in bone homeostasis, with reductions in osteoblast bone formation, and augmented osteoclast formation and resorption resulting in reduced bone mass. Cajaninstilbene acid (CSA) is a natural compound derived from pigeon pea leaves. CSA possesses beneficial properties as an anti-inflammatory, antibacterial, antihepatitis, and anticancer agent; however, its potential to modulate bone homeostasis and osteoporosis has not been studied. We observed that CSA has the ability to suppress RANKL-mediated osteoclastogenesis, osteoclast marker gene expression, and bone resorption in a dose-dependent manner. Mechanistically, it was revealed that CSA attenuates RANKL-activated NF-κB and nuclear factor of activated T-cell pathways and inhibited phosphorylation of key signaling mediators c-Fos, V-ATPase-d2, and ERK. Moreover, in osteoclasts, CSA blocked RANKL-induced ROS activity as well as calcium oscillations. We further evaluated the therapeutic effect of CSA in a preclinical mouse model and showed that in vivo treatment of ovariectomized C57BL/6 mice with CSA protects the mice from osteoporotic bone loss. Thus, this study demonstrates that osteolytic bone diseases can potentially be treated by CSA.  相似文献   

17.
We compared the morphology and differentiation capacity of human stromal cells derived from bone marrow (BMSC), adipose tissue (ATSC), hair follicle dermal papilla (DPC) and dermal fibroblasts (DFb). All cells have fibroblast-like morphology. ATSC and DPC cells expressed stem cell the surface markers CD105, CD49d, and STRO-1, which were revealed immunocytochemically. CD49d was not found on BMSC. The low expression of CD49d and STRO-1 was registered in the DFb population. ATSC, BMSC, and DPC have similar capacities for adipo- and osteogenic differentiation. These cells, cultured in appropriate induction media, alter the phenotype and synthesize specific proteins. However, the expression of differentiation in the DPC population is lower than in ATSC and BMSC cultures. We propose that these cell populations have primitive progenitor cells with properties of mesenchymal stem cells.  相似文献   

18.
19.
This is the first successful report of the rapid regeneration of three-dimensional large and homogeneous cartilaginous tissue from rabbit bone marrow cells without a scaffold using a rotating wall vessel (RWV) bioreactor, which simulates a microgravity environment for cells. Bone marrow cells cultured for 3 weeks in DMEM were resuspended and cultured for 4 weeks in the chondrogenic medium within the vessel. Large cylindrical cartilaginous tissue with dimensions of (1.25 +/- 0.06) x (0.60 +/- 0.08) cm (height x diameter) formed. Their cartilage marker expression was confirmed by mRNA expressions of aggrecan, collagen type I and II, and glycosaminoglycan (GAG)/DNA ratio. Their cartilaginous properties were demonstrated by toluidine blue, safranin-O staining, and polarization.  相似文献   

20.
骨是一种动态更新的组织,它不断进行骨吸收(bone resorption)与骨形成(bone formation)的平衡,这个过程称之为骨重建(bone remodeling).核因子κB受体活化因子配体(receptor activator of nuclear factor κB ligand,RANKL)是骨吸收和骨形成耦联的关键,具有诱导破骨细胞(osteoclast, OC)生成、活化,抑制破骨细胞凋亡的作用.RANKL最初发现于活化的T细胞,但骨重建过程中RANKL主要来源于骨细胞、成骨细胞和骨髓基质细胞.RANKL/核因子κB受体活化因子(receptor activator of nuclear factor κB,RANK)/骨保护素(osteoprotegerin, OPG)信号通路在成骨细胞调控破骨细胞生成的过程中起着重要的调节作用,是维持骨重建平衡的关键.本文就RANKL及其在骨中的分子作用机制作一综述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号