首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Sclerotinia rot caused by Sclerotinia sclerotiorum is one of the most serious diseases of oilseed rape. To understand the resistance mechanisms in the Brassica napus to S. sclerotiorum, comparative disease progression, histological and proteomic studies were conducted of two B. napus genotypes (resistant cv. Charlton, susceptible cv. RQ001-02M2). At 72 and 96 h post inoculation (hpi), lesion size on cotyledons was significantly (P≤0.001) smaller in the resistant Charlton. Anatomical investigations revealed impeded fungal growth (at 24 hpi and onwards) and hyphal disintegration only on resistant Charlton. Temporal changes (12, 24, 48 and 72 hpi) in protein profile showed certain enzymes up-regulated only in resistant Charlton, such as those related to primary metabolic pathways, antioxidant defence, ethylene biosynthesis, pathogenesis related proteins, protein synthesis and protein folding, play a role in mediating defence responses against S. sclerotiorum. Similarly a eukaryotic translation initiation factor 5A enzyme with increased abundance in susceptible RQ001-02M2 and decreased levels in resistant Charlton has a role in increased susceptibility to this pathogen. This is the first time that the expression of these enzymes has been shown to be associated with mediating the defence response against S. sclerotinia in cotyledon tissue of a resistant cultivar of B. napus at a proteomics level. This study not only provides important new insights into the resistance mechanisms within B. napus against S. sclerotiorum, but opens the way for novel engineering of new B. napus varieties that over-express these key enzymes as a strategy to enhance resistance and better manage this devastating pathogen.  相似文献   

3.
The tropical spice crop ginger (Zingiber officinale Roscoe) is highly susceptible to soft rot disease caused by the necrotrophic oomycete Pythium aphanidermatum (Edson) Fitzp. However, Zingiber zerumbet (L.) Smith, a wild relative of ginger, is resistant to P. aphanidermatum and has been proposed as a potential donor for soft rot resistance to Z. officinale. We identified a member of the pathogenesis-related protein group 5 (PR-5) gene family in Z. zerumbet that is expressed constitutively but upregulated in response to infection by P. aphanidermatum. Expression of this gene was upregulated as early as 1.5 h post inoculation (hpi) with the pathogen, peaked at 6 hpi, declined by 9 hpi, and again peaked at 15 hpi before declining at 48 hpi. A cDNA of this PR-5 gene, designated as ZzPR5, encodes a 226-amino-acid predicted protein with a calculated pI of 5.05. The N terminus of this protein contains a 22-amino-acid signal peptide, suggesting that the protein may show apoplastic accumulation like other acidic PR-5 proteins. Phylogenetic analysis revealed high similarity between ZzPR5 and PR-5 proteins reported from other plant species, especially from other Zingiberales. Molecular modeling of ZzPR5 protein revealed an acidic surface cleft, a feature characteristic of glycoside hydrolases and antifungal PR-5 proteins. In molecular docking studies, a linear polymeric molecule of (1,3)-β-d-glucan, a major constituent of the oomycete cell wall, fitted favorably into the surface cleft of ZzPR5 and interacted with acidic amino acids known to be involved in glucan hydrolysis, suggesting a potential antioomycete activity for ZzPR5 protein. Elucidation of the molecular mechanism of ZzPR5 may provide important insight toward engineering soft rot resistance into the obligatory asexual ginger.  相似文献   

4.
5.
6.
Iwai T  Miyasaka A  Seo S  Ohashi Y 《Plant physiology》2006,142(3):1202-1215
The role of ethylene (ET) in resistance to infection with blast fungus (Magnaporthe grisea) in rice (Oryza sativa) is poorly understood. To study it, we quantified ET levels after inoculation, using young rice plants at the four-leaf stage of rice cv Nipponbare (wild type) and its isogenic plant (IL7), which contains the Pi-i resistance gene to blast fungus race 003. Small necrotic lesions by hypersensitive reaction (HR) were formed at 42 to 72 h postinoculation (hpi) in resistant IL7 leaves, and whitish expanding lesions at 96 hpi in susceptible wild-type leaves. Notable was the enhanced ET emission at 48 hpi accompanied by increased 1-aminocyclopropane-1-carboxylic acid (ACC) levels and highly elevated ACC oxidase (ACO) activity in IL7 leaves, whereas only an enhanced ACC increase at 96 hpi in wild-type leaves. Among six ACC synthase (ACS) and seven ACO genes found in the rice genome, OsACS2 was transiently expressed at 48 hpi in IL7 and at 96 hpi in wild type, and OsACO7 was expressed at 48 hpi in IL7. Treatment with an inhibitor for ACS, aminooxyacetic acid, suppressed enhanced ET emission at 48 hpi in IL7, resulting in expanding lesions instead of HR lesions. Exogenously supplied ACC compromised the aminooxyacetic acid-induced breakdown of resistance in IL7, and treatment with 1-methylcyclopropene and silver thiosulfate, inhibitors of ET action, did not suppress resistance. These findings suggest the importance of ET biosynthesis and, consequently, the coproduct, cyanide, for HR-accompanied resistance to blast fungus in young rice plants and the contribution of induced OsACS2 and OsACO7 gene expression to it.  相似文献   

7.
8.
蓖麻根腐病是茄腐镰孢菌(Fusarium solani)引起的根部病害,严重影响蓖麻产量。抗源缺乏制约了抗病品种的选育。为寻找抗病种质、建立抗性分子标记,该研究对252份蓖麻材料的抗性进行了表型和分子标记鉴定。结果表明:(1)浓度为1×106个·mL-1的孢子悬浮液灌根是一种有效的接种方法; 以接种后枯萎天数为基础的5级评价法,可作为鉴定标准。(2)鉴定出130份抗病材料,其中高抗为105份。(3)野生材料中抗病材料比率(66%)远高于栽培材料(35%),建议将野生材料,尤其是中国华南野生材料的研究利用作为今后抗病育种的重要方向。(4)初步建立了8个与抗性关联的SSR标记。该研究结果提供了有效的根腐病抗性鉴定方法和评价标准,筛选出了一批育种迫切需要的抗病基因资源,初步建立了可用于辅助选择的SSR标记,为蓖麻抗根腐病育种奠定了重要基础。  相似文献   

9.
10.
Gibberella ear rot, caused by the fungus Fusarium graminearum Schwabe, is a serious disease of corn (Zea mays) grown in northern climates. Infected corn is lower yielding and contains toxins that are dangerous to livestock and humans. Resistance to ear rot in corn is quantitative, specific to the mode of fungal entry (silk channels or kernel wounds), and highly influenced by the environment. Evaluations of ear rot resistance are complex and subjective; and they need to be repeated over several years. All of these factors have hampered attempts to develop F. graminearum resistant corn varieties. The aim of this study was to identify molecular markers linked to the genes for resistance to Gibberella ear rot. A recombinant inbred (RI) population, produced from a cross between a Gibberella ear rot resistant line (CO387) and a susceptible line (CG62), was field-inoculated and scored for Gibberella ear rot symptoms in the F4, F6, and F7 generations. The distributions of disease scores were continuous, indicating that resistance is probably conditioned by multiple loci. A molecular linkage map, based on segregation in the F5 RI population, contained 162 markers distributed over 10 linkage groups and had a total length of 2237 cM with an average distance between markers of 13.8 cM. Composite interval mapping identified 11 quantitative trait loci (QTLs) for Gibberella ear rot resistance following silk inoculation and 18 QTLs following kernel inoculation in 4 environments that accounted for 6.7%-35% of the total phenotypic variation. Only 2 QTLs (on linkage group 7) were detected in more than 1 test for silk resistance, and only 1 QTL (on linkage group 5) was detected in more than 1 test for kernel resistance, confirming the strong influence of the environment on these traits. The majority of the favorable alleles were derived from the resistant parent (CO387). The germplasm and markers for QTLs with significant phenotypic effects may be useful for marker-assisted selection to incorporate Gibberella ear rot resistance into commercial corn cultivars.  相似文献   

11.
Owing to its sugar-rich stalks and high biomass, sweet sorghum [Sorghum bicolor (L.) Moench] has potential as a source of biofuel feedstock for juice and lignocellulosic-based bioethanol production. However, stalk rot-mediated lodging is an important concern. The potential impacts of disease on sweet sorghum biofuel traits are currently unknown. The objectives of this study were to test the effects of Fusarium stalk rot and charcoal rot on sweet sorghum biofuel traits and to assess the combining ability of the parental genotypes for resistance to the two diseases. Nineteen genotypes including 7 parents and 12 hybrids were tested in the field in 2014 (Ashland, Kansas) and 2015 (Manhattan, Kansas) against Fusarium thapsinum (FT) and Macrophomina phaseolina (MP). Fourteen days after flowering, plants were inoculated with FT and MP. Plants were harvested at 35 days after inoculation and measured for disease severity using stalk lesion length. Grain weight, juice weight, Brix (°Bx), and dried bagasse weight were also determined. Total soluble sugars per plant (TSSP) were determined using juice weight and °Bx. On average, FT and MP resulted in reduced grain weight and dried bagasse weight by 17.4 and 17.6 %, respectively, across genotypes. Depending on the genotype, pathogens reduced juice weight, °Bx, and TSSP in the ranges of 11.3 to 25.9, 0.2 to 16.7, and 21.2 to 33.3 %, respectively. Parental line general and specific combining abilities were found to be statistically insignificant. This study revealed the adverse effects of stalk rot diseases on harvestable biofuel traits and the need to breed sweet sorghum for stalk rot resistance.  相似文献   

12.
Fusarium culmorum is one of the most important causal agents of root rot of wheat. In this study, 10 F. culmorum isolates were collected from farms located in five agro-ecological regions of Morocco. These were used to challenge 20 durum wheat genotypes via artificial inoculation of plant roots under controlled conditions. The isolate virulence was determined by three traits (roots browning index, stem browning index, and severity of root rot). An alpha-lattice design with three replicates was used, and the resulting ANOVA revealed a significant (P < 0.01) effect of isolate (I), genotype (G), and G × I interaction. A total of four response types were observed (R, MR, MS, and S) revealing that different genes in both the pathogen and the host were activated in 53% of interactions. Most genotypes were susceptible to eight or more isolates, while the Moroccan cultivar Marouan was reported resistant to three isolates and moderately resistant to three others. Similarly, the Australian breeding line SSD1479-117 was reported resistant to two isolates and moderately resistant to four others. The ICARDA elites Icaverve, Berghisyr, Berghisyr2, Amina, and Icaverve2 were identified as moderately resistant. Principal component analysis based on the genotypes responses defined two major clusters and two sub-clusters for the 10 F. culmorum isolates. Isolate Fc9 collected in Khemis Zemamra was the most virulent while isolate Fc3 collected in Haj-Kaddour was the least virulent. This work provides initial results for the discovery of differential reactions between the durum lines and isolates and the identification of novel sources of resistance.  相似文献   

13.
为了评价抗茎腐病基因分子标记在辅助育种中的实用性,本研究对159份玉米自交系进行了茎腐病田间抗性鉴定,并检测了与4个茎腐病抗性QTL(qRfg1、qRfg2、Rpi QI319-1和Rpi QI319-2)紧密连锁的11个分子标记在上述材料中的扩增情况。结果表明:供试玉米自交系的平均发病率为26.30%,发病率低于30.0%的材料占67.92%,抗病资源丰富。来源于国外、东北、西南和黄淮海地区的材料平均发病率分别为27.67%、17.92%、15.12%和36.80%,与东北和西南地区种质相比,黄淮海地区抗性种质相对缺乏。通过比较分子标记扩增带型与田间茎腐病表型,发现与同一QTL连锁的不同分子标记的检测结果存在较大差异,其中分子标记STS01(qRfg1)、STSZ479(qRfg2)、bnlg1866(Rpi QI319-1)和bnlg1716(Rpi QI319-2)的阳性检测结果与田间表型符合度较高,分别为76.79%、78.95%、91.67%、73.33%,具有上述特异扩增多态性的材料平均发病率分别为22.06%、19.01%、10.65%、19.63%,可作为抗茎腐病分子检测的有效标记。本研究为开展玉米抗茎腐病分子育种提供了重要参考。  相似文献   

14.
15.
Heading cabbage is a nutritionally rich and economically important cruciferous vegetable. Black rot disease, caused by the bacterium Xanthomonas campestris pv. campestris, reduces both the yield and quality of the cabbage head. Nucleotide binding site (NBS)-encoding resistance (R) genes play a vital role in the plant immune response to various pathogens. In this study, we analyzed the expression and DNA sequence variation of 31 NBS-encoding genes in cabbage (Brassica oleracea var. capitata). These genes encoded TIR, NBS, LRR and RPW8 protein domains, all of which are known to be involved in disease resistance. RNA-seq revealed that these 31 genes were differentially expressed in leaf, root, silique, and stem tissues. Furthermore, qPCR analyses revealed that several of these genes were more highly expressed in resistant compared to susceptible cabbage lines, including Bol003711, Bol010135, Bol010559, Bol022784, Bol029866, Bol042121, Bol031422, Bol040045 and Bol042095. Further analysis of these genes promises to yield both practical benefits, such as molecular markers for marker-assisted breeding, and fundamental insights to the mechanisms of resistance to black rot in cabbage.  相似文献   

16.
Phytophthora root rot (PRR), caused by Phytophthora sojae Kaufmann & Gerdemann, is one of the most destructive diseases of soybean [Glycine max (L.) Merr.]. Deployment of resistance genes is the most economical and effective way of controlling the disease. The soybean cultivar ‘Yudou 29’ is resistant to many P. sojae isolates in China. The genetic basis of the resistance in ‘Yudou 29’ was elucidated through an inheritance study and molecular mapping. In response to 25 P. sojae isolates, ‘Yudou 29’ displayed a new resistance reaction pattern distinct from those of differentials carrying known Rps genes. A population of 214 F2:3 families from a cross between ‘Jikedou 2’ (PRR susceptible) and ‘Yudou 29’ was used for Rps gene mapping. The segregation fit a ratio of 1:2:1 for resistance:segregation:susceptibility within this population, indicating that resistance in ‘Yudou 29’ is controlled by a single dominant gene. This gene was temporarily named RpsYD29 and mapped on soybean chromosome 03 (molecular linkage group N; MLG N) flanked by SSR markers SattWM82-50 and Satt1k4b at a genetic distance of 0.5 and 0.2 cM, respectively. Two nucleotide binding site-leucine rich repeat (NBS-LRR) type genes were detected in the 204.8 kb region between SattWM82-50 and Satt1k4b. These two genes showed high similarity to Rps1k in amino acid sequence and could be candidate genes for PRR resistance. Based on the phenotype reactions and the physical position on soybean chromosome 03, RpsYD29 might be a novel allele at, or a novel gene tightly linked to, the Rps1 locus.  相似文献   

17.
18.
The availability of a complete peach genome assembly and three different peach genome sequences created by our group provide new opportunities for application of genomic data and can improve the power of the classical Quantitative Trait Loci (QTL) approaches to identify candidate genes for peach disease resistance. Brown rot caused by Monilinia spp., is the most important fungal disease of stone fruits worldwide. Improved levels of peach fruit rot resistance have been identified in some cultivars and advanced selections developed in the UC Davis and USDA breeding programs. Whole genome sequencing of the Pop-DF parents lead to discovery of high-quality SNP markers for QTL genome scanning in this experimental population. Pop-DF created by crossing a brown rot moderately resistant cultivar ‘Dr. Davis’ and a brown rot resistant introgression line, ‘F8,1–42’, derived from an initial almond × peach interspecific hybrid, was evaluated for brown rot resistance in fruit of harvest maturity over three seasons. Using the SNP linkage map of Pop-DF and phenotypic data collected with inoculated fruit, a genome scan for QTL identified several SNP markers associated with brown rot resistance. Two of these QTLs were placed on linkage group 1, covering a large (physical) region on chromosome 1. The genome scan for QTL and SNP effects predicted several candidate genes associated with disease resistance responses in other host-pathogen systems. Two potential candidate genes, ppa011763m and ppa026453m, may be the genes primarily responsible for M. fructicola recognition in peach, activating both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI) responses. Our results provide a foundation for further genetic dissection, marker assisted breeding for brown rot resistance, and development of peach cultivars resistant to brown rot.  相似文献   

19.
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat worldwide. To isolate defense-related genes against the pathogen, a suppression subtractive hybridization library was constructed for an incompatible interaction. From the library, 652 sequences were determined to be unigenes, of which 31 were determined as genes involved in signal transduction and 77 were predicted to encode defense-related proteins. Expression patterns of 12 selected signal transduction and defense-related genes were determined using quantitative real-time polymerase chain reaction. Signal transduction genes started increasing their expression at 12 h post inoculation (hpi), and expressions of the most of the transport and resistance-related genes were induced at 18 hpi. The gene expression results indicate specific molecular and cellular activities during the incompatible interaction between wheat and the stripe rust pathogen. In general, the expression increase of wheat signal transduction genes soon after inoculation with the pathogen inducing various defense-related genes, including reactive oxygen species, ATP-binding cassette (ABC) transporters, pathogenesis-related proteins, and genes involved in the phenylpropanoid pathway. The activities of these defense genes work in a sequential and concerted manner to result in a hypersensitive response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号