首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Senile systemic amyloidosis (SSA) is caused by amyloid deposits of wild-type transthyretin in various organs. Amyloid deposits from SSA contain large amounts of the C-terminal fragments starting near amino acid residue 50 as well as full-length transthyretin. Although a number of previous studies suggest the importance of the C-terminal fragments in the pathogenesis of SSA, little is known about the structure and aggregation properties of the C-terminal fragments of transthyretin. To understand the role of C-terminal fragments in SSA, we examined the effects of the truncation of the N-terminal portions on the structure and aggregation properties of wild-type transthyretin. The deletion mutant lacking 50 N-terminal residues was largely unfolded in terms of secondary and tertiary structure, leading to self-assembly into spherical aggregations under nearly physiological conditions. By contrast, the deletion mutant lacking 37 N-terminal residues did not have a strong tendency to aggregate, although it also adopted a largely unfolded conformation. These results suggest that global unfolding of transthyretin by proteolysis near amino acid residue 50 is an important step of self-assembly into aggregations in SSA.  相似文献   

2.
Transthyretin single-amino-acid variants are responsible for familial amyloidotic polyneuropathy, in which transthyretin variants accumulate extracellularly in the form of fibrillar aggregates. We studied the structural stabilities of four transthyretin variants (L58H, L58R, T59K, and E61K), in which a positively charged amino acid is introduced in a loop region between the D- and E-strands. In addition to being located in the DE-loop, L58 and T59 are involved in the core of the transthyretin monomer. The L58H, L58R, and T59K substitutions destabilized transthyretin more than the E61K mutation did, indicating that transthyretin is substantially destabilized by the substitution of residues located in both the DE-loop and the monomer core. By utilizing hydrogen-deuterium exchange and nuclear magnetic resonance, we demonstrated that residues in the G-strand and the loop between the A- and B-strands were destabilized by these pathogenic mutations in the DE loop. At the quaternary structural level, the DE-loop mutations destabilized the dimer-dimer contact area, which may lead to transient dissociation into a dimer. Our results suggest that the destabilization of the dimer-dimer interface and the monomer core is important for the amyloidogenesis of transthyretin.  相似文献   

3.
Protein aggregation into insoluble fibrillar structures known as amyloid characterizes several neurodegenerative diseases, including Alzheimer's, Huntington's and Creutzfeldt‐Jakob. Transthyretin (TTR), a homotetrameric plasma protein, is known to be the causative agent of amyloid pathologies such as FAP (familial amyloid polyneuropathy), FAC (familial amyloid cardiomiopathy) and SSA (senile systemic amyloidosis). It is generally accepted that TTR tetramer dissociation and monomer partial unfolding precedes amyloid fibril formation. To explore the TTR unfolding landscape and to identify potential intermediate conformations with high tendency for amyloid formation, we have performed molecular dynamics unfolding simulations of WT‐TTR and L55P‐TTR, a highly amyloidogenic TTR variant. Our simulations in explicit water allow the identification of events that clearly discriminate the unfolding behavior of WT and L55P‐TTR. Analysis of the simulation trajectories show that (i) the L55P monomers unfold earlier and to a larger extent than the WT; (ii) the single α‐helix in the TTR monomer completely unfolds in most of the L55P simulations while remain folded in WT simulations; (iii) L55P forms, early in the simulations, aggregation‐prone conformations characterized by full displacement of strands C and D from the main β‐sandwich core of the monomer; (iv) L55P shows, late in the simulations, severe loss of the H‐bond network and consequent destabilization of the CBEF β‐sheet of the β‐sandwich; (v) WT forms aggregation‐compatible conformations only late in the simulations and upon extensive unfolding of the monomer. These results clearly show that, in comparison with WT, L55P‐TTR does present a much higher probability of forming transient conformations compatible with aggregation and amyloid formation.  相似文献   

4.
Marchut AJ  Hall CK 《Proteins》2007,66(1):96-109
Aggregation in the brain of polyglutamine-containing proteins is either a cause or an associated symptom of nine hereditary neurodegenerative disorders including Huntington's disease. The molecular level mechanisms by which these proteins aggregate are still unclear. In an effort to shed light on this important phenomenon, we are investigating the aggregation of model polyglutamine peptides using molecular-level computer simulation with a simplified model of polyglutamine that we have developed. This model accounts for the most important types of intra- and inter-molecular interactions-hydrogen bonding and hydrophobic interactions-while allowing the folding process to be simulated in a reasonable time frame. The model is used to examine the folding of isolated polyglutamine peptides 16, 32, and 48 residues long and the folding and aggregation of systems of 24 model polyglutamine peptides 16, 24, 32, 36, 40, and 48 residues long. Although the isolated polyglutamine peptides did form some alpha and beta backbone-backbone hydrogen bonds they did not have as many of these bonds as they would have if they had folded into a complete alpha helix or beta sheet. In one of the simulations on the isolated polyglutamine peptide 48 residues long, we observed a structure that resembles a beta helix. In the multi-chain simulations we observed amorphous aggregates at low temperatures, ordered aggregates with significant beta sheet character at intermediate temperatures, and random coils at high temperatures. We have found that the temperature at which the model peptides undergo the transition from amorphous aggregates to ordered aggregates and the temperature at which the model peptides undergo the transition from ordered aggregates to random coils increase with increasing chain length. Our finding that the stability of the ordered aggregates increases as the peptide chain length increases may help to explain the experimentally observed relation between polyglutamine tract length and aggregation in vitro and disease progression in vivo. We have also observed in our simulations that the optimal temperature for the formation of beta sheets increases with chain length up to 36 glutamine residues but not beyond. Equivalently, at fixed temperature we find a transition from a region dominated by random coils at chain lengths less than 36 to a region dominated by relatively ordered beta sheet structures at chain lengths greater than 36. Our finding of this critical chain length of 36 glutamine residues is interesting because a critical chain length of 37 glutamine residues has been observed experimentally.  相似文献   

5.
The amyloidogenic homotetrameric protein transthyretin (TTR) must undergo rate-limiting dissociation to partially denatured monomers in order to aggregate. TTR contains two distinct quaternary interfaces, one of which defines the binding sites for thyroxine and small-molecule amyloidogenesis inhibitors. Kinetic stabilization of the tetramer can be accomplished either by the binding of amyloidogenesis inhibitors selectively to the native state over the dissociative transition state or by the introduction of trans-suppressor subunits (T119M) into heterotetramers to destabilize the dissociative transition state. In each case, increasing the dissociation activation barrier prevents tetramer dissociation. Herein, we demonstrate that tethering two subunits whose quaternary interface defines the thyroxine binding site also dramatically increases the barrier for tetramer dissociation, apparently by destabilization of the dissociative transition state. The tethered construct (TTR-L-TTR)2 is structurally and functionally equivalent to wild-type TTR. Urea is unable to denature (TTR-L-TTR)2, yet it is able to maintain the denatured state once denaturation is achieved by GdnHCl treatment, suggesting that (TTR-L-TTR)2 is kinetically rather than thermodynamically stabilized, consistent with the identical wild-type TTR and (TTR-L-TTR)2 GdnHCl denaturation curves. Studies focused on a construct containing a single TTR-L-TTR chain and two normal monomer subunits establish that alteration of only one quaternary structural interface is sufficient to impose kinetic stabilization on the entire quaternary structure.  相似文献   

6.
The C‐terminal segment (residues 218–289) of the HET‐s protein of the filamentous fungus Podosporina anserina is a prion‐forming domain. The structural model of the HET‐s(218–289) amyloid fibril based on solid‐state nuclear magnetic resonance (NMR) restraints shows a β solenoid topology which is comprised of a β‐sheet core and interconnecting loops. For the single‐point mutants Phe286Ala and Trp287Ala, slower aggregation rates in vitro and loss of prionic infectivity have been reported recently. Here we have used molecular dynamics to compare the flexibility of the mutants and wild type. The simulations, initiated from a trimeric aggregate extracted from the NMR structural model, show structural stability on a 100‐ns time scale for wild type and mutants. Analysis of the fluctuations along the simulations reveals that the mutants are less flexible than the wild type in the C‐terminal segment at only one of the two external monomers. Analysis of interaction energy and buried accessible surface indicates that residue Phe286 in particular is stabilized in the Trp287Ala mutant. The simulation results provide an atomistic explanation of the suggestion (based on indirect experimental evidence) that flexibility at the protofibril end(s) is required for fibril elongation. Moreover, they provide further evidence that the growth of the HET‐s amyloid fibril is directional. Proteins 2014; 82:399–404. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
A comparative study of amyloid properties of the aggregates of smooth muscle titin (SMT) from chicken gizzard was carried out. These aggregates were formed in two solutions: 0.15 M glycine-KOH, pH 7.2–7.4 (SMT(Gly)) and 0.2 M KCl, 10 mM imidazole, pH 7.0 (SMT(KCl)). Electron microscopy data showed that SMT aggregates has an amorphous structure in both cases. The results of atomic-force microscopy demonstrated slight differences in morphology in two types of aggregates. The SMT(Gly) aggregates were represented as branching chains, composed of spherical aggregates approximately 300–500 nm in diameter and up to 35 nm in height. The SMT(KCl) aggregates formed sponge-like structures with strands of 8–10 nm in height. Structural analysis of SMT aggregates by X-ray diffraction revealed the presence of cross-β-sheet structure in the samples under study. In the presence of SMT(Gly) aggregates, thioflavine T fluorescence intensity was higher (~3-fold times) compared with that in the presence of SMT(KCl) aggregates. Congo red-stained SMT(Gly) aggregates had yellow to apple-green birefringence under polarized light, which was not observed for SMT(KCl) aggregates. Dynamic light scattering data showed the similar rate of aggregation for both types of aggregates, though SMT(KCl) aggregates were able to partially disaggregate under increased ionic strength of the solution. The ability of SMT to aggregation followed by disaggregation may be functionally significant in the cell.  相似文献   

8.
Insulin has long been served as a model for protein aggregation, both due to the importance of aggregation in the manufacture of insulin and because the structural biology of insulin has been extensively characterized. Despite intensive study, details about the initial triggers for aggregation have remained elusive at the molecular level. We show here that at acidic pH, the aggregation of insulin is likely initiated by a partially folded monomeric intermediate. High-resolution structures of the partially folded intermediate show that it is coarsely similar to the initial monomeric structure but differs in subtle details—the A chain helices on the receptor interface are more disordered and the B chain helix is displaced from the C-terminal A chain helix when compared to the stable monomer. The result of these movements is the creation of a hydrophobic cavity in the center of the protein that may serve as nucleation site for oligomer formation. Knowledge of this transition may aid in the engineering of insulin variants that retain the favorable pharamacokinetic properties of monomeric insulin but are more resistant to aggregation.  相似文献   

9.
The generation of toxic non-native protein conformers has emerged as a unifying thread among disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Atomic-level detail regarding dynamical changes that facilitate protein aggre- gation, as well as the structural features of large-scale ordered aggregates and soluble non-native oligomers, would contribute signifi- cantly to current understanding of these complex phenomena and offer potential strategies for inhibiting formation of cytotoxic species. However, experimental limitations often preclude the acquisition of high-resolution structural and mechanistic information for aggregating systems. Computational methods, particularly those combine both aU-atom and coarse-grained simulations to cover a wide range of time and length scales, have thus emerged as crucial tools for investigating protein aggregation. Here we review the current state of computational methodology for the study of protein self-assembly, with a focus on the application of these methods toward understanding of protein aggregates in human neurodegenerative disorders.  相似文献   

10.
Within the "protein-only" hypothesis, a detailed mechanism for the conversion of a alpha-helix to beta-sheet structure is unclear. We have investigated the effects of the tail 90-123 and the point mutations G131V and M129V on prion protein conformational plasticity at neutral pH. Molecular dynamics simulations show that the dynamics of the core 124-226 is essentially independent of the tail and that the point mutation G131V does not affect PrP thermodynamic stability. Both mutations, however, enhance the flexibility of residues that participate in the two-step process for prion propagation. They also extend the short beta-sheet in the normal protein into a larger sheet at neutral pH. This finding suggests a critical role of the tail for triggering the topological change.  相似文献   

11.
The reliable identification of beta-aggregating stretches in protein sequences is essential for the development of therapeutic agents for Alzheimer's and Parkinson's diseases, as well as other pathological conditions associated with protein deposition. Here, a model based on physicochemical properties and computational design of beta-aggregating peptide sequences is shown to be able to predict the aggregation rate over a large set of natural polypeptide sequences. Furthermore, the model identifies aggregation-prone fragments within proteins and predicts the parallel or anti-parallel beta-sheet organization in fibrils. The model recognizes different beta-aggregating segments in mammalian and nonmammalian prion proteins, providing insights into the species barrier for the transmission of the prion disease.  相似文献   

12.
We use molecular dynamics simulation to study the aggregation of Src SH3 domain proteins. For the case of two proteins, we observe two possible aggregation conformations: the closed form dimer and the open aggregation state. The closed dimer is formed by "domain swapping"-the two proteins exchange their RT-loops. All the hydrophobic residues are buried inside the dimer so proteins cannot further aggregate into elongated amyloid fibrils. We find that the open structure-stabilized by backbone hydrogen bond interactions-packs the RT-loops together by swapping the two strands of the RT-loop. The packed RT-loops form a beta-sheet structure and expose the backbone to promote further aggregation. We also simulate more than two proteins, and find that the aggregate adopts a fibrillar double beta-sheet structure, which is formed by packing the RT-loops from different proteins. Our simulations are consistent with a possible generic amyloidogenesis scenario.  相似文献   

13.
Transthyretin (TTR) amyloidosis is associated with tissue deposition of TTR aggregates. TTR aggregation is initiated by dissociation of the native tetramer to form a monomeric intermediate, which locally unfolds and assembles into soluble oligomers and higher-order aggregates. However, a detailed mechanistic understanding requires kinetic and structural characterization of the low population intermediates formed. Here, we show that the monomeric intermediate exchanges with an ensemble of oligomers on the millisecond timescale. This transient and reversible exchange causes broadening of the 19F resonance of a trifluoromethyl probe coupled to the monomeric intermediate at S85C. We show the 19F linewidth and R2 relaxation rate increase with increasing concentration of the oligomer. Furthermore, introduction of 19F probes at additional TTR sites yielded distinct 19F chemical shifts for the TTR tetramer and monomer when the trifluoromethyl probe was attached at S100C, located near the same subunit interface as S85C, but not with probes attached at S46C or E63C, which are distant from any interfaces. The 19F probe at E63C shows that part of the DE loop, which is solvent accessible in the tetramer, becomes more buried in the NMR-visible oligomers. Finally, using backbone amides as probes, we show that parts of the EF helix and H-strand become highly flexible in the otherwise structured monomeric intermediate at acidic pH. We further find that TTR aggregation can be reversed by increasing pH. Taken together, this work provides insights into location-dependent conformational changes in the reversible early steps of a kinetically concerted TTR aggregation pathway.  相似文献   

14.
The formation of amyloid aggregates is the hallmark of the amyloidogenic diseases. Transthyretin (TTR) is involved in senile systemic amyloidosis (wild-type protein) and familial amyloidotic polyneuropathy (point mutants). Through the use of high hydrostatic pressure (HHP), we compare the stability among wild-type (wt) TTR, two disease-associated mutations (V30M and L55P) and a trans-suppressor mutation (T119M). Our data show that the amyloidogenic conformation, easily populated in the disease-associated mutant L55P, can be induced by a cycle of compression-decompression with the wt protein rendering the latter highly amyloidogenic. After decompression, the recovered wt structure has weaker subunit interactions (loosened tetramer, T(4)(*)) and presents a stability similar to L55P, suggesting that HHP induces a defective fold in the wt protein, converting it to an altered conformation already present in the aggressive mutant, L55P. On the other hand, glucose, a chemical chaperone, can mimic the trans-suppression mutation by stabilizing the native state and by decreasing the amyloidogenic potential of the wt TTR at pH 5.0. The sequence of pressure stability observed was: L55P相似文献   

15.
Individuals with germline mutations in the tumor suppressor gene phosphatase and tensin homolog (PTEN), irrespective of clinical presentation, are diagnosed with PTEN hamartoma tumor syndrome (PHTS). PHTS confers a high risk of breast, thyroid, and other cancers or autism spectrum disorder (ASD) with macrocephaly. It remains unclear why mutations in one gene can lead to seemingly disparate phenotypes. Thus, we sought to identify differences in ASD vs. cancer-associated germline PTEN missense mutations by investigating putative structural effects induced by each mutation. We utilized a theoretical computational approach combining in silico structural analysis and molecular dynamics (MD) to interrogate 17 selected mutations from our patient population: six mutations were observed in patients with ASD (only), six mutations in patients with PHTS-associated cancer (only), four mutations shared across both phenotypes, and one mutation with both ASD and cancer. We demonstrate structural stability changes where all six cancer-associated mutations showed a global decrease in structural stability and increased dynamics across the domain interface with a proclivity to unfold, mediating a closed (inactive) active site. In contrast, five of the six ASD-associated mutations showed localized destabilization that contribute to the partial opening of the active site. Our results lend insight into distinctive structural effects of germline PTEN mutations associated with PTEN-ASD vs. those associated with PTEN-cancer, potentially aiding in identification of the shared and separate molecular features that contribute to autism or cancer, thus, providing a deeper understanding of genotype–phenotype relationships for germline PTEN mutations.  相似文献   

16.
Babin V  Roland C  Sagui C 《Proteins》2011,79(3):937-946
The α-sheet has been speculated to play a role as a toxic conformer in amyloid diseases. However, except for relatively short fragments, its detection has remained elusive. Here, we present molecular dynamics simulations that support the existence of the α-sheet as a stable, metastable, or long-lived secondary structure in polyglutamine and, to a lesser extent, in polyasparagine aggregates.  相似文献   

17.
Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutzfeldt‐Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full‐length amyloid proteins is not necessary for understanding amyloid formation. In this study, we simulate GNNQQNY, the N‐terminal prion‐determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. Utilizing a coarse‐grained model permits equilibration on relevant time scales. Replica‐exchange molecular dynamics is used to gather simulation statistics at multiple temperatures and clear energy traps that would aversely impact results. Investigating the association of 3‐, 6‐, and 12‐chain GNNQQNY systems by calculating thermodynamic quantities and orientational order parameters, we determine the aggregation pathway by studying aggregation states of GNNQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H‐bond formation, leading to the formation of β‐sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak. Proteins 2013; 81:1141–1155. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The misfolding and aggregation of disease proteins is characteristic of numerous neurodegenerative diseases. Particular neuronal populations are more vulnerable to proteotoxicity while others are more apt to tolerate the misfolding and aggregation of disease proteins. Thus, the cellular environment must play a significant role in determining whether disease proteins are converted into toxic or benign forms. The endomembrane network of eukaryotes divides the cell into different subcellular compartments that possess distinct sets of molecular chaperones and protein interaction networks. Chaperones act as agonists and antagonists of disease protein aggregation to prevent the accumulation of toxic intermediates in the aggregation pathway. Interacting partners can also modulate the conformation and localization of disease proteins and thereby influence proteotoxicity. Thus, interplay between these protein homeostasis network components can modulate the self‐association of disease proteins and determine whether they elicit a toxic or benign outcome. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 229–236, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

19.
The capacity to form β‐sheet structure and to self‐organize into amyloid aggregates is a property shared by many proteins. Severe neurodegenerative pathologies such as Alzheimer's disease are thought to involve the interaction of amyloidogenic protein oligomers with neuronal membranes. To understand the experimentally observed catalysis of amyloid formation by lipid membranes and other water‐hydrophobic interfaces, we examine the physico‐chemical basis of peptide adsorption and aggregation in a model membrane using atomistic molecular simulations. Blocked octapeptides with simple, repetitive sequences, (Gly‐Ala)4, and (Gly‐Val)4, are used as models of β‐sheet‐forming polypeptide chains found in the core of amyloid fibrils. In the presence of an n‐octane phase mimicking the core of lipid membranes, the peptides spontaneously partition at the octane‐water interface. The adsorption of nonpolar sidechains displaces the peptides' conformational equilibrium from a heterogeneous ensemble characterized by a high degree of structural disorder toward a more ordered ensemble favoring β‐hairpins and elongated β‐strands. At the interface, peptides spontaneously aggregate and rapidly evolve β‐sheet structure on a 10 to 100 ns time scale, while aqueous aggregates remain amorphous. Catalysis of β‐sheet formation results from the combination of the hydrophobic effect and of reduced conformational entropy of the polypeptide chain. While the former drives interfacial partition and displaces the conformational equilibrium of monomeric peptides, the planar interface further facilitates β‐sheet organization by increasing peptide concentration and reducing the dimensionality of self‐assembly from three to two. These findings suggest a general mechanism for the formation of β‐sheets on the surface of globular proteins and for amyloid self‐organization at hydrophobic interfaces. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Transthyretin (TTR) is one of the known human amyloidogenic proteins. Its native state is a homotetramer with each monomer having a beta-sandwich structure. Strong experimental evidence suggests that TTR dissociates into monomeric intermediates and that the monomers subsequently self-assemble to form amyloid deposits and insoluble fibrils. However, details on the early steps along the pathway of TTR amyloid formation are unclear, although various experimental approaches with resolutions at the molecular or residue level have provided some clues. It is highly likely that the stability and flexibility of monomeric TTR play crucial roles in the early steps of amyloid formation; thereby, it is essential to characterize initial conformational changes of TTR monomers. In this article we probe the possibility that the differences in the monomeric forms of wild-type (WT) TTR and its variants are responsible for differential amyloidogenesis. We begin with the simulations of WT, Val30-->Met (V30M), and Leu55-->Pro (L55P) TTR monomers. Nanosecond time scale molecular dynamics simulations at 300 K were performed using AMBER. The results indicate that the L55P-TTR monomer undergoes substantial structural changes relative to fluctuations observed in the WT and V30M TTR monomers. The observation supports earlier speculation that the L55P mutation may lead to disruption of the beta-sheet structure through the disorder of the "edge strands" that might facilitate amyloidogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号