首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Previous X-ray studies (2.8-A resolution) on the crystals of tobacco mosaic virus protein (TMVP) grown from solutions containing high salt have characterized the structure of the protein aggregate as a bilayered cylindrical disk formed by 34 identical subunits [Bloomer, A.C., Champness, J.N., Bricogne, G., Staden, R., & Klug, A. (1978) Nature (London) 276, 362-368]. Under low-salt conditions, 20S aggregates are in equilibrium with 4S species and involved in the efficient nucleation of TMV assembly in vitro [Butler, P.J.G. (1984) J. Gen. Virol. 65, 253-279]. We have investigated by sedimentation velocity and near-UV circular dichroism (CD) measurements the structure of 20S aggregates in low salt (I = 0.1 potassium phosphate at pH 7.0 and 20 degrees C) and the aggregates in high salt [0.2 M (NH4)2SO4 in I = 0.1 tris(hydroxymethyl)aminomethane hydrochloride at pH 8.0 and 20 degrees C, close to the conditions under which TMVP crystallizes as disk aggregates]. At high salt, we observe structures (presumably stacks of disks) having s20,w values around 40, 45, and 50 S, but not the 20S species present in low-salt buffers. The near-UV CD spectrum of 20S aggregates has been obtained for the first time, using computer techniques, from the spectra of the 4S-20S equilibrium mixture and the 4S species. This spectrum of 20S aggregates differs dramatically from that of the stacks of disks examined at both high and low salt (into which the stacks can be returned by dialysis), indicating that the difference is not a solvent effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The small-angle X-ray scattering (SAXS) method using a synchrotron radiation source was applied to the study of the self-aggregation process of tobacco mosaic virus protein (TMVP) at a concentration of 5.0 or 12.0 mg ml-1 in 50 mM or 100 mM-phosphate buffer (ionic strengths approx. 0.1 and 0.2, respectively) at pH 7.2 in the temperature region of 4.8 to 25.0 degrees C. This paper presents the results of static measurements of SAXS. Sedimentation velocity experiments were performed simultaneously under the same conditions. These results are qualitatively parallel to those of the SAXS measurements, although the size of stacked disks derived from the SAXS measurements is larger than that derived from the sedimentation experiments, suggesting a change in the equilibrium conditions in the centrifugal field. Qualitative analysis of the SAXS data with model simulation calculations implies that the aggregation of TMVP consists of two steps: (1) the aggregation of A-protein comprising a few subunits to form double-layered disks; and (2) the random polymerization of double-layered disks by disk-stacking. Increase in temperature, ionic strength or protein concentration induced TMVP to polymerize to form a double-layered disk or a quadruple-layered short rod with consumption of A-proteins, accompanied by a small number of multi-layered short rods. The SAXS results indicate that the A-protein and the multilayered short rods are polydisperse with respect to size and shape, i.e. the mixture of A-protein, double-layered disks and multi-layered short rods coexists in the equilibrium state without pressure-induced partial dissociation of TMPV as observed during normal ultracentrifugation, and even under solution conditions in which the formation of double-layered disks or higher-order aggregates is favored.  相似文献   

3.
Experiments have been carried out on the coat protein of tobacco mosaic virus (TMVP) to test for the occurrence of the previously postulated RNA-induced direct switching, during in vitro assembly of tobacco mosaic virus (TMV), of the subunit packing from the cylindrical bilayer disk to the virus helical arrangement. No evidence was found for such RNA-induced switching and no evidence for the direct participation of the bilayer disk in either the nucleation or elongation phases of the in vitro virus assembly. Instead, virus assembly proceeds by an initiation step involving the binding of the RNA to the previously characterized two-plus turn helical aggregate that is formed from small oligomers of subunits. However, a bilayer disk, which has been characterized in high ionic strength crystals, has been observed in low ionic strength virus assembly solutions only as a transient species upon depolymerization of dimers of bilayer disks formed in solution at high ionic strength, and not as an equilibrium species of TMVP.  相似文献   

4.
The self-assembly process of tobacco mosaic virus protein (TMVP) was observed by rapid temperature-jump time-resolved solution X-ray small-angle scattering using synchrotron radiation. The temperature-jump device used for the X-ray measurements is rapid enough to cope with even the fastest-assembling process of TMVP, and accumulates data of reasonable signal-to-noise ratios with a minimum total counting time of 7.5 seconds. The measurements suggested that the 20 S disk of TMVP polymerized to stacked disks (short rods). The time to complete stacking varied from approximately 25 seconds to approximately 1200 seconds, depending on the solution condition and magnitude of the temperature gap. Higher protein concentration, ionic strength and temperature favoured faster association. The results were analysed in terms of a set of kinetic equations that describe the two-stage aggregation of TMVP with an equilibrium constant K1, and two rate constants k+2 and k-2 for association and dissociation of disks, respectively. The consistency of the analysis suggests that the TMVP assembly proceeds in two steps of: (1) the aggregation of A-proteins into double-layered disks; and (2) the stacking of double-layered disks. The kinetic analysis indicated that the stacking belongs to the lowest range of protein-protein interaction system.  相似文献   

5.
The aggregation of the protein of the dahlemense strain of tobacco mosaic virus has been studied by electron microscopy and ultracentrifugation. The aggregates formed are similar to those formed by the vulgare strain, although the particular conditions for their formation are often rather different. Helix formation by dialysis of A protein at pH 8 to acid pH is much more efficient if an intermediate step at pH 7 is introduced. The 20 S particle or two-layer disk is stable over a wide range of pH and ionic strength values. There is no tendency to form short stacks of disks at high ionic strength; instead, 30 S particles are formed that correspond to a pair of interlocked disks giving a “figure-of-eight” appearance in electron micrographs. These particles appear to be the “building blocks” of the protein crystal.  相似文献   

6.
Recombinant DNA derived tobacco mosaic virus (vulgare strain) coat protein (r-TMVP) was obtained by cloning and expression in Escherichia coli and was purified by column chromatography, self-assembly polymerization, and precipitation. SDS-PAGE, amino terminal sequencing, and immunoblotting with polyclonal antibodies raised against TMVP confirmed the identify and purity of the recombinant protein. Isoelectric focusing in 8 M urea and fast atom bombardment mass spectrometry demonstrated that the r-TMVP is not acetylated at the amino terminus, unlike the wild-type protein isolated from the tobacco plant derived virus. The characterization of r-TMVP with regard to its self-assembly properties revealed reversible endothermic polymerization as studied by analytical ultracentrifugation, circular dichroism, and electron microscopy. However, the details of the assembly process differed from those of the wild-type protein. At neutral pH, low ionic strength, and 20 degrees C, TMVP forms a 20S two-turn helical rod that acts as a nucleus for further assembly with RNA and additional TMVP to form TMV. Under more acidic conditions, this 20S structure also acts as a nucleus for protein self-assembly to form viruslike RNA-free rods. The r-TMVP that is not acetylated carries an extra positive charge at the amino terminus and does not appear to form the 20S nucleus. Instead, it forms a 28S four-layer structure, which resembles in size and structure the dimer of the bilayer disk formed by the wild-type protein at pH 8.0, high ionic strength, and 20 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Short-column sedimentation equilibrium methods have been applied for the first time to tobacco mosaic virus (TMV) protein (0.1 M ionic strength orthophosphate) at pH 6.5 and at pH 7.0 to estimate molecular weights. Previous sedimentation velocity experiments at pH 6.5, 20 degrees C have led to the conclusion that the major boundary with an S0(20),w value of 24.4 +/- 0.1 S consists of a distribution of polymers which are mainly three-turn, 48-51-subunit helical rod aggregates. The directly measured z-average molecular weights together with sedimentation velocity data are entirely consistent with this assignment of a three-turn aggregate. Molecular weights have also been determined under two conditions where a large mass fraction of the protein sediments with an S0(20),w value of 20.3 +/- 0.2 S. At pH 6.5, 6-8 degrees C, the aggregates in this boundary are metastable and correspond to 50-60% of the preparation. At pH 7.0, 20 degrees C at equilibrium, 65-75% of the protein sediments at 20.3 S. The 20.3S boundary is very similar under both conditions and is interpreted as being composed of a distribution of protein aggregates centered about 39 +/- 2 subunits. This result is important in the interpretation of previous kinetic measurements of TMV self-assembly. The current view is that the 34-subunit structure of TMV protein, in the form of a cylindrical disk which is made up of two 17-subunit layers and has been characterized in single-crystal X-ray diffraction studies, plays a central role in the initial binding steps with RNA. The present results are not consistent with the view that there is a significant concentration of the TMV protein disk structure in solution under the usual conditions of TMV self-assembly.  相似文献   

8.
By a combined X-ray and electron microscopic analysis, the asymmetric unit of the crystal of tobacco mosaic virus protein has been identified with the disk aggregate, of molecular weight 600,000, composed of two rings each containing 17 subunits. The packing of the disks in the crystal has been determined, and consists of an approximately body-centred array of stacks comprising two disks each.  相似文献   

9.
Bovine serum albumin (BSA) causes tobacco mosaic virus (TMV) to crystallize at pH values where both have negative charges. The amount of albumin required to precipitate the virus varies inversely with ionic strength of added electrolyte. At pH values above 5, the precipitating power is greatest when BSA has the maximum total, positive plus negative, charge. Unlike early stages of the crystallization of TMV in ammonium sulfate-phosphate solutions, which can be reversed by lowering the temperature, the precipitation of TMV by BSA is not readily reversed by changes in temperature. The logarithm of the apparent solubility of TMV in BSA solutions, at constant ionic strength of added electrolyte, decreases linearly with increasing BSA concentration. This result and the correlation of precipitating power with total BSA charge suggest that BSA acts in the manner of a salting-out agent. The effect of BSA on the reversible entropy-driven polymerization of TMV protein (TMVP) depends on BSA concentration, pH, and ionic strength. In general, BSA promotes TMVP polymerization, and this effect increases with increasing BSA concentrations. The effect is larger at pH 6.5 than at pH 6. Even though increasing ionic strength promotes polymerization of TMVP in absence of BSA, the effect of increasing ionic strength from 0.08 to 0.18 at pH 6.5 decreases the polymerization-promoting effect of BSA. Likewise, the presence of BSA decreases the polymerization-promoting effect of ionic strength. The polymerization-promoting effect of BSA can be interpreted in terms of a process akin to salting-out. The mutual suppression of the polymerization-promoting effects of BSA and of electrolytes by each other can be partially explained in terms of salting-in of BSA.  相似文献   

10.
We have employed the rapid-freeze technique to prepare specimens for electron microscopy of a coat protein solution of tobacco mosaic virus at equilibrium at pH 7.0 and 6.8, ionic strength 0.1 M and 20 degrees C. The former are the conditions for the most rapid assembly of the virus from its isolated protein and RNA. At both pH values, the equilibrium mixture contains approximately 80% of a "20 S" aggregate and 20% of a "4 S" aggregate (the so-called A-protein). The specimens were prepared either totally unstained or positively stained with methyl mercury nitrate, which binds to an amino acid residue (Cys27) internally located within the subunit, which we show not to affect the virus assembly. The images in the electron microscope are compatible only with the major structure for the "20 S" aggregate at pH 7.0 containing two rings of subunits and these aggregates display the same binding contacts as those seen between the aggregate that forms the asymmetric unit in the crystal, which has been shown by X-ray crystallography to be a disk containing two rings, each of 17 subunits, oriented in the same direction. In contrast, the images from specimens prepared at pH 6.8 show the major structure to be a proto-helix at this slightly lower pH, demonstrating that the technique of cryo-electron microscopy is capable of distinguishing between these aggregates of tobacco mosaic virus coat protein. The main structure in solution at pH 7.0 must therefore be very similar to that in the crystal, although slight differences could occur and there are probably other, minor, components in a mixture of species sedimenting around 20 S under these conditions. The equilibrium between aggregates is extremely sensitive to conditions, with a drop of 0.2 pH unit tipping the disk to proto-helix ratio from approximately 10:1 at pH 7.0 to 1:10 at pH 6.8. This direct determination of the structure of the "20 S" aggregate in solution, under conditions for virus assembly, contradicts some recent speculation that it must be helical, and establishes that, at pH 7.0, it is in fact predominantly a two-layer disk as it had been modelled before.  相似文献   

11.
The size and shape of A-protein of tobacco mosaic virus coat protein (TMVP) and cucumber green mottle mosaic virus coat protein (CGMMVP) were evaluated by means of small-angle X-ray scattering (SAXS) using a synchrotron radiation source, complemeted by electron microscopic observations. The results imply that TMV and CGMMV A-proteins are composed of three and two subunits, respectively, stacked in the shape of an isosceles triangular prism at lower ionic strength. Considering the difference of the A-protein structure at higher and lower ionic strength, the globular core structure was proposed as a subunit which might be modeled as a thin isosceles triangular prism composed of four globular cores joined by rather flexible segments. These cores correspond probably to four helical regions in a subunit, and rearrange their relative positions according to the external conditions. A slight rearrangement of core positions in a subunit may result in the formation of A-proteins of various shapes.  相似文献   

12.
The assembly of tobacco mosaic virus involves a preformed protein aggregate, the disk, which consists of two rings each of 17 protein subunits, as the sole protein source. The kinetics of this assembly have been studied, using both tobacco mosaic virus RNA, which causes a rapid initiation and so enables growth to be studied, and also polyadenylic acid, with which initiation is slowed down and thus can be partially resolved from growth. Two disks interact with a special nucleotide sequence at the 5′-hydroxyl end of a single tobacco mosaic virus RNA molecule to initiate the formation of the viral nucleoprotein helix, which then grows by the addition of further disks. All of the subunits from these further disks are incorporated into the helix, so that growth proceeds by the co-operative addition of 34 subunits at a time. Under the conditions used, rearrangement of each disk takes about six seconds, giving a total time for the growth of a complete virus particle of just over six minutes.  相似文献   

13.
Light-scattering and related studies on the polymerization behavior of the protein from the PM2 strain of TMV show that in phosphate buffer of ionic strength 0.1, the maximum extent of temperature-mediated polymerization occurs at pH values lower than in the case of TMV protein. The pH range of temperature-induced polymerization is from 5.0 to 6.0, contrasted with 5.0 to 7.5 for TMV protein. Velocity sedimentation studies show that PM2 protein at room temperature in phosphate buffer (I = 0.1) has sedimentation coefficients of 174 S, 104 S, and 4.3 S at pH values of 4.89, 5.53, and 7.5. Electron microscope studies show that at room temperature in phosphate buffer of 0.1 ionic strength at pH 5.53, PM2 protein has structures resembling essentially that of stacked double discs with an occasional helical structure. Similar studies of PM2 protein in 0.1 M ammonium acetate buffer at pH 5.2 show single, double, and double-double helices.  相似文献   

14.
A fraction containing membrane-bound tobacco mosaic virus RNA replicase was isolated form tobacco mosaic virus-infected tobacco callus cultures. The replicase activity reached a maximum 60 h after inoculation and then declined. The enzyme activity was insensitive to actinomycin D and DNase. The corresponding fraction from healthy callus contained essentially no activity. The viral RNA synthesis in vitro proceeded linearly for 30 min and required the four nucleotide triphosphates and Mg2+ ions. Mn2+ was a poor substitute for Mg2+. During RNA synthesis the product was at least 70% resistant to RNase in 2X SSC (0.15 M NaCl plus 0.015 M sodium citrate), but completely digested by RNase in 0.1X SSC. Analysis of the product by polns) that appeared to be replicative form and a partially RNase-resistant structure similar to replicative intermediate form. Washing the membrane-bound replicase with Mg2+-deficient buffer solubilized enzyme. The solubulized enzyme was further purified by DEAE-Sephadex column chromatography. The DEAE-purified enzyme was nearly completely dependent upon tobacco mosaic virus RNA for activity. Analysis of the product on a sucrose gradient revealed a double-stranded RNA with sedimentation of 16S and smaller heterogeneous RNase-sensitive products.  相似文献   

15.
Summary We had proposed that both the initiation and growth of tobacco mosaic virus rods takes place from the RNA and protein disks, containing 34 protein subunits. Other workers have reported that growth occurs not from disks but from A-protein. We now review their experiments and show that they have not used disks, but rather two-disk stacks and that their results, but not conclusions, are compatible with our earlier findings.  相似文献   

16.
The kinetics of assembly and disassembly of tobacco mosaic virus coat protein (TMVP) following temperature jumps have been studied by small-angle X-ray scattering and turbidimetry. The structures of the principal aggregates of TMVP oligomers (A protein), intermediate size (helix I) and large size helical rods (helix II), have been characterized by their average radii of gyration of thickness, cross section, and shape obtained from the corresponding regimes of the small-angle scattering pattern. This structural information was obtained within seconds after the temperature-induced initiation of either polymerization or depolymerization and allowed us to detect transient intermediates. This methodology made it possible to observe and characterize the structure of a principal intermediate. Taken together with other kinetic information, these data suggest that polymerization of TMVP under virus self-assembly conditions may proceed via a single-layered helical nucleus that contains about 20 subunits. Previous studies have shown that overshoot polymerization of TMVP can occur and results in metastable long helical viruslike rods which subsequently depolymerize and then form short helical rods, depending on the conditions of the final equilibrium state. The longer rods (helix II) are overshoot polymers which form within seconds and contain 17 1/3 subunits per turn (helix IIB), in contrast to the subunit packing arrangement of 16 1/3 subunits per turn found in the shorter helical rods (helix IA). The latter packing arrangement is the one found in TMV. An overall polymerization scheme is proposed for the formation of these two helical forms of TMVP.  相似文献   

17.
The hand of the helical arrangement of subunits in the stacked-disk form of tobacco mosaic virus protein has been determined from electron microscopy. This and previous structural results taken together indicate that the near-axial intersubunit contacts between disks are similar to those within a single disk but quite different from those in the virus. Discrepancies between the structures of single disks and stacked disks are attributed to cleavage of the protein within the stacked-disk rod.  相似文献   

18.
Reassembly of tobacco mosaic virus from the isolated RNA and protein, supplied as a disk preparation consisting of over 75% as the disk aggregate, has been followed by the protection of the RNA from nuclease digestion. The sizes of the RNA fragments were determined on agarose/acrylamide gels.During the first few minutes the protected RNA is found to be “quantized” into discrete lengths, differing on average by about 50 or 100 nucleotides, corresponding to one or two turns of the virus helix and strongly supporting the hypothesis that elongation in the major direction, towards the 5′-hydroxyl end, is occurring by the direct addition of protein disks. Protected RNA of the full length found in tobacco mosaic virus is visible within six minutes of starting reassembly, and by 30 minutes most of the RNA is fully protected.  相似文献   

19.
The lateral separation of virus rod particles of tobacco mosaic virus has been studied as a function of externally applied osmotic pressure using an osmotic stress technique. The results have been used to test the assumption that lattice equilibrium in such gels results from a balance between repulsive (electrostatic) and attractive (van der Waals and osmotic) forces. Results have been obtained at different ionic strengths (0.001 to 1.0 M) and pH's (5.0 to 7.2) and compared with calculated curves for electrostatic nad van der Waals pressure. Under all conditions studied, interrod spacing decreased with increasing applied pressure, the spacings being smaller at higher ionic strengths. Only small differences were seen when the pH was changed. At ionic strengths near 0.1 M, agreement between theory and experiment is good, but the theory appears to underestimate electrostatic forces at high ionic strengths and to underestimate attractive forces at large interrod spacings (low ionic strengths). It is concluded that an electrostatic-van der Waals force balance can explain stability in tobacco mosaic virus gels near physiological conditions and can provide a good first approximation elsewhere.  相似文献   

20.
RNA-protein interactions in the assembly of tobacco mosaic virus.   总被引:4,自引:0,他引:4       下载免费PDF全文
Assembly of tobacco mosaic virus is initiated by the binding of a specific loop of the RNA into the central hole of the disk aggregate of protein subunits. Since the nucleation loop is located about five-sixths along the RNA molecule, subsequent elongation must be bidirectional. We have now measured the rates of elongation in the two directions by determining the lengths of RNA protected from nuclease digestion at different times and using either intact TMV rNA, or RNA with most of the longer tail removed. Comparison of the rates with the protein supplied as either a mixture of disks with A-protein (a mixture of less aggregated states) or just A-protein, shows that different mechanisms and protein aggregates are used for the most rapid growth. When disks are present, they add more rapidly along the longer RNA tail but do not appear to add directly on the shorter tail. In contrast, smaller aggregates (A-protein) can add at both ends of the rod, but do so more slowly. Mechanisms for these processes are discussed. Preliminary results on the binding of the specific hexanucleotide AAGAAG to the disk are given and compared with the known changes on binding nonspecific hexanucleotides or the trinucleotide AAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号