首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Confluent adult and fetal human glomerular epithelial cells were incubated for 24 h in the presence of [3H]-amino acids and [35S]sulfate. Two heparan-35SO4 proteoglycans were released into the culture medium. These 35S-labeled proteoglycans eluted as a single peak from anion exchange chromatographic columns, but were separable by gel filtration on Sepharose CL-6B columns. The larger heparan-35SO4 proteoglycan eluted with the column void volume and at a Kav of 0.26 from Sepharose CL-4B columns. The most abundant medium heparan-35SO4 proteoglycan was a high buoyant density proteoglycan similar in hydrodynamic size (Sepharose CL-6B Kav 0.23) to those previously described in glomerular basement membranes and isolated glomeruli. Heparan-35SO4 chains from both proteoglycans were 36 kDa. A smaller proportion of Sepharose CL-6B excluded dermatan-35SO4 proteoglycan was also synthesized by these cells. The predominant protein cores of both medium heparan-35SO4 proteoglycans were approximately 230 and 180 kDa. A hybrid chondroitin/dermatan-heparan-35SO4 proteoglycan with an 80-kDa protein core copurified with the smaller medium heparan-35SO4 proteoglycan. This 35S-labeled proteoglycan appeared as a diffuse, chondroitinase ABC sensitive 155-kDa fluorographic band in sodium dodecyl sulfate-polyacrylamide gels after the Sepharose CL-6B Kav 0.23 35S-labeled proteoglycan fraction was digested with heparitinase. The heparitinase generated heparan sulfate proteoglycan protein cores and the 155-kDa hybrid proteoglycan fragment had molecular weights similar to those previously identified in rat glomerular basement membrane and glomeruli using antibodies against a basement membrane tumor proteoglycan precursor (Klein et al. J. Cell Biol. 106, 963-970, 1988). Thus, human glomerular epithelial cells in culture are capable of synthesizing, processing, and releasing heparan sulfate proteoglycans which are similar to those synthesized in vivo and found in the glomerular basement membrane. These proteoglycans may belong to a family of related basement membrane proteoglycans.  相似文献   

2.
N A Kefalides 《Biochemistry》1968,7(9):3103-3112
  相似文献   

3.
The nature of binding of metal cations to the glomerular basement membrane has been investigated using isolated bovine glomerular basement membrane. Highest-affinity binding for a number of ions is attributable to the glycosaminoglycans (mostly heparan sulfate) of the membrane. Some ions, such as divalent Mn, Ca and Ni, have specific binding sites on these polymers, while for others the ion-polyelectrolyte interaction is of a non-specific nature. Both structural and binding data indicate a linear charge density of close to unity for the heparan sulfate of the glomerular basement membrane, which at the ionic composition of the plasma filtrate corresponds to a polymer surface potential of about -45 mV. Several independent observations are better explained by a model of counter-ion condensation about the glycosaminoglycans than by conventional double layer theories. These include the valence dependence of ion binding, the sharp ejection of divalent ions at a critical concentration of La3+, and the relative insensitivity of 63Ni2+ binding to NaCl concentration in the neighbourhood of physiological ionic strength. In its interactions with metal ions, the glomerular basement membrane behaves like a dilute solution of polyelectrolytes. This conclusion has important consequences for the extent of charge reduction of the filtration barrier of the kidney, bathed as it is in an electrolyte solution of mainly monovalent salts.  相似文献   

4.
A new glycopeptide was isolated from the glomerular basement membrane (GBM) of normal rats. Unlike already known glycopeptides, this glycopeptide has biological activity (nephritogenic activity) to induce glomerulonephritis when injected once into the footpads of homologous animals. A close relationship was found between the nephritogenic activity and the non-dialyzable glucose content of this glycopeptide. Thus the nephritogenic activity can be assessed quantitatively by estimating the content of "non-dialyzable glucose." Chemical purification of the nephritogenic glycopeptide involved the selective removal of inactive glycopeptide containing galactose, mannose, and N-acetyl-glucosamine (but no glucose). Trichloroacetic acid (TCA) treatment was a simple but highly effective procedure for selective removal of this inactive glycopeptide. The non-reducing terminus of the nephritogenic glycopeptide is alpha-D-glucopyranoside, and the glycopeptide reacts specifically with concanavalin A, even in the crude state. We propose that the nephritogenic glycopeptide is not an artifact produced during exhaustive proteolytic digestion, but a natural substance having a fixed molecular shape, even in the crude state, and whose union with GBM-proper can be easily broken by proteolytic digestion.  相似文献   

5.
Rat kidneys were perfused with fixative solutions containing either a) a polycationic dye (Alcian blue 8 GX, Astra blue 6 GLL, cuprolinic blue, ruthenium red), b) a monocationic dye (safranine 0), or c) Alcian blue in the presence of a 0.3 M MgCl2 concentration. Whereas solutions of a revealed the glomerular basement membrane proteoglycans as particles or threads 60 nm apart and arranged in a reticular pattern, solutions of b and c demonstrated new morphological aspects of these molecules. They appeared as tiny filamentous structures, about 100 to 160 nm long, ordered in a network-like pattern with a mesh of about 60-nm width. The filaments displayed lateral branches about 20 nm apart and about 25 nm long, projecting within the meshes. We suggest that the filamentous structures are the protein core, and the branches are the glycosaminoglycans of proteoglycan molecules. Because of this arrangement the negatively charged sites of the glomerular basement membrane would lie closer to each other than previously assumed.  相似文献   

6.
A method for isolation of a potent nephritogenic antigen from bovine glomerular basement membrane has been established; the glomerular basement membrane was solubilized by trypsin digestion and fractionated successively by gel filtration on Ultrogel AcA-34, concanavalin A affinity chromatography and affinity chromatography on immobilized antibodies. The antigen thus prepared was found to be highly nephritogenic; it causes glomerulonephritis in rats by a single injection of 0.1 mg per individual. Amino acid and carbohydrate analyses revealed that the antigen is a glycoprotein which contains amino acids and sugars characteristic of collagen, namely, hydroxyproline, hydroxylysine, glycine, glucose and galactose, although the relative amounts of these amino acids and sugars are less than those found in Type IV collagen of glomerular basement membrane.  相似文献   

7.
The kidney's glomerular filtration barrier consists of two cells-podocytes and endothelial cells-and the glomerular basement membrane (GBM), a specialized extracellular matrix that lies between them. Like all basement membranes, the GBM consists mainly of laminin, type IV collagen, nidogen, and heparan sulfate proteoglycan. However, the GBM is unusually thick and contains particular members of these general protein families, including laminin-521, collagen α3α4α5(IV), and agrin. Knockout studies in mice and genetic findings in humans show that the laminin and type IV collagen components are particularly important for GBM structure and function, as laminin or collagen IV gene mutations cause filtration defects and renal disease of varying severities, depending on the nature of the mutations. These studies suggest that the GBM plays a crucial role in establishing and maintaining the glomerular filtration barrier.  相似文献   

8.
Clogging of the glomerular basement membrane   总被引:5,自引:1,他引:5       下载免费PDF全文
The negative charges of the sulfated glycosaminoglycans (GAGs) of the glomerular basement membrane (GBM) were differentially neutralized by perfusin with high molarity buffers in order to determine whether or not these charges protect the GBM from being clogged by circulating plasma macromolecules. Progressive elimination of the negative charges resulted in clogging of the GBM by perfused native ferritin (NF) and bovine serum albumin as evidenced ultrastructurally by the increase in accumulation of NF in the GBM. In addition, the permeability of the GBM to 125I-insulin, a macromolecule which is normally freely permeable, and the glomerular filtration rate (as determined by [3H]inulin clearance) were markedly reduced after the GBM had been clogged with NF in the presence of high molarity buffer, thereby indicating that clogging severely reduces the ability of the GMB to act as a selective filter. These findings are consistent with the idea that the sulfated GAGs of the GBM serve as anticlogging agents.  相似文献   

9.
Water-soluble and non-dialyzable glycopeptide, nephritogenoside, was isolated from the glomerular basement membrane of normal rats. The yield of the purified nephritogenic glycopeptide from the glomerular basement membrane of 1200 rats was only 17.2 mg. Hexose amounted to 24.3% by weight, and consisted only of glucose. Paper chromatographic studies on the number and length of the carbohydrate chain deduced from strong alkaline cleavage in the presence of sodium borohydride strongly suggested that the carbohydrate chain of the nephritogenic glycopeptide is composed of three glucose residues. This conclusion was supported by the 13C-NMR spectroscopic results. In the paper chromatographic studies on the monosaccharides produced from 3H-labeled oligosaccharide by alkaline degradation and then acid hydrolysis and studies on the 13C-NMR spectrum, it was demonstrated that the saccharide at the reducing terminus is glucose. Thus, the glucose residue at the reducing terminus of the nephritogenoside may be linked directly (probably N-glycosidically) to amino acid, without the intervention of N-acetylglucosamine. The proposed structure of the carbohydrate portion of the nephritogenic glycopeptide, nephritogenoside, is as follows:
  相似文献   

10.
The capacity of isolated human glomerular basement membrane (GBM) to initiate surface activation of the human alternative complement pathway was defined by the deposition of C3b under circumstances in which the classical complement pathway was inoperative. The deposition of C3b from normal or C2-deficient serum was time- and magnesium-dependent, implying a role for the alternative pathway. Normal human serum rendered deficient in D did not sustain C3b deposition until its reconstitution with D, indicating an absolute requirement for a protein unique to the alternative pathway and essential to the cleavage activation of the C3 amplification convertase of that pathway. The capacity of the excess control proteins H and I to prevent C3b deposition onto GBM incubated in C2-deficient serum provided further evidence for the direct activation of the alternative pathway in this system. The use of radiolabeled monoclonal antibody to localize the deposited C3b afforded specificity and quantitation of about 100 ng of C3b/mg of GBM. Immunohistochemical analysis with a monoclonal antibody to detect C3b demonstrated its deposition to be confined to the epithelial surface of the GBM.  相似文献   

11.
12.
13.
Heparan sulphate proteoglycan was solubilized from human glomerular basement membranes by guanidine extraction and purified by ion-exchange chromatography and gel filtration. The yield of proteoglycan was approx. 2 mg/g of basement membrane. The glycoconjugate had an apparent molecular mass of 200-400 kDa and consisted of about 75% protein and 25% heparan sulphate. The amino acid composition was characterized by a high content of glycine, proline, alanine and glutamic acid. Hydrolysis with trifluoromethanesulphonic acid yielded core proteins of 160 and 110 kDa (and minor bands of 90 and 60 kDa). Alkaline NaBH4 treatment of the proteoglycan released heparan sulphate chains with an average molecular mass of 18 kDa. HNO2 oxidation of these chains yielded oligosaccharides of about 5 kDa, whereas heparitinase digestion resulted in a more complete degradation. The data suggest a clustering of N-sulphate groups in the peripheral regions of the glycosaminoglycan chains. A polyclonal antiserum raised against the intact proteoglycan showed reactivity against the core protein. It stained all basement membranes in an intense linear fashion in immunohistochemical studies on frozen kidney sections from man and various mammalian species.  相似文献   

14.
15.
Rat glomerular heparan sulfate (HS) and dermatan sulfate (DS) proteoglycan synthesis was studied in vitro and in vivo. Incorporation of [35S]sulfate into macromolecules was linear over 16 h in vitro, and DS was the predominant glycosaminoglycan (GAG), while HS dominated in vivo incubations. Proteoglycans were found in the bottom 2/5 (high density) CsCl gradient fractions and eluted as two overlapping peaks from DEAE-Sephacel columns. The proportion of low density 35S-glycoproteins and 35S-proteoglycans increased with time. Two high buoyant density HS proteoglycans were extracted from glomeruli and eluted in DEAE peak I. The first, HS-tIA, had an Mr of 130 X 10(3) with Mr 12.5 X 10(3) GAG chains. This proteoglycan was released from the tissue by trypsin and was partially displaced by heparin treatment. In addition, it was rapidly released into the medium of label-chase experiments after which it migrated slightly more rapidly than HS-tIA in gels, with HS chains similar in length to its tissue counterpart. The second, HS-tIB, had an Mr of 8.6 X 10(3) with little or no attached protein. This proteoglycan was characterized as intracellular as it resisted release by trypsin treatment or heparin extraction in medium and was not detected in the medium of label-chase experiments. Two tissue DS proteoglycans were characterized. The first, DS-tIA, co-purified with HS-tIA and was the predominant proteoglycan synthesized during 4-h in vitro incubations. Like HS-tIA, it was rapidly released into medium and displaced from cell surfaces or tissue "receptors" by heparin or trypsin treatments. A second, Sepharose CL-6B-excluded DS proteoglycan from DEAE peak II, DS-tII, accumulated in tissue over 16 h in vitro. This proteoglycan was self-associating and contained clusters of iduronic acid residues along its Mr 26 X 10(3) DS chains. It resisted extraction from the tissue with heparin, trypsin, and detergent. No DS-tII was detected in the incubation medium. Instead, medium proteoglycans eluted as single Sepharose CL-6B-included peaks. DS chains from medium proteoglycans were shorter (Mr 18 X 10(3)) and had more regularly spaced iduronic acid residues than GAGs from DS-tII. The length and sulfation patterns of DS-mII GAG were similar to GAG from DS-tIA. Thus, glomeruli rapidly synthesized and released Sepharose CL-6B-included heparin-displaceable DS and HS proteoglycans while retaining a Sepharose CL-6B-excluded self-associating DS proteoglycan and an intracellular HS.  相似文献   

16.
1. Proteoglycans extracted from human and equine glomerular basement membranes (GBM) were purified by ion-exchange chromatography and gel filtration. 2. The glycoconjugates had an apparent molecular mass of 200-400 kDa and consisted of 75% protein and 25% glycosaminoglycan. Glycosidase and HNO2 treatment and the amino sugar and sulfate composition of both proteoglycan preparations identified heparan sulfate (HS) as the predominant saccharide chain. 3. Hydrolysis with trifluoromethanesulfonic acid yielded comparable core proteins with molecular masses of ca 160 and 120 kDa. 4. The HS chains had an apparent molecular mass of 18 kDa. Results of heparitinase digestion and HNO2-treatment indicated a clustering of sulfate groups in the distal part of the HS side chains. 5. Peptide mapping after trypsin, clostripain or V8 protease digestion of radiolabeled human and equine heparan sulfate proteoglycans (HSPG) preparations with three different separation techniques showed large differences. 6. Polyclonal antisera raised against the HSPGs reacted against the core proteins. Both HSPG preparations and their antisera showed ca 40% cross-reactivity. About 50% of monoclonal antisera elicited against one HSPG preparation showed reaction with both HSPG preparations. 7. Polyclonal antisera stained all basement membranes in an intense linear fashion in indirect immunofluorescence studies of kidney sections from horse, man and various mammalian species. 8. Biochemical and immunological data indicate that HSPGs from equine and human GBM have a comparable structure, but the core proteins differ considerably.  相似文献   

17.
The murine embryonal carcinoma derived cell line M1536-B3 secretes the basement membrane components laminin and entactin and, when grown in bacteriological dishes, produces and adheres to sacs of basement membrane components. Heparan sulfate proteoglycans have been isolated from these sacs, the cells, and the medium. At least three different heparan sulfate proteoglycans are produced by these cells as determined by proteoglycan size, glycosaminoglycan chain length, and charge density. The positions of the N- and O-sulfate groups in the glycosaminoglycan chains from each proteoglycan appear to be essentially the same despite differences in the size and culture compartment locations of the heparan sulfate proteoglycan. Additionally, small quantities of chondroitin sulfate proteoglycans are found in each fraction and copurify with each heparan sulfate proteoglycan. Because this cell line appears to synthesize at least three different heparan sulfate proteoglycans which are targeted to different final locations (basement membrane, cell surface, and medium), this will be a useful system in which to study the factors which determine final heparan sulfate proteoglycan structures and culture compartment targeting and the possible effects of the protein core(s) on heparan sulfate carbohydrate chain synthesis and secretion.  相似文献   

18.
The basement membrane heparan sulfate proteoglycan produced by the Englebreth-Holm-Swarm (EHS) tumor and by glomeruli were compared by immunological methods. Antibodies to the EHS proteoglycan immunoprecipitated a single precursor protein (Mr = 400,000) from [35S]methionine-pulsed glomeruli, the same size produced by EHS cells. These antibodies detected both heparan sulfate proteoglycans and glycoproteins in extracts of unlabeled glomeruli and glomerular basement membrane. The proteoglycans contained core proteins of varying size (Mr = 150,000 to 400,000) with a Mr = 250,000 species being predominant. The glycoproteins are fragments of the core protein which lack heparan sulfate side chains. Antibodies to glomerular basement membrane proteoglycan immunoprecipitated the precursor protein (Mr = 400,000) synthesized by EHS cells and also reacted with most of the proteolytic fragments of the EHS proteoglycan. This antibody did not, however, react with the P44 fragment, a peptide situated at one end of the EHS proteoglycan core protein. These data suggest that the glomerular basement membrane proteoglycan is synthesized from a large precursor protein which undergoes specific proteolytic processing.  相似文献   

19.
Heparan sulfate proteoglycan (HSPG) was extracted from human tubular basement membrane (TBM) with guanidine and purified by ion-exchange chromatography and gel filtration. The glycoconjugate was sensitive to heparitinase and resistant to chondroitinase ABC, had an apparent molecular mass of 200-400 kDa and consisted of 70% protein and 30% glycosaminoglycan. The amino acid composition was characterized by its high content of glycine, proline, alanine and glutamic acid. Hydrolysis with trifluoromethanesulfonic acid yielded core proteins of 160 and 110 kDa. The heparan sulfate (HS) chains obtained after alkaline NaBH4 treatment had a molecular mass of about 18 kDa. Results of heparitinase digestion and HNO2 treatment suggest a clustering of sulfate groups in the distal portion of the HS side chains. These chemical data are comparable to those obtained previously on glomerular basement membrane (GBM) HSPG (Van den Heuvel et al. (1989) Biochem. J. 264, 457-465). Peptide patterns obtained after trypsin, clostripain or V8 protease digestion of TBM and GBM HSPG preparations showed a large similarity. Polyclonal antisera and a panel of monoclonal antibodies raised against both HSPG preparations and directed against the core protein showed complete cross-reactivity in ELISA and on Western blots. They stained all basement membranes in an intense linear fashion in indirect immunofluorescence studies on human kidneys. Based on these biochemical and immunological data we conclude that HSPGs from human GBM and TBM are identical, or at least very closely related, proteins.  相似文献   

20.
Cross-linking glomerular basement membrane (GBM) has been shown to render it more permeable to protein. Isolated pig GBM was cross-linked with dimethylmalonimidate which reacts selectively with lysine ?-NH2 groups or with glutaraldehyde, a less selective cross-linking agent. Studies of the ultrafiltration properties of these materials in vitro using cytochrome c, myoglobin, bovine serum albumin and immunoglobulin showed that cross-linking had markedly increased solvent and protein fluxes as compared with native membranes particularly at higher pressures. Filtration studies with serum demonstrated that the cross-linked membranes were more permeable to serum proteins. Thickness measurements under pressure indicated that cross-linked membrane was less compressed than native membrane as pressure was increased. Pore theory did not provide a suitable model for analysis of the results, but analysis of the results using the fibre-matrix hypothesis indicated that cross-linking had the effect of bundling together the fibres (type IV collagen) in the GBM matrix. The effect of cross-linking on filtration could be explained by a combination of contraction of the membrane, fibre bundling and increased rigidity compared with native membrane. Cross-linking of GBM might lead to long-term damage of the glomerular capillary wall in nephritis, so promoting proteinuria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号