首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo thermal conductivity of the human forearm tissues   总被引:1,自引:0,他引:1  
The effective thermal conductivities of the skin + subcutaneous (keff skin + fat) and muscle (keff muscle) tissues of the human forearm at thermal steady state during immersion in water at temperatures (Tw) ranging from 15 to 36 degrees C were determined. Tissue temperature (Tt) was continuously monitored by a calibrated multicouple probe during a 3-h immersion of the resting forearm. Tt was measured every 5 mm from the longitudinal axis of the forearm (determined from computed-tomography scanning) to the skin surface. Skin temperature (Tsk), heat loss (Hsk), and blood flow (Q) of the forearm, as well as rectal temperature (Tre) and arterial blood temperature at the brachial artery (Tbla), were measured during the experiments. When the keff values were calculated from the finite-element (FE) solution of the bioheat equation, keff skin + fat ranged from 0.28 +/- 0.03 to 0.73 +/- 0.14 W.degrees C-1.m-1 and keff muscle varied between 0.56 +/- 0.05 and 1.91 +/- 0.19 W.degrees C-1.m-1 from 15 to 36 degrees C. The values of keff skin + fat and keff muscle, calculated from the FE solution for Tw less than or equal to 30 degrees C, were not different from the average in vitro values obtained from the literature. The keff values of the forearm tissues were linearly related (r = 0.80, P less than 0.001) to Q for Tw greater than or equal to 30 degrees C. It was found that the muscle tissue could account for 92 +/- 1% of the total forearm insulation during immersion in water between 15 and 36 degrees C.  相似文献   

2.
The transient temperature response of the resting human forearm immersed in water at temperatures (Tw) ranging from 15 to 36 degrees C was investigated. Tissue temperature (Tt) was continuously monitored by a calibrated multicouple probe during the 3-h immersions. Tt was measured every 5 mm, from the longitudinal axis of the forearm to the skin surface. Skin temperature, rectal temperature, and blood flow (Q) were also measured during the immersions. The maximum rate of change of the forearm mean tissue temperature (Tt, max) occurred during the first 5 min of the immersion. Tt, max was linearly dependent on Tw (P less than 0.001), with mean values (SEM) ranging from -0.8 (0.1) degrees C.min-1 at 15 degrees C to 0.2 (0.1) degrees C.min-1 at 36 degrees C. The maximum rate of change of compartment mean temperature was dependent (P less than 0.001) on the radial distance from the longitudinal axis of the forearm. The half-time for thermal steady state of the forearm mean tissue temperature was linearly dependent on Tw between 30 and 36 degrees C (P less than 0.01), with mean values (SEM) ranging from 15.6 (0.6) min at 30 degrees C to 9.7 (1.2) min at 36 degrees C and not different between 15 and 30 degrees C, averaging 16.2 (0.6) min. There was a significant linear relationship between the half-time for thermal steady-state of the compartment mean temperature and the radial distance from the longitudinal axis of the forearm for each value of Tw tested (P less than 0.001). The data of the present study suggest that the forearm Q is an important determinant of the transient thermal response of the forearm tissue during thermal stress.  相似文献   

3.
The purpose of the present study was to investigate the effect of a range of water temperatures (Tw from 15 to 36 degrees C) on the tissue temperature profile of the resting human forearm at thermal stability. Tissue temperature (Tti) was continuously monitored by a calibrated multicouple probe during 3 h of immersion of the forearm. The probe was implanted approximately 9 cm distal from the olecranon process along the ulnar ridge. Tti was measured every 5 mm, from the longitudinal axis of the forearm (determined from computed tomography scanning) to the skin surface. Along with Tti, skin temperature (Tsk), rectal temperature (Tre), and blood flow were measured during the immersions. For all temperature conditions, the temperature profile inside the limb was linear as a function of the radial distance from the forearm axis (P less than 0.001). Temperature gradient measured in the forearm ranged from 0.2 +/- 0.1 degrees C C cm (Tw = 36 degrees C) to 2.3 +/- 0.5 degrees C cm (Tw = 15 degrees C). The maximal Tti was measured in all cases at the longitudinal axis of the forearm and was in all experimental conditions lower than Tre. On immersion at Tw less than 36 degrees C, the whole forearm can be considered to be part of the shell of the body. With these experimental data, mathematical equations were developed to predict, with an accuracy of at least 0.6 degrees C, the Tti at any depth inside the forearm at steady state during thermal stress.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The in vivo or effective thermal conductivity (keff) of muscle tissue of the human forearm was determined through a finite-element (FE) model solution of the bioheat equation. Data were obtained from steady-state temperatures measured in the forearm after 3 h of immersion in water at temperatures (Tw) of 15 (n = 6), 20 (n = 5), and 30 degrees C (n = 5). Temperatures were measured every 0.5 cm from the longitudinal axis of the forearm to the skin approximately 9 cm distal from the elbow. Heat flux was measured at two sites on the skin adjacent to the temperature probe. The FE model is comprised of concentric annular compartments with boundaries defined by the location of temperature measurements. Through this approach, it was possible to include both the metabolic heat production and the convective heat transfer between blood and tissue at two levels of blood flow, one perfusing the compartment and the other passing through the compartment. Without heat exchange at the passing blood flow level, the arterial blood temperature would be assumed to have a constant value everywhere in the forearm muscles, leading to a solution of the bioheat equation that greatly underpredicts keff. The extent of convective heat exchange at the passing blood flow level is estimated to be approximately 60% of the total heat exchange between blood and tissue. Concurrent with this heat exchange is a decrease in the temperature of the arterial blood as it flows radially from the axis to the skin of the forearm, and this decrease is enhanced with a lowered Tw.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
To determine the vascular changes induced by local cold acclimation, post-ischaemia and exercise vasodilatation were studied in the finger and the forearm of five subjects cold-acclimated locally and five non-acclimated subjects. Peak blood flow was measured by venous occlusion plethysmography after 5 min of arterial occlusion (PBFisc), after 5 min of sustained handgrip at 10% maximal voluntary contraction (PBFexe), and after 5 min of both treatments simultaneously (PBFisc + exe). Each test was performed at room temperature (25 degrees C, SE 1 C) (non-cooled condition) and after 5 min of 5 degrees C cold water immersion (cooled condition). After the cold acclimation period, the decrease in skin temperature was more limited in the cold-acclimated compared to the non-acclimated (P less than 0.01). The PBFisc was significantly reduced in the cooled condition only in the cold-acclimated subjects (finger: 8.4 ml.100 ml-1.min-1, SE 1.1, P less than 0.01; forearm: 5.8 ml.100 ml-1.min-1, SE 1.5, P less than 0.01) compared to the non-cooled condition. Forearm PBFexe was significantly decreased in the cooled condition only in the cold-acclimated subjects (non-cooled: 7.4 ml.100 ml-1.min-1, SE 1.2; cooled: 3.9 ml.100 ml-1.min-1, SE 2.6, P less than 0.05) indicating that muscle blood flow was also reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
This study evaluated the effects of a thermal swimsuit on body temperatures, thermoregulatory responses and thermal insulation during 60 min water immersion at rest. Ten healthy male subjects wearing either thermal swimsuits or normal swimsuits were immersed in water (26 degrees C or 29 degrees C). Esophageal temperature, skin temperatures and oxygen consumption were measured during the experiments. Metabolic heat production was calculated from oxygen consumption. Heat loss from skin to the water was calculated from the metabolic heat production and the change in mean body temperature during water immersion. Total insulation and tissue insulation were estimated by dividing the temperature difference between the esophagus and the water or the esophagus and the skin with heat loss from the skin. Esophageal temperature with a thermal swimsuit was higher than that with a normal swimsuit at the end of immersion in both water temperature conditions (p<0.05). Oxygen consumption, metabolic heat production and heat loss from the skin were less with the thermal swimsuit than with a normal swimsuit in both water temperatures (p<0.05). Total insulation with the thermal swimsuit was higher than that with a normal swimsuit due to insulation of the suit at both water temperatures (p<0.05). Tissue insulation was similar in all four conditions, but significantly higher with the thermal swimsuit in both water temperature conditions (p<0.05), perhaps due to of the attenuation of shivering during immersion with a thermal swimsuit. A thermal swimsuit can increase total insulation and reduce heat loss from the skin. Therefore, subjects with thermal swimsuits can maintain higher body temperatures than with a normal swimsuit and reduce shivering thermo-genesis.  相似文献   

7.
Resting subjects were immersed for 30 min in water at 22 and 30 degrees C after drinking alcohol. Total ventilation, end-tidal PCO2, rectal temperature, aural temperature, mean skin temperature, heart rate, and oxygen consumption were recorded during the experiments. Blood samples taken before the immersion period were analyzed by gas-liquid chromatography. The mean blood alcohol levels were 82.50 +/- 9.93 mg.(100 ml)-1 and 100.6 +/- 12.64 mg (100 ml)-1 for the immersions at 22 and 30 degrees C, respectively. There was no significant change in body temperature measured aurally or rectally, mean surface skin temperature, or heart rate at either water temperature tested. Total expired ventilation was significantly attenuated for the last 15 min of the immersion at 22 degrees C, after alcohol consumption as compared to the ventilation change in water at 22 degrees C without ethanol. This response was not consistently significantly altered during immersion in water at 30 degrees C. It is evident that during a 30-min immersion in tepid water with a high blood alcohol level, body heat loss is not affected but some changes in ventilation do occur.  相似文献   

8.
To clarify the origin of local cold adaptation and to define precisely its influence on muscle bio-energetics during local exercise, five subjects were subjected to repeated 5 degrees C cold water immersion of the right hand and forearm. The first aim of our investigation was therefore carried out by measuring local skin temperatures and peripheral blood flow during a cold hand test (5 degrees C, 5 min) followed by a 10-min recovery period. The 31P by nuclear magnetic resonance (31PNMR) muscle bio-energetic changes, indicating possible heat production changes, were measured during the recovery period. The second aim of our investigation was carried out by measuring 31PNMR muscle bioenergetics during handgrip exercise (10% of the maximal voluntary contraction for 5 min followed by a 10-min recovery period) performed both at a comfortable ambient temperature (22 degrees C; E) and after a cold hand test (EC), before and after local cold adaptation. Local cold adaptation, confirmed by warmer skin temperatures of the extremities (+30%, P less than 0.05), was related more to an increased peripheral blood flow, as shown by the smaller decrease in systolic peak [-245 (SEM 30) Hz vs -382 (SEM 95) Hz, P less than 0.05] than to a change in local heat production, because muscle bioenergetics did not vary. Acute local cold immersion decreased the inorganic phosphate:phosphocreatine (PC) ratio during EC compared to E [+0.006 (SEM 0.010) vs +0.078 (SEM 0.002) before acclimation and +0.029 (SEM 0.002) vs +0.090 (SEM 0.002) after acclimation respectively, P less than 0.05] without significant change in the PC:beta-adenosine triphosphate ratio and pH. Local adaptation did not modify these results statistically. The recovery of PC during E increased after acclimation [9.0 (SEM 0.2) min vs 3.0 (SEM 0.4) min, P less than 0.05]. These results suggested that local cold adaptation is related more to peripheral blood flow changes than to increased metabolic heat production in the muscle.  相似文献   

9.
The present work was undertaken to examine the effect of wet suits on the pattern of heat exchange during immersion in cold water. Four Korean women divers wearing wet suits were immersed to the neck in water of critical temperature (Tcw) while resting for 3 h or exercising (2-3 met on a bicycle ergometer) for 2 h. During immersion both rectal (Tre) and skin temperatures and O2 consumption (VO2) were measured, from which heat production (M = 4.83 VO2), skin heat loss (Hsk = 0.92 M +/- heat store change based on delta Tre), and thermal insulation were calculated. The average Tcw of the subjects with wet suits was 16.5 +/- 1.2 degrees C (SE), which was 12.3 degrees C lower than that of the same subjects with swim suits (28.8 +/- 0.4 degrees C). During the 3rd h of immersion, Tre and mean skin temperatures (Tsk) averaged 37.3 +/- 0.1 and 28.0 +/- 0.5 degrees C, and skin heat loss per unit surface area 42.3 +/- 2.66 kcal X m-2 X h. The calculated body insulation [Ibody = Tre - Tsk/Hsk] and the total shell insulation [Itotal = (Tre - TW)/Hsk] were 0.23 +/- 0.02 and 0.5 +/- 0.04 degrees C X kcal-1 X m2 X h, respectively. During immersion exercise, both Itotal and Ibody declined exponentially as the exercise intensity increased. Surprisingly, the insulation due to wet suit (Isuit = Itotal - Ibody) also decreased with exercise intensity, from 0.28 degrees C X kcal-1 X m2 X h at rest to 0.12 degrees C X kcal-1 X m2 X h at exercise levels of 2-3 met.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage.  相似文献   

11.
Muscle glycogen availability and temperature regulation in humans   总被引:1,自引:0,他引:1  
The effects of intramuscular glycogen availability on human temperature regulation were studied in eight seminude subjects immersed in 18 degrees C water for 90 min or until rectal temperature (Tre) decreased to 35.5 degrees C. Each subject was immersed three times over a 3-wk period. Each immersion followed 2.5 days of a specific dietary and/or exercise regimen designed to elicit low (L), normal (N), or high (H) glycogen levels in large skeletal muscle groups. Muscle glycogen concentration was determined in biopsies taken from the vastus lateralis muscle before and after each immersion. Intramuscular glycogen concentration before the immersion was significantly different among the L, N, and H trials (P less than 0.01), averaging 247 +/- 15, 406 +/- 23, and 548 +/- 42 (SE) mmol glucose units.kg dry muscle-1, respectively. The calculated metabolic heat production during the first 30 min of immersion was significantly lower during L compared with N or H (P less than 0.05). The rate at which Tre decreased was more rapid during the L immersion than either N or H (P less than 0.05), and the time during the immersion at which Tre first began to decrease also appeared sooner during L than N or H. The results suggest that low skeletal muscle glycogen levels are associated with more rapid body cooling during water immersion in humans. Higher than normal muscle glycogen levels, however, do not increase cold tolerance.  相似文献   

12.
To study the role of venous return from distal parts of the extremities in influencing heat loss from the more proximal parts, changes in mean skin temperature (Tsk) of the non-exercising extremities were measured by color thermography during leg and arm exercise in eight healthy subjects. Thirty minutes of either leg or arm exercise at an ambient temperature (Ta) of 20 degrees C or 30 degrees C produced a greatly increased blood flow in the hand or foot and a great increase in venous return through the superficial skin veins of the extremities. During the first 10 min of recovery from the exercise, blood flow to and venous return from the hand or foot on the tested side was occluded with a wrist or ankle cuff at a pressure of 33.3 kPa (250 mm Hg), while blood flow to the control hand or foot remained undisturbed. During the 10-min wrist occlusion, Tsk increased significantly from 28.3 degrees +/- 0.41 degrees C to 30.1 degrees +/- 0.29 degrees C in the control forearm, but remained at nearly the same level (28.0 degrees +/- 0.34 degrees C to 28.2 degrees +/- 0.25 degrees C) in the occluded forearm. In the legs, although Tsk on both sides was virtually identical (32.0 degrees +/- 0.31 degrees C, control vs 32.0 degrees +/- 0.36 degrees C, tested) before occlusion, Tsk on the control side (32.6 degrees +/- 0.27 degrees C) was significantly higher than that on the tested side (32.2 degrees +/- 0.21 degrees C) after ankle occlusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Heat loss from the human head during exercise   总被引:2,自引:0,他引:2  
Evaporative and convective heat loss from head skin and expired air were measured in four male subjects at rest and during incremental exercise at 5, 15, and 25 degrees C ambient temperature (Ta) to verify whether the head can function as a heat sink for selective brain cooling. The heat losses were measured with an open-circuit method. At rest the heat loss from head skin and expired air decreased with increasing Ta from 69 +/- 5 and 37 +/- 18 (SE) W (5 degrees C) to 44 +/- 25 and 26 +/- 7 W (25 degrees C). At a work load of 150 W the heat loss tended to increase with increasing Ta: 119 +/- 21 (head skin) and 82 +/- 5 W (respiratory tract) at 5 degrees C Ta to 132 +/- 27 and 103 +/- 12 W at 25 degrees C Ta. Heat loss was always higher from the head surface than from the respiratory tract. The heat losses, separately and together (total), were highly correlated to the increasing esophageal temperature at 15 and 25 degrees C Ta. At 5 degrees C Ta on correlation occurred. The results showed that the heat loss from the head was larger than the heat brought to the brain by the arterial blood during hyperthermia, estimated to be 45 W per 1 degree C increase above normal temperature, plus the heat produced by the brain, estimated to be up to 20 W. The total heat to be lost is therefore approximately 65 W during a mild hyperthermia (+1 degrees C) if brain temperature is to remain constant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We examined the effect of high local forearm skin temperature (Tloc) on reflex cutaneous vasodilator responses to elevated whole-body skin (Tsk) and internal temperatures. One forearm was locally warmed to 42 degrees C while the other was left at ambient conditions to determine if a high Tloc could attenuate or abolish reflex vasodilation. Forearm blood flow (FBF) was monitored in both arms, increases being indicative of increases in skin blood flow (SkBF). In one protocol, Tsk was raised to 39-40 degrees C 30 min after Tloc in one arm had been raised to 42 degrees C. In a second protocol, Tsk and Tloc were elevated simultaneously. In protocol 1, the locally warmed arm showed little or no change in blood flow in response to increasing Tsk and esophageal temperature (average rise = 0.76 +/- 1.18 ml X 100 ml-1 X min-1), whereas FBF in the normothermic arm rose by an average of 8.84 +/- 3.85 ml X 100 ml-1 X min-1. In protocol 2, FBF in the normothermic arm converged with that in the warmed arm in three of four cases but did not surpass it. We conclude that local warming to 42 degrees C for 35-55 min prevents reflex forearm cutaneous vasodilator responses to whole-body heat stress. The data strongly suggest that this attenuation is via reduction or abolition of basal tone in the cutaneous arteriolar smooth muscle and that at a Tloc of 42 degrees C a maximum forearm SkBF has been achieved. Implicit in this conclusion is that local warming has been applied for a duration sufficient to achieve a plateau in FBF.  相似文献   

15.
The effect of 33 h of wakefulness on the control of forearm cutaneous blood flow and forearm sweating during exercise was studied in three men and three women. Subjects exercised for 30 min at 60% peak O2 consumption while seated behind a cycle ergometer (Ta = 35 degrees C, Pw = 1.0 kPa). We measured esophageal temperature (Tes), mean skin temperature, and arm sweating continuously and forearm blood flow (FBF) as an index of skin blood flow, twice each minute by venous occlusion plethysmography. During steady-state exercise, Tes was unchanged by sleep loss. The sensitivity of FBF to Tes was depressed an average of 30% (P less than 0.05) after 33 h of wakefulness with a slight decrease (-0.15 degrees C, P less than 0.05) in the core temperature threshold for vasodilatory onset. Sleep loss did not alter the Tes at which the onset of sweating occurred; however, sensitivity of arm sweating to Tes tended to be lower but was not significant. Arm skin temperature was not different between control and sleep loss experiments. Reflex cutaneous vasodilation during exercise appeared to be reduced by both central and local factors after 33 h of wakefulness.  相似文献   

16.
This study examined whether acute exercise would impair the body's capability to maintain thermal balance during a subsequent cold exposure. Ten men rested for 2 h during a standardized cold-air test (4.6 degrees C) after two treatments: 1) 60 min of cycle exercise (Ex) at 55% peak O(2) uptake and 2) passive heating (Heat). Ex was performed during a 35 degrees C water immersion (WI), and Heat was conducted during a 38.2 degrees C WI. The duration of Heat was individually adjusted (mean = 53 min) so that rectal temperature was similar at the end of WI in both Ex (38.2 degrees C) and Heat (38.1 degrees C). During the cold-air test after Ex, relative to Heat 1) rectal temperature was lower (P < 0.05) from minutes 40-120, 2) mean weighted heat flow was higher (P < 0.05), 3) insulation was lower (P < 0.05), and 4) metabolic heat production was not different. These results suggest that prior physical exercise may predispose a person to greater heat loss and to experience a larger decline in core temperature when subsequently exposed to cold air. The combination of exercise intensity and duration studied in these experiments did not fatigue the shivering response to cold exposure.  相似文献   

17.
The purpose of the present study was to examine the effect of heating and cooling the forearm muscles on renal vascular responses to ischemic isometric handgrip (IHG). It was hypothesized that heating and cooling the forearm would augment and attenuate, respectively, renal vascular responses to IHG. Renal vascular responses to IHG were studied during forearm heating at 39 degrees C (n = 15, 26 +/- 1 yr) and cooling at 26 degrees C (n = 12, 26 +/- 1 yr). For a control trial, subjects performed the experimental protocol while the forearm was normothermic (approximately 34 degrees C). Muscle temperature (measured by intramuscular probe) was controlled by changing the temperature of water cycling through a water-perfused sleeve. The experimental protocol was as follows: 3 min at baseline, 1 min of ischemia, ischemic IHG to fatigue, and 2 min of postexercise muscle ischemia. At rest, renal artery blood velocity (RBV; Doppler ultrasound) and renal vascular conductance (RVC = RBV/mean arterial blood pressure) were not different between normothermia and the two thermal conditions. During ischemic IHG, there were greater decreases in RBV and RVC in the heating trial. However, RBV and RVC were similar during postexercise muscle ischemia during heating and normothermia. RVC decreased less during cooling than in normothermia while the subjects performed the ischemic IHG protocol. During postexercise muscle ischemia, RVC was greater during cooling than in normothermia. These results indicate that heating augments mechanoreceptor-mediated renal vasoconstriction whereas cooling blunts metaboreceptor-mediated renal vasoconstriction.  相似文献   

18.
The purpose of this study was to identify the pattern of change in the density of activated sweat glands (ASG) and sweat output per gland (SGO) during dynamic constant-workload exercise and passive heat stress. Eight male subjects (22.8 +/- 0.9 yr) exercised at a constant workload (117.5 +/- 4.8 W) and were also passively heated by lower-leg immersion into hot water of 42 degrees C under an ambient temperature of 25 degrees C and relative humidity of 50%. Esophageal temperature, mean skin temperature, sweating rate (SR), and heart rate were measured continuously during both trials. The number of ASG was determined every 4 min after the onset of sweating, whereas SGO was calculated by dividing SR by ASG. During both exercise and passive heating, SR increased abruptly during the first 8 min after onset of sweating, followed by a slower increase. Similarly for both protocols, the number of ASG increased rapidly during the first 8 min after the onset of sweating and then ceased to increase further (P > 0.05). Conversely, SGO increased linearly throughout both perturbations. Our results suggest that changes in forearm sweating rate rely on both ASG and SGO during the initial period of exercise and passive heating, whereas further increases in SR are dependent on increases in SGO.  相似文献   

19.
Eight physically fit men performed two incremental bicycle ergometer tests, one in an ambient temperature of 25 degrees C and the other at 40 degrees C. Oesophageal temperature (Tes) increased continuously throughout the tests up to 38.0 and 38.3 degrees C, respectively. In both environments, forearm blood flow (plethysmography) was linearly related to Tes above the Tes threshold for vasodilation, but at the heaviest work loads this relationship was clearly attenuated and therefore indicated skin vasoconstriction, which tended to be more pronounced at 25 degrees C. During recovery at 25 degrees C, in some subjects the forearm blood flow increased above the levels observed at the end of the graded exercise in spite of a decreasing Tes. Skin blood flow, measured by laser Doppler flow meter at the shoulder, was quantitatively different but, on average, seemed to reveal the same response pattern as the forearm blood flow. In spite of the higher level of skin blood flow in the heat, blood lactate accumulation did not differ between the two environments. The present results suggest that there is competition between skin vasoconstriction and vasodilation at heavy work rates, the former having precedence in a thermoneutral environment to increase muscle perfusion. During short-term graded exercise in a hot environment, skin vasoconstriction with other circulatory adjustments seems to be able to maintain adequate muscle perfusion at heavy work levels, but probably not during maximum exercise.  相似文献   

20.
The goals of the study were to test the hypotheses that ethyl alcohol (ETOH) in low-to-moderate doses would alter thermo-regulation and/or disrupt the normal relationship between physiological and psychophysical indexes of heat stress during 40 degrees C water immersion and to characterize the cardiovascular response to the combined stimuli of heat, water immersion, and ETOH. Six healthy men underwent three trials of 21 min of immersion in water at 40.0 +/- 0.1 degrees C after consuming 0, 0.27, or 0.54 g ETOH/kg. Esophageal temperature (Tes) rose by approximately 1.0 degrees C during immersion for each trial. Per unit of Tes rise, changes during immersion in skin temperature, sweat rate, heart rate, systolic and diastolic blood pressure, and psychophysical assessments of comfort and overheating did not differ significantly by trial. Across trials, there was an apparent threshold for activation of thermoregulatory responses at an approximately 0.5 degrees C increase in Tes occurring after approximately 9 min of immersion. This threshold was identified psychophysically by increased ratings of overheating and decreased comfort. Above the threshold, there was an attenuation of the rate of increase of Tes. Cardiovascular stress was mild (rate-pressure product approximately 12,000) and not significantly increased by ETOH. Hypotension and tachycardia when subjects stood to exit the tub were observed. The data suggest that ETOH at the doses administered does not affect thermoregulatory, cardiovascular, or psychophysical indexes of heat stress during 40 degrees C water immersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号