首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current strategies to compare or synthesize morphology-based cladistic hypotheses do not empower individual cladists to (i) understand the origin, authorship, or structure of character data, (ii) efficiently locate and collate previously published character data, or (iii) effectively compare character data from competing cladistic hypotheses. This paper outlines the requisite terminology, methods and indices to effectively compile and compare morphological character data between competing cladistic hypotheses and to isolate and measure the most important factors behind differing cladistic results—character selection and character-state scoring. When the procedures outlined here are facilitated by appropriate software, morphology-based cladistics may overcome long-recognized limitations in data comparison and synthesis.  相似文献   

2.
Abstract Absolute criteria for evaluating cladistic analyses are useful, not only because cladistic algorithms impose structure, but also because applications of cladistic results demand some assessment of the degree of corroboration of the cladogram. Here, a means of quantitative evaluation is presented based on tree length. The length of the most-parsimonious tree reflects the degree to which the observed characters co-vary such that a single tree topology can explain shared character states among the taxa. This “cladistic covariation” can be quantified by comparing the length of the most parsimonious tree for the observed data set to that found for data sets with random covariation of characters. A random data set is defined as one in which the original number of characters and their character states are maintained, but for each character, the states are randomly reassigned to the taxa. The cladistic permutation tail probability, PTP, is defined as the estimate of the proportion of times that a tree can be found as short or shorter than the original tree. Significant cladistic covariation exists if the PTP is less than a prescribed value, for example, 0.05. In case studies based on molecular and morphological data sets, application of the PTP shows that:
  • 1 In the comparison of four different molecular data sets for orders of mammals, the sequence data set for alpha hemoglobin does not have significant cladistic covariation, while that for alpha crystallin is highly significant. However, when each data set was reduced to the 11 common taxa in order to standardize comparison, reduced levels of cladistic covariation, with no clear superiority of the alpha crystallin data, were found. Morphological data for these 11 taxa had a highly significant PTP, producing a tree roughly congruent with those for the three molecular sets with marginal or significant PTP values. Merging of all data sets, with the exclusion of the poorly structured alpha hemoglobin data, produced a data set with a significant PTP, and provides an estimate of the phylogenetic relationships among these 11 orders of mammals.
  • 2 In an analysis of lactalbumin and lysozyme DNA sequence data for four taxa, purine-pyrimidine coding yields a data set with significant cladistic covariation, while other codings fail. The data for codon position 3 taken alone exhibit the strongest cladistic covariation.
  • 3 A data set based on flavonoids in taxa of Polygonum initially yields a significant PTP; however, deletion of identically scored taxa leaves no significant cladistic covariation.
  • 4 For mitochondrial DNA data on population genome types for four species of the crested newt, there is significant cladistic covariation for the set of all genome types, and among the five mtDNA genome types within one of the species. However, a conditional PTP test that assumes species monophyly shows that no significant cladistic covariation exists among the fur species for these data.
  • 5 In an application of the test to a group of freshwater insects, as preliminary to biological monitoring, individual subsets of the taxonomic data representing larval, pupal, and adult stages had non-significant PTPs, while the complete data set showed significant cladistic structure.
  相似文献   

3.
Abstract— Data scored for cladistic analyses may be quantitative or qualitative, continuous or discrete, and show overlapping or non-overlapping values between taxa. Quantitative and qualitative are modes of expression of data, while continuous or discrete refer to properties of the set of numbers that express the data; both these pairs of terms have been confused with overlapping and non-overlapping. The degree of overlap of values between taxa is often used to filter characters in cladistic analyses: if a minimum amount of overlap is exceeded, or a minimum amount of disjunction not reached, characters are rejected as "not cladistic". However, this rests on a confusion between features of taxa and features of individual organisms (attributes). Cladistic characters are features of taxa, and comprise frequency distributions of attribute values over individuals of a taxon. Cladistic characters logically cannot overlap, although taxa may have overlapping attribute values. Thus, a priori rejection of characters that have overlapping attribute values is non-sensical. Such data may still be rejected from consideration for cladistic analysis if it could be demonstrated that they contain little recoverable phylogenetic signal. Few published analyses have empirically tested this. An analysis of overlapping morphometric data from three series of Banksia suggests that, at least in these cases, they map phylogeny almost as accurately as more conventional, qualitative morphological data. While more such tests are required, morphometric data should not be rejected a priori from cladistic analyses.  相似文献   

4.
We apply cladistic parsimony analysis to data sets from successional ecology, borrowing data from studies of the recovery of different communities, including ants in Spain, ants and birds in Australia, and butterflies in Costa Rica. Resultant parsimony analysis demonstrate increasing diversity, rooted at the poorest site and year, extending to either the various (rich) control sites, or with branches indicating alternative assemblages of species in some study sites. This analysis produces graphical summaries that are useful to evaluate the path of succession (species following one another). We demonstrate that the product of cladistic analysis compares favorably with methods commonly used in ecology, explicitly revealing a hierarchy that may relate closely to a time series, includes rare species, and illustrates how individual species relate to observed patterns. We detail certain operational considerations that influence the performance of the cladistic method, and we discuss the robustness of the method. This technique may be applied to study of the patterns of assemblage of natural or disturbed communities, both when and where each species appears as well as the order of appearance of species to develop a rich community. © The Willi Hennig Society 2008.  相似文献   

5.
The distinctly non‐random diversity of organismal form manifests itself in discrete clusters of taxa that share a common body plan. As a result, analyses of disparity require a scalable comparative framework. The difficulties of applying geometric morphometrics to disparity analyses of groups with vastly divergent body plans are overcome partly by the use of cladistic characters. Character‐based disparity analyses have become increasingly popular, but it is not clear how they are affected by character coding strategies or revisions of primary homology statements. Indeed, whether cladistic and morphometric data capture similar patterns of morphological variation remains a moot point. To address this issue, we employ both cladistic and geometric morphometric data in an exploratory study of disparity focussing on caecilian amphibians. Our results show no impact on relative intertaxon distances when different coding strategies for cladistic characters were used or when revised concepts of homology were considered. In all instances, we found no statistically significant difference between pairwise Euclidean and Procrustes distances, although the strength of the correlation among distance matrices varied. This suggests that cladistic and geometric morphometric data appear to summarize morphological variation in comparable ways. Our results support the use of cladistic data for characterizing organismal disparity.  相似文献   

6.
Abstract— As the only direct evidence of past organismic history, the fossil record has always figured importantly in the reconstruction of phylogeny. But the incomplete nature of the fossil record has also been cited as a basis for claiming that fossils play only a secondary role in developing phylogenetic hypotheses that encompass extant taxa. The reliability of fossil data in such applications is a function of the degree of fit between superpositional relationships and the sequence of phylogenetic events. Thirty-eight vertebrate cases are examined for the fit between age data based on fossil first occurrences and phylogenetic results based on cladistic analysis. A general correspondence between superpositional and cladistic information is observed, although the degree of fit varies widely among cases. Horses, certain other ungulates, synapsids and basal archosaurs, which show very high correlations, are taxa characterized by an abundance of superpositional and cladistic data. Other groups, such as primates, show very poor correlations because certain major clades have either unreasonably short fossil durations or no fossil record at all. Correlations are also diminished when either fossil records or cladistic sequences are poorly resolved. In most cases, cladistic resolution was observed to exceed superpositional resolution. Correlations can be enhanced by more precise (e.g. radiometric) age dates, but these also place a high expectation on the fit between fossil first occurrence and cladistic results. Stratigraphic occurrence does not always provide a precise reflection of independently derived phylogenies, but the correspondence between age and cladistic information is remarkably high in a notable number of vertebrate examples.  相似文献   

7.
Hypotheses of taxic homology are hypotheses of taxa (groups). Hypotheses of transformational homology are hypotheses of transformations between character states within the context of an explicit model of character evolution. Taxic and transformational homology are discussed with respect to secondary loss and reversal in the context of three-taxon statement analysis and standard cladistic analysis. We argue that it is important to distinguish complement relation homologies from those that we term paired homologues. This distinction means that the implementation of three-taxon statement analysis needs modification if all data are to be considered potentially informative. Modified three-taxon statement analysis and standard cladistic analysis yield different results for the example of character reversal provided by Kluge (1994) for both complement relation data and paired homologues. We argue that these different results reflect the different approaches of standard cladistic analysis and modified t.t.s. analysis. In the standard cladistic approach, absence, as secondary loss, can provide evidence for a group. This is because the standard cladistic approach implements a transformational view of homology. In the t.t.s approach discussed in this paper, absence can only be interpreted as secondary loss by congruence with other data; absence alone can never provide evidence for a group. In this respect, the modified t.t.s. approach is compatible with a taxic view of homology.  相似文献   

8.
The relationships within theAsteraceae-Asteroideae are scrutinized by means of cladistic analyses of morphological and chemical data. New data are presented, and novel interpretations of features previously used in cladistic analyses are made. Examples are insertion of anther filaments in the corolla, and morphology of disc floret styles, respectively. The results include a polyphyletic or paraphyleticInuleae s. l., and a paraphyleticHeliantheae s.l. in which theEupatorieae constantly form a subclade. Comparisons are made with previous cladistic analyses of morphological data, and those acquired from molecular data. Speculations about the evolution of certain organs are presented.  相似文献   

9.
The phylogenetic relationships of the genera of the Juglandaceae are examined with cladistic analyses of chloroplast DNA (cpDNA) restriction site variation and morphology. Rates of evolution of the chloroplast genome are slower than in many other groups of plants, enabling the entire genome to be utilized at the intergeneric level. The trees resulting from the two independent analyses were completely congruent. The combined analysis of the two data sets produced a tree completely congruent with the cladogram from the two data sets analyzed independently. The cladogram is compared with previous classifications, cladistic analyses, and fossil history for the family. Although the topology resulting from the cladistic analyses of this study was strongly congruent with previous estimates of relationships within the family, the fossil record indicates that the basal-most lineages in the cladistic trees arose later than the more terminal lineages. This reversed order of origin indicates that perhaps the rooting of the trees is erroneous.  相似文献   

10.
The sequential stages culminating in the publication of a morphological cladistic analysis of weevils in the Exophthalmus genus complex (Coleoptera: Curculionidae: Entiminae) are reviewed, with an emphasis on how early‐stage homology assessments were gradually evaluated and refined in light of intermittent phylogenetic insights. In all, 60 incremental versions of the evolving character matrix were congealed and analysed, starting with an assembly of 52 taxa and ten traditionally deployed diagnostic characters, and ending with 90 taxa and 143 characters that reflect significantly more narrow assessments of phylogenetic similarity and scope. Standard matrix properties and analytical tree statistics were traced throughout the analytical process, and series of incongruence length indifference tests were used to identify critical points of topology change among succeeding matrix versions. This kind of parsimony‐contingent rescoping is generally representative of the inferential process of character individuation within individual and across multiple cladistic analyses. The expected long‐term outcome is a maturing observational terminology in which precise inferences of homology are parsimony‐contingent, and the notions of homology and parsimony are inextricably linked. This contingent view of cladistic character individuation is contrasted with current approaches to developing phenotype ontologies based on homology‐neutral structural equivalence expressions. Recommendations are made to transparently embrace the parsimony‐contingent nature of cladistic homology.  相似文献   

11.
An adequate stratigraphic record can not only aid in both cladistic and stratophenetic reconstruction of phytogenies, but can also serve in estimating the temporal consistency of the resulting phylogenetic trees. For hypothetical data sets, cladistically constructed trees can be as consistent with the temporal distribution of sampled populations or species as those constructed stratophenetically. Empirical testing in taxonomic groups with sufficiently dense fossil records is needed to show whether, and under what conditions, this potential can be realized. A stratophenetic tree and cladistic trees based on several approaches to character weighting were constructed for Caribbean Neogene species of the bryozoan Metrarabdotos with multiple‐character data from closely spaced sequential populations. The modular morphology and highly punctuated evolutionary pattern of these species blur the distinction between continuous and discrete characters, so that all available characters are potentially of equal significance in establishing phytogenies, rather than just those with discrete states conventionally used in cladistic analysis. However, only the cladistic trees generated with all characters weighted to emphasize contribution to species discrimination have temporal consistencies that are clearly significant statistically and approach that of the stratophenetic tree in magnitude. These results provide a start toward establishing general guidelines for cladistic analysis of taxa with stratigraphie records too sparse for stratophenetic reconstruction.  相似文献   

12.
In phylogenetic trees the addition and removal of taxa has large effects on tree topology, hence measures of branch support and tree stability should account for taxonomic composition. Currently no comprehensive system of composition-dependent parameters exists in any cladistic or phenetic strategy. We introduce several values and indices based on a modification of the original jackknife resampling. Their advantage is a complete evaluation and optimization of taxon composition in phylogenetic data. While related to the Jackknife Monophyly Index (JMI), our system of support measures expands beyond parsimony analyses, and includes indices estimating support for the entire phylogenetic tree based on individual branch supports.  相似文献   

13.
Abstract— Protein variation among 37 species of carcharhiniform sharks was examined at 17 presumed loci. Evolutionary trees were inferred from these data using both cladistic character and a distance Wagner analysis. Initial cladistic character analysis resulted in more than 30 000 equally parsimonious tree arrangements. Randomization tests designed to evaluate the phylogenetic information content of the data suggest the data are highly significantly different from random in spite of the large number of parsimonious trees produced. Different starting seed trees were found to influence the kind of tree topologies discovered by the heuristic branch swapping algorithm used. The trees generated during the early phases of branch swapping on a single seed tree were found to be topologically similar to those generated throughout the course of branch swapping. Successive weighting increased the frequency and the consistency with which certain clades were found during the course of branch swapping, causing the semi-strict consensus to be more resolved. Successive weighting also appeared resilient to the bias associated with the choice of initial seed tree causing analyses seeded with different trees to converge on identical final character weights and the same semi-strict consensus tree.
The summary cladistic character analysis and the distance Wagner analysis both support the monophyly of two major clades, the genus Rhizoprionodon and the genus Sphyrna. . The distance Wagner analysis also supports the monophyly of the genus Carcharhinus . However, the cladistic analysis suggests that Carcharhinus is a paraphyletic group that includes the blue shark Prionace glauca .  相似文献   

14.
D L Lipscomb 《Origins of life》1984,13(3-4):235-248
The superiority of cladistic methods to both synthetic and phenetic methods is briefly advanced and reviewed. Cladistics creates testable hypotheses of phylogeny that also give a highly informative summary of available data. Thus it best fits the criteria for a method for determining the general reference classification in biology. For protistologists in particular, cladistics is especially useful. Inundated by an abundance of ultrastructural, biochemical, and cell biological information, protistologists could be greatly helped by the informative way in which cladistics orders and summarizes the data. In addition to classifying protist taxa, hypotheses about the evolution of cell organelles and cellular could be scientifically formulated and tested by cladistics . Because cladistic classifications best summarize the data, they would also be best for making predictions about taxa and characters. They would, for the same reason, be the most stable. Widespread adoption of cladistic methods would serve to stabilize the now fluid state of protist taxonomy. It is for all of these reasons that such methods best suit the needs of the evolutionary protistologist .  相似文献   

15.
The superiority of cladistic methods to both synthetic and phenetic methods is briefly advanced and reviewed. Cladistics creates testable hypotheses of phylogeny that also give a highly informative summary of available data. Thus it best fits the criteria for a method for determining the general reference classification in biology.For protistologists in particular, cladistics is especially useful. Inundated by an abundance of ultrastructural, biochemical, and cell biological information, protistologists could be greatly helped by the informative way in which cladistics orders and summarizes the data. In addition to classifying protist taxa, hypotheses about the evolution of cell organelles and cellular could be scientifically formulated and tested by cladistics. Because cladistic classifications best summarize the data, they would also be best for making predictions about taxa and characters. They would, for the same reason, be the most stable. Widespread adoption of cladistic methods would serve to stabilize the now fluid state of protist taxonomy. It is for all of these reasons that such methods best suit the needs of the evolutionary protistologist.  相似文献   

16.
17.
Abstract— The stability of each clade resolved by a data set can be assessed as the minimum number of characters that, when removed, cause resolution of the clade to be lost; a clade is regarded as having been lost when it does occur in the strict consensus tree. The clade stability index (CSI) is the ratio of this minimum number of characters to the number of informative characters in the data set. The CSI of a clade can range from 0 (absence from the consensus tree of the complete data set) to 1 (all informative characters must be removed for the clade to fail to be resolved). Minimum character removal scores are discoverable by a procedure known as successive character removal, in which separate cladistic analyses are conducted of all possible data sets derived by the removal of individual characters and character combinations of successively increasing number.  相似文献   

18.
Ribosomal RNA sequences and cladistic analysis were used to infer a phylogeny for eight bryophyte taxa. Portions of the cytoplasmic large (26S-like) and small (18S-like) subunit ribosomal RNA genes were sequenced for three marchantioid liverworts (Asterella, Conocephalum, and Riccia), three mosses (Atrichum, Fissidens, and Plagiomnium), and two hornworts (Phaeoceros and Notothylas). Cladistic analysis of these data suggests that the hornworts are the sister group to the mosses, the mosses and hornworts form a clade that is sister to the tracheophytes, and the liverworts form a clade sister to the other land plants. These results differ from previous cladistic analyses based on morphology, ultrastructure, and biochemistry, wherein the mosses alone are sister group to the tracheophytes. We conclude that cladistic analysis of molecular data can provide an independent data set for the study of bryophyte phylogeny, but the differences between the molecular and morphological results are a topic for further investigation.  相似文献   

19.
Horizontal starch gel electrophoresis was employed to investigate allozyme variation at 19 isozyme loci, in nine closely-related Atlantic-Mediterranean gobiid fish species, to assess genetic relationships, and to compare this with a phyletic hypothesis based on morphological apo-morphies. The species examined were Gobius niger, G. auratus, G. cruentatus, G. paganellus, Mauligobius maderensis, Zosterisessor ophiocephalus, Thorogobius ephippiatus, Padogobius martensii and P. nigricans . Various phenetic and cladistic analyses were performed on isozyme and morphological data. The phenetic and cladistic results from morphological data, and the cladistic results from isozyme data, were largely comparable, with P. martensü and P. nigricans forming a sister group to all the other taxa, species of Cobius forming a crown group within the latter, and stem lines formed by Mauligobius, Zosterisessor and Thorogobius , respectively. The isozymic estimates of genetic distance differed from these chiefly in the relative positions of Zosterisessor and G. auratus , which appear less similar to other species of Gohius. G. auratus shows many alleles which are unique within the genus Gobius ; possible explanations for this are put forward. The position of nigricans as congeneric with Padogobius martensü is confirmed by both phenetic and cladistic analyses of isozyme data.  相似文献   

20.
It has been argued that continuous characteristics should be excluded from cladistic analysis for two reasons: because the data are considered inappropriate; and because the methods for the conversion of these data into codes are considered arbitrary. Metric data, however, fulfill the sole criterion for inclusion in phylogenetic analysis, the presence of homologous character states, and thus cannot be excluded as a class of data. The second line of reasoning, that coding methods are arbitrary, applies to gap and segment coding, but quantitative data can be coded in a nonarbitrary manner by means of tests of statistical significance. These procedures, which are both objective and repeatable, determine the probability that two taxa possess an homologous character state; that is, if they have inherited a particular central tendency and distribution of individual variates unchanged from a common ancestor. Thus, the application of statistical tests to quantitative data empirically detects the presence of evolu tionary change, the raw material of phylogenetic reconstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号