首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
M Green  M Ishino  P M Loewenstein 《Cell》1989,58(1):215-223
The HIV-1 Tat protein is a potent trans-activator essential for virus replication. We reported previously that HIV-1 Tat peptides containing residues 37-48 (mainly region II), a possible activating region, and residues 49-57 (region III), a nuclear targeting and putative nucleic acid binding region, possess minimal but distinct trans-activator activity. The presence of residues 58-72 (region IV) greatly enhances trans-activation. We postulate that Tat mutant peptides with an inactive region II and a functional region III can behave as dominant negative mutants. We synthesized minimal domain peptides containing single amino substitutions for amino acid residues within region II that are conserved among different HIV isolates. We identify four amino acid residues whose substitution within Tat minimal domain peptides leads to defects in transactivation. Some of these mutants are trans-dominant in several peptide backbones, since they strongly inhibit trans-activation by wild-type Tat protein added to cells or expressed from microinjected plasmid. Significantly, trans-activation of integrated HIV-LTRCAT is blocked by some trans-dominant mutant peptides. These results suggest an attractive approach for the development of an AIDS therapy.  相似文献   

5.
The human cdc2-related kinase PITALRE is the catalytic component of TAK, the Tat-associated kinase. Previously, we have proposed that TAK is a cellular factor that mediates Tat transactivation function. Here we demonstrate that transient overexpression of PITALRE specifically squelches Tat-1 activation of both a transfected and an integrated human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR), suggesting that PITALRE mediates Tat function as a multiprotein complex. A catalytic mutant of PITALRE, D167N, was found to be more efficient than wild-type PITALRE in squelching Tat transactivation. Neither wild-type PITALRE nor D167N was able to squelch transactivation of the human T-cell leukemia type 1 LTR by the Tax protein. Additionally, we show that artificial targeting of PITALRE to a nascent RNA element, in the absence of Tat, activated HIV-1 LTR expression. These results indicate that a PITALRE-containing complex mediates transactivation by Tat and suggest that Tat proteins function by localizing such a PITALRE-containing complex to the site of the transcribing provirus.  相似文献   

6.
7.
8.
Tat是人免疫缺陷病毒(HIV)基因组编码的反式激活因子,突变分析表明它含有几个重要的功能域。为寻找控制HIV复制的途径,构建了以HIV-1LTR(-158-+80)为启动子的Tat cDNA全长反义表达质粒pAS-Tat,并用已经构建的HIV LTR-158到+80为启动子,具有不同突变点的突变Tat基因表达质粒,以荧光酶基因为报告基因,共转染Jurkat细胞,结果发现无论是反义Tat表达质粒还  相似文献   

9.
The Tat protein of the human immunodeficiency virus type 1 (HIV-1) is required for efficient viral gene expression. By means of mutational analyses, several domains of the Tat protein that are required for complete activation of HIV-1 gene expression have been defined. These include an amino-terminal activating domain, a cysteine-rich dimerization domain, and a basic domain important in the binding of Tat to the trans-activation response element (TAR) and in Tat nuclear localization. Recently, we described a mutation, known as delta tat, which resulted in a protein with a truncated basic domain. This protein had a "trans-dominant" phenotype in that it inhibited wild-type Tat activation of the HIV-1 LTR. To further characterize the requirements for generating a Tat trans-dominant phenotype, we constructed a variety of Tat proteins with truncations or substitutions in the basic domain. A number of these proteins showed a trans-dominant phenotype. These Tat mutants also inhibited activation of the HIV-1 LTR by a protein composed of Tat fused to the prokaryotic R17 (phage MS2) RNA-binding protein in which the R17 recognition element was inserted in the HIV-1 LTR in place of TAR. Thus, an intact TAR element was not required for this inhibition. We also studied the cellular localization of Tat and a trans-dominant Tat mutant by means of immunofluorescence staining with the use of antibodies reactive to different domains of the Tat protein. The results indicated that Tat becomes localized predominantly in the nucleus both in the presence and absence of the trans-dominant Tat construct, suggesting that the trans-dominant mutant does not inhibit Tat nuclear localization. These studies further define the requirements for the creation of trans-dominant Tat mutants, and suggest that the mechanism of trans-dominant Tat inhibition may be either the formation of an inactive complex between wild-type and mutant Tat or sequestration of cellular factors involved in regulating HIV-1 gene expression.  相似文献   

10.
A genetic screening procedure has been developed to identify mutant forms of bovine pancreatic trypsin inhibitor (BPTI) that can fold to an active conformation but are inactivated more rapidly than the wild-type protein. Small cultures of Escherichia coli containing plasmids with mutagenized BPTI genes were grown in microtiter plates, lysed, and treated with dithiothreitol (DTT). Under these conditions, unfolding and inactivation of the wild-type protein has a half-time of about 10 hours. Variants of BPTI that are inactivated within 1 hour were identified by adding trypsin and a chromogenic substrate. Approximately 11,000 mutagenized clones were screened in this way and 75 clones that produce proteins that can fold but are inactivated by DTT were isolated. The genes coding for 68 "DTT-sensitive" mutant proteins were sequenced, and 25 different single amino acid substitutions at 15 of the 58 residues of the protein were identified. Most of the altered residues are largely buried in the core of the native wild-type structure and are highly conserved among proteins homologous to BPTI. These results indicate that a large fraction of the sequence of the protein contributes to the kinetic stability of the active conformation, but it also appears that substitutions can be tolerated at most sites without completely preventing folding. Because this genetic screen is based on changes in folding energetics, further studies of the isolated mutants are expected to provide information about the roles of the altered residues in folding and unfolding.  相似文献   

11.
Streptomyces scabies is one of a group of organisms that causes the economically important disease potato scab. Analysis of the S. scabies genome sequence indicates that it is likely to secrete many proteins via the twin arginine protein transport (Tat) pathway, including several proteins whose coding sequences may have been acquired through horizontal gene transfer and share a common ancestor with proteins in other plant pathogens. Inactivation of the S. scabies Tat pathway resulted in pleiotropic phenotypes including slower growth rate and increased permeability of the cell envelope. Comparison of the extracellular proteome of the wild type and ΔtatC strains identified 73 predicted secretory proteins that were present in reduced amounts in the tatC mutant strain, and 47 Tat substrates were verified using a Tat reporter assay. The ΔtatC strain was almost completely avirulent on Arabidopsis seedlings and was delayed in attaching to the root tip relative to the wild‐type strain. Genes encoding 14 candidate Tat substrates were individually inactivated, and seven of these mutants were reduced in virulence compared with the wild‐type strain. We conclude that the Tat pathway secretes multiple proteins that are required for full virulence.  相似文献   

12.
Wu XH  Chen RC  Gao Y  Wu YD 《Biochemistry》2010,49(47):10237-10245
We recently found that Asp-His-Ser/Thr-Trp hydrogen-bonded tetrads are widely and uniquely present in the WD40-repeat proteins. WDR5 protein is a seven WD40-repeat propeller with five such tetrads. To explore the effect of the tetrad on the structure and stability of WD40-repeat proteins, the wild-type WDR5 and its seven mutants involving the substitutions of tetrad residues have been isolated. The crystal structures of the wild-type WDR5 and its three WDR5 mutants have been determined by X-ray diffraction method. The mutations of the tetrad residues are found not to change the basic structural features. The denaturing profiles of the wild type and the seven mutants with the use of denaturant guanidine hydrochloride have been studied by circular dichroism spectroscopy to determine the folding free energies of these proteins. The folding free energies of the wild type and the S62A, S146A, S188A, D192E, W330F, W330Y, and D324E mutants are measured to be about -11.6, -2.7, -3.1, -2.9, -3.6, -7.1, -7.0, and -7.5 kcal/mol, respectively. These suggest that (1) the hydrogen bonds in these hydrogen bond networks are unusually strong; (2) each hydrogen-bonded tetrad provides over 12 kcal/mol stability to the protein; thus, the removal of any single tetrad would cause unfolding of the protein; (3) since there are five tetrads, the protein must be in a highly unstable state without the tetrads, which might be related to its biological functions.  相似文献   

13.
To study the structure relationship of different Tat domains, the full-length Tat protein Tat1-86, the gene product of the first exon Tat1-72 which retains full activity of the protein, and a panel of shorter peptides mimicking different regions of the primary structure of the Tat protein were chemically synthesized by the solid-phase method, using an efficient protocol. Synthetic Tat1-86 and Tat1-72 transactivated beta-galactosidase activity in HeLa cells containing the lacZ gene under the control of the human immunodeficiency virus type 1 long terminal repeat. Analyses of the activity of Tat1-86 and Tat1-72 with the sulfhydryl of cysteine residues free or protected by the acetamidomethyl group showed that only the Tat fragments with deprotected cysteine residues retain transactivation ability. In contrast, peptide Tat1-48 was inactive, with cysteine residues either free or protected. Similarly, other shorter synthetic peptides covering the different Tat domains were inactive. Interestingly, when peptides Tat1-48 and Tat38-60 were used simultaneously, a significant transactivation was obtained. This result suggests that both peptide domains are implicated in transactivation, probably by acting at two different sites. This permits us to propose a fundamentally new step in the understanding of the molecular mechanism of Tat transactivation.  相似文献   

14.
The twin-arginine translocation (Tat) pathway translocates folded proteins across the cytoplasmic membrane. Proteins transported through this secretion system typically carry two arginine residues in their signal peptide that is cleaved off during translocation. Recently, we demonstrated the presence of the Tat pathway in Legionella pneumophila Philadelphia-1 and the Rieske Fe/S protein PetA was one of the predicted Tat substrates. Because we observed that the signal peptide of PetA is not processed and that this protein is still membrane associated in the tat mutants, correct membrane insertion was assayed using a trypsin sensitivity assay. We conclude that the Tat pathway is necessary for correct membrane insertion of L. pneumophila PetA.  相似文献   

15.
We employed a genetic approach to study protein glycosylation in the procyclic form of the parasite Trypanosoma brucei. Two different mutant parasites, ConA 1-1 and ConA 4-1, were isolated from mutagenized cultures by selecting cells which resisted killing or agglutination by concanavalin A. Both mutant cells show reduced concanavalin A binding. However, the mutants have different phenotypes, as indicated by the fact that ConA 1-1 binds to wheat germ agglutinin but ConA 4-1 and wild type do not. A blot probed with concanavalin A revealed that many proteins in both mutants lost the ability to bind this lectin, and the blots resembled one of wild type membrane proteins treated with PNGase F. This finding suggested that the mutants had altered asparagine- linked glycosylation. This conclusion was confirmed by studies on a flagellar protein (Fla1) and procyclic acidic repetitive protein (PARP). Structural analysis indicated that the N- glycan of wild type PARP is exclusively Man5GlcNAc2 whereas that in both mutants is predominantly a hybrid type with a terminal N- acetyllactosamine. The occupancy of the PARP glycosylation site in ConA 4-1 was much lower than that in ConA 1-1. These mutants will be useful for studying trypanosome glycosylation mechanisms and function.   相似文献   

16.
The human immunodeficiency virus type 1 Tat protein is a potent activator of viral gene expression and replication. Tat can also affect the expression of cellular genes including cytokines, extracellular matrix proteins, enzymes degrading the basement membrane and cell cycle-related proteins, and can regulate cellular functions such as growth, migration and angiogenesis. In addition, under certain circumstances, Tat may have tumorigenic effects. These activities of Tat appear to be mediated by different mechanisms such as the transactivation of cellular gene expression or the interaction of extracellular Tat with the cell membrane through both receptor-mediated and nonreceptor-mediated interactions. Deregulation of cellular gene expression and function by Tat cause abnormalities which may participate in AIDS pathogenesis and in the development of AIDS-associated disorders.  相似文献   

17.
18.
Site-directed mutagenesis was used to identify functional domains present within the human immunodeficiency virus (HIV) tat protein. Transient cotransfection experiments showed that derivatives of tat protein with amino acid substitutions either at the amino-terminal end or at cysteine residue 22, 37, 27, or 25 were no longer able to transactivate HIV long terminal repeat-directed gene expression. Incubation of Tat expressed in Escherichia coli with zinc demonstrated that both authentic Tat and cysteine mutation derivatives could form metal-protein complexes. The tat proteins that contained alterations within the cluster of positively charged amino acid residues retained their ability to transactivate gene expression, albeit at markedly reduced levels. Indirect immunofluorescence showed that the authentic tat protein and the amino-terminal and cysteine substitution mutants all localized in the nucleus, with accumulation being most evident in the nucleolus. In contrast, nuclear accumulation was greatly reduced with the basic-substitution mutations. Consistent with this result, a fusion protein that contained amino acids GRKKR, derived from the basic region, fused to the amino-terminal end of beta-galactosidase also accumulated within the nucleus. These results demonstrate that the 14-kilodalton tat protein contains at least three distinct functional domains affecting localization and transactivation.  相似文献   

19.
The Escherichia coli Tat apparatus is a membrane-bound protein translocase that serves to export folded proteins synthesized with N-terminal twin-arginine signal peptides. The essential TatC component of the Tat translocase is an integral membrane protein probably containing six transmembrane helices. Sequence analysis identified conserved TatC amino acid residues, and the role of these side-chains was assessed by single alanine substitution. This approach identified three classes of TatC mutants. Class I mutants included F94A, E103A and D211A, which were completely devoid of Tat-dependent protein export activity and thus represented residues essential for TatC function. Cross-complementation experiments with class I mutants showed that co-expression of D211A with either F94A or E103A regenerated an active Tat apparatus. These data suggest that different class I mutants may be blocked at different steps in protein transport and point to the co-existence of at least two TatC molecules within each Tat translocon. Class II mutations identified residues important, but not essential, for Tat activity, the most severely affected being L99A and Y126A. Class III mutants showed no significant defects in protein export. All but three of the essential and important residues are predicted to cluster around the cytoplasmic N-tail and first cytoplasmic loop regions of the TatC protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号