首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Neural crest cells separate from the neural epithelium in a region devoid of a basal lamina and migrate along pathways bordered by intact basal laminae. The distribution of basal laminae suggests that they might have an important role in the morphogenesis of the neural crest by acting as a barrier to migration. The experiments reported here have tested directly whether neural crest cells can penetrate a basal lamina. Isolated neural tubes, neural crest cells cultured for 24 hr, or pigmented neural crest cells were explanted onto human placental amnions from which the epithelium had been removed to expose the basal lamina. In no case did neural crest cells or crest derivatives penetrate the basal lamina to invade the underlying stroma. If crest cells were grown on the stromal side of the amnion, they invaded the connective tissue. Pigmented neural crest derivative and [3H]thymidine-labeled nonpigmented crest cells were also confronted with chick embryonic basal laminae by grafting the cells into the lumen of the neural tube at the axial levels where host crest migration had commenced. Most of the grafted cells invaded the neural epithelium and accumulated after 24 hr at the basal surface of the neural tube. A few crest cells escaped through the dorsal surface of the neural tube and entered the overlying ectoderm, presumably through the wound created during the grafting procedure. Some of these grafted cells, located initially by light microscopy, were examined at the higher magnification and resolution offered by the transmission electron microscope to determine the relationship of the grafted cells to the basal lamina. In 50% (14 total) of the cases, the crest cells never reached the basal lamina of the neural tube, but were trapped by cell junctions between the neural epithelial cells. Of the remaining grafted cells that were relocated in the TEM (50%, total 15) all were spread on the basal lamina, but were not seen penetrating it. Likewise, in the three cases where crest cells were found in the epidermal ectoderm, all were in contact with the basal lamina of the ectoderm but did not have any processes extending through it. In three cases, at the level of the light microscope, crest cells were found to extend through the basal surface of the neural tube. In all these instances, the cells followed the dorsal root nerve exiting through a region of the neural tube that is devoid of a basal lamina.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Newbern JM  Snider WD 《Neuron》2012,73(4):623-626
In this issue of Neuron, Napoli et al. (2012) demonstrate that elevated ERK/MAPK signaling in Schwann cells is a crucial trigger for Schwann cell dedifferentiation in vivo. Moreover, the authors show that dedifferentiated Schwann cells have the potential to coordinate much of the peripheral nerve response to injury.  相似文献   

5.
6.
7.
Previous studies of denervated and cultured muscle have shown that the expression of the neural cell adhesion molecule (N-CAM) in muscle is regulated by the muscle's state of innervation and that N-CAM might mediate some developmentally important nerve-muscle interactions. As a first step in learning whether N-CAM might regulate or be regulated by nerve-muscle interactions during normal development, we have used light and electron microscopic immunohistochemical methods to study its distribution in embryonic, perinatal, and adult rat muscle. In embryonic muscle, N-CAM is uniformly present on the surface of myotubes and in intramuscular nerves; N-CAM is also present on myoblasts, both in vivo and in cultures of embryonic muscle. N-CAM is lost from the nerves as myelination proceeds, and from myotubes as they mature. The loss of N-CAM from extrasynaptic portions of the myotube is a complex process, comprising a rapid rearrangement as secondary myotubes form, a phase of decline late in embryogenesis, a transient reappearance perinatally, and a more gradual disappearance during the first two postnatal weeks. Throughout embryonic and perinatal life, N-CAM is present at similar levels in synaptic and extrasynaptic regions of the myotube surface. However, N-CAM becomes concentrated in synaptic regions postnatally: it is present in postsynaptic and perisynaptic areas of the muscle fiber, both on the surface and intracellularly (in T-tubules), but undetectable in portions of muscle fibers distant from synapses. In addition, N-CAM is present on the surfaces of motor nerve terminals and of Schwann cells that cap nerve terminals, but absent from myelinated portions of motor axons and from myelinating Schwann cells. Thus, in the adult, N-CAM is present in synaptic but not extrasynaptic portions of all three cell types that comprise the neuromuscular junction. The times and places at which N-CAM appears are consistent with its playing several distinct roles in myogenesis, synaptogenesis, and synaptic maintenance, including alignment of secondary along primary myotubes, early interactions of axons with myotubes, and adhesion of Schwann cells to nerve terminals.  相似文献   

8.
We have shown that muscle-derived stem cells (MDSCs) transplanted into dystrophic (mdx) mice efficiently regenerate skeletal muscle. However, MDSC populations exhibit heterogeneity in marker profiles and variability in regeneration abilities. We show here that cell sex is a variable that considerably influences MDSCs' regeneration abilities. We found that the female MDSCs (F-MDSCs) regenerated skeletal muscle more efficiently. Despite using additional isolation techniques and cell cloning, we could not obtain a male subfraction with a regeneration capacity similar to that of their female counterparts. Rather than being directly hormonal or caused by host immune response, this difference in MDSCs' regeneration potential may arise from innate sex-related differences in the cells' stress responses. In comparison with F-MDSCs, male MDSCs have increased differentiation after exposure to oxidative stress induced by hydrogen peroxide, which may lead to in vivo donor cell depletion, and a proliferative advantage for F-MDSCs that eventually increases muscle regeneration. These findings should persuade researchers to report cell sex, which is a largely unexplored variable, and consider the implications of relying on cells of one sex.  相似文献   

9.
低温保存许旺细胞对周围神经再生的作用   总被引:1,自引:0,他引:1  
目的:比较原代培养许旺细胞(Schwann cells,SCs)和冷冻保存的SCs移植对损伤后坐骨神经再生的作用。方法:原代培养和液氮保存的SCs分别移植到桥接缺损坐骨神经的硅胶管内。在移植后不同时间(第6和8周末),硅胶管远端神经干内注射HRP,逆行追踪背根神经节和脊髓前角的标记神经元数量;测量再生神经纤维的复合动作电位传导速度;电镜观察再生神经纤维的髓鞘形成。结果:原代培养和冷冻保存SCs在移植后不同时间其背根神经节和脊髓前角神经元HRP标记细胞数量、再生神经纤维的复合动作电位传导速度基本一致,再生神经纤维髓鞘的形成未见明显差别。结论:冷冻保存的SCs仍具有促进损伤后周围神经再生的能力。  相似文献   

10.
We have used the enzyme elastase to remove the basal lamina of epithelia from two insects: the upper Malpighian tubules of Rhodnius prolixus and imaginai discs of Drosophila melanogaster. Removal of the basal lamina was confirmed using scanning and transmission electron microscopy. Use of the technique on the Malphighian tubules of Rhodnius reveals for the first time the three-dimensional organization of the circumferential folds of the basal plasma membrane. Elastase is much more effective in removing the basal lamina than are the enzymes hyaluronidase, collagenase, and chymotrypsin, either alone or in combination. Following elastase treatment, cells of the Malpighian tubules dissociate with only mild mechanical agitation into single, viable cells. Treatment with elastase removes the basal laminae of imaginai discs of Drosophila and accelerates evagination as has been previously described for trypsin. To obtain single cell preparations from elastase-treated imaginai discs, mechanical stirring in Ringer low in Ca2+ was required. In addition to its usefulness in cell isolation, elastase treatment allows examination of the effect of removal of basal laminae on the physiology and development of insect epithelia.  相似文献   

11.
Two proteins, ColQ and PRiMA, organize tetramers of acetylcholinesterase (AChE) and of butyrylcholinesterase (BChE) through peptide interactions. A short proline rich sequence in the N-terminal domain of ColQ or PRiMA associates four C-terminal extension of AChE or BChE. ColQ targets the enzymes in the basal lamina, PRiMA targets the enzymes at the plasma membrane. These complexes represent the mature proteins. The unassembled C-terminal extention of AChE is the key determinant recognized during the "quality control" of protein synthesis. Unassembled catalytic subunits are then degraded by the proteasome pathway. At the neuromuscular junction, ColQ/AChE represents the concentrated enzyme. The clusterisation of AChE depends upon ColQ through three sites of interactions: two different heparin binding domains in the collagen domain interact with heparan sulfate proteoglycan particularly the perlecan and the C-terminal non collagenic domain interacts with MuSK, the tyrosine kinase receptor organiser of the neuromuscular junction. The absence of ColQ and AChE has revealed that the excess of Ach stimulates more nicotinic receptors but probably not until their desensitization. Several morphological modifications may help the clearance of Ach. Conversely the synapse transmission fails during high frequency nerve stimulation.  相似文献   

12.
Elongation, branching and regeneration rate of axons are increased (two folds) in Trembler tibial nerve after local freezing and control grafting (NNN; TrTrTr). After chimera transplantation (NTrN), normal regenerating axons are increased by 50% when they grow within a mutant (Tr) as compared to a normal (N) graft. Our results emphasize the influence of the density of Schwann cells and multi-layered basal laminas which characterize Trembler peripheral nerves.  相似文献   

13.
Primary cultures that contain only Schwann cells and sensory nerve cells synthesize basal lamina. The assembly of this basal lamina appears to be essential for normal Schwann cell development. In this study, we demonstrate that Schwann cells synthesize two major heparan sulfate-containing proteoglycans. Both proteoglycans band in dissociative CsCl gradients at densities less than 1.4 g/ml, and therefore, presumably, have relatively low carbohydrate-to-protein ratios. The larger of these proteoglycans elutes from Sepharose CL-4B in 4 M guanidine hydrochloride (GuHCl) at a Kav of 0.21 and contains heparan sulfate and chondroitin sulfate chains of Mr 21,000 in a ratio of approximately 3:1. This proteoglycan is extracted from cultures by 4 M GuHCl but not Triton X-100 and accumulates only when Schwann cells are actively synthesizing basal lamina. The smaller proteoglycan elutes from Sepharose CL-4B at a Kav of 0.44 and contains heparan sulfate and chondroitin sulfate chains of Mr 18,000 in a ratio of approximately 4:1. This proteoglycan is extracted by 4 M GuHCl or by Triton X-100. The accumulation of this proteoglycan is independent of basal lamina production.  相似文献   

14.
15.
Injured axons in mammalian peripheral nerves often regenerate successfully over long distances, in contrast to axons in the brain and spinal cord (CNS). Neurite growth-inhibitory proteins, including the recently cloned membrane protein Nogo-A, are enriched in the CNS, in particular in myelin. Nogo-A is not detectable in peripheral nerve myelin. Using regulated transgenic expression of Nogo-A in peripheral nerve Schwann cells, we show that axonal regeneration and functional recovery are impaired after a sciatic nerve crush. Nogo-A thus overrides the growth-permissive and -promoting effects of the lesioned peripheral nerve, demonstrating its in vivo potency as an inhibitor of axonal regeneration.  相似文献   

16.
Kang  Hyuno  Tian  Le  Thompson  Wesley 《Brain Cell Biology》2003,32(5-8):975-985
Schwann cells and axons labeled by transgene-encoded, fluorescent proteins can be repeatedly imaged in living mice to observe the reinnervation of neuromuscular junctions. Axons typically return to denervated junctions by growing along Schwann cells contained in the old nerve sheaths or “Schwann cell tubes”. These axons then commonly “escape” the synaptic sites by growing along the Schwann cell processes extended during the period of denervation. These “escaped fibers” grow to innervate adjacent synaptic sites along Schwann cells bridging these sites. Within the synaptic site, Schwann cells, originally positioned above the synaptic site continue to cover the acetylcholine receptors (AChRs) immediately following denervation, but gradually vacate portions of this site. When regenerating axons return, they first deploy along the Schwann cells and ignore sites of AChRs vacated by Schwann cells. In many cases these vacated sites are never reinnervated and are ultimately lost. Following partial denervation, Schwann cells grow in an apparently tropic fashion from denervated to nearby innervated synaptic sites and serve as the substrates for nerve sprouting. These experiments show that Schwann cells provide pathways that stimulate axon growth and insure the rapid reinnervation of denervated or partially denervated muscles.  相似文献   

17.
The polysialic acid (PSA) moiety of the neural cell adhesion molecule (NCAM) has been shown to support dynamic changes underlying peripheral nerve regeneration. Using transgenic mice expressing polysialyltransferase ST8SiaIV under control of a glial-specific (proteolipid protein, PLP) promoter (PLP-ST8SiaIV-transgenic mice), we tested the hypothesis that permanent synthesis of PSA in Schwann cells impairs functional recovery of lesioned peripheral nerves. After sciatic nerve crush, histomorphometric analyses demonstrated impaired remyelination of regenerated axons at the lesion site and in target tissue of PLP-ST8SiaIV-transgenic mice, though the number and size of regenerating unmyelinated axons were not changed. This was accompanied by slower mechanosensory recovery in PLP-ST8SiaIV-transgenic mice. However, the proportion of successfully mono-(re)innervated motor endplates in the foot pad muscle was significantly increased in PLP-ST8SiaIV-transgenic mice when compared with wild-type littermates, suggesting that long-term increase in PSA levels in regenerating nerves may favor selective motor target reinnervation. The combined negative and positive effects of a continuous polysialyltransferase overexpression observed during peripheral nerve regeneration suggest that an optimized time- and differentiation-dependent control of polysialyltransferase expression in Schwann cells may further improve recovery after peripheral nerves injury.  相似文献   

18.
Previous work demonstrated that Schwann cells (SCs) must interact with nerve cells (NCs) in order to generate their basal lamina (BL) in culture (M. B. Bunge, A. K. Williams, and P. M. Wood, 1982, Dev. Biol. 92, 449-460). The present study was undertaken to determine if this interaction requires proximity of NCs to SCs. Coverslips carrying isolated SCs were placed into culture dishes containing normally contacting SCs + NCs, NCs alone, or SCs alone and were maintained in these dishes for 3-4 weeks in medium known to foster the differentiation of axon-related SCs (BL formation, myelination). The SCs on the coverslip were not allowed to contact the cells in the culture dish. In other experiments, SCs isolated on coverslips were simply cultured in medium conditioned by contacting SCs + NCs, NCs alone, or SCs alone. The accumulation of BL components was monitored by light microscopic immunocytochemistry and the assembly of BL structure assessed by electron microscopy. When SCs were cocultured with but not contacted by neurons, immunostaining for BL constituents revealed a patchy deposition of material in sharp contrast to the linear deposition observed on axon-related SCs. Electron microscopy of these isolated SCs revealed short segments of BL, strands or clumps of BL-like material extending away from the cell surface, and accumulation of this material between cells. A greater number of isolated SCs were immunostained when grown with contacting SCs + NCs than with NCs or SCs. The conditioned medium experiments yielded similar results; only patchy BL was observed and more immunostaining was detected on isolated SCs when the medium had been conditioned by contacting SCs + NCs than by NCs alone or SCs alone. Immunostaining was less overall in the conditioned medium experiments than in the cell coculture work. In addition, standard SC + NC cultures grown in differentiation-supporting medium were studied by electron microscopy. SCs that were not contacted by axons but were positioned between fascicles of normally contacting SCs + NCs were identified under phase microscopy and then examined for the presence of BL. These SCs exhibited only occasional segments of BL or detached BL-like material. Lastly, within differentiated fascicles, nonensheathing SCs were compared with neighboring myelinating SCs that were in substantial contact with axons. BL-deficient nonensheathing SCs were found directly adjacent to axons and BL-coated myelinating SCs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Condensation precedes chondrogenic differentiation during development of primary cartilage. While neural cell adhesion molecule (N-CAM) enhances condensation, it is unclear whether N-CAM is also required for initiation of chondrogenic differentiation. In this study, the role of N-CAM in secondary chondrogenesis from periosteal cells of the quadratojugal (QJ) from embryonic chicks was studied using several in vitro approaches. The QJ is a membrane bone and so is not preceded by cartilage formation during development. However, QJ periosteal cells can differentiate into chondrocytes to form secondary cartilage in vivo. When QJ periosteal cells were enzymatically released and plated in low density monolayer, clonal or agarose cultures, chondrogenesis was initiated in the absence of N-CAM expression. Furthermore, overexpression of the N-CAM gene in periosteal cells in monolayer culture significantly reduced the number of chondrocyte colonies, suggesting that N-CAM inhibits secondary chondrogenesis. In contrast, and consistent with expression in vivo, N-CAM is expressed during osteogenesis from QJ periosteal cells and mandibular mesenchyme in vitro. These results are discussed in relation to the role of N-CAM in osteogenesis and in primary and secondary condensation.  相似文献   

20.
Following damage to peripheral nerves, a remarkable process of clearance and regeneration takes place. Axons downstream of the injury degenerate, while the nerve is remodeled to direct axonal regrowth. Schwann cells are important for this regenerative process. "Sensing" damaged axons, they dedifferentiate to a progenitor-like state, in which they aid nerve regeneration. Here, we demonstrate that activation of an inducible Raf-kinase transgene in myelinated Schwann cells is sufficient to control this plasticity by inducing severe demyelination in the absence of axonal damage, with the period of demyelination/ataxia determined by the duration of Raf activation. Remarkably, activation of Raf-kinase also induces much of the inflammatory response important for nerve repair, including breakdown of the blood-nerve barrier and the influx of inflammatory cells. This reversible in vivo model identifies a central role for ERK signaling in Schwann cells in orchestrating nerve repair and is a powerful system for studying peripheral neuropathies and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号