首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weng J  Tan C  Shen JR  Yu Y  Zeng X  Xu C  Ruan K 《Biochemistry》2004,43(16):4855-4861
In this paper, we analyzed the pH-induced changes in the conformational states of the manganese-stabilizing protein (MSP) of photosystem II. Distinct conformational states of MSP were identified using fluorescence spectra, far-UV circular dichroism, and pressure-induced unfolding at varying suspension pH values, and four different conformational states of MSP were clearly distinguished using the center of fluorescence spectra mass when suspension pH was altered from 2 to 12. MSP was completely unfolded at a suspension pH above 11 and partly unfolded below a pH of 3. Analysis of the center of fluorescence spectral mass showed that the MSP structure appears stably folded around pH 6 and 4. The conformational state of MSP at pH 4 seems more stable than that at pH 6. Studies of peak positions of tryptophan fluorescence and MSP-bound 1-anilinonaphthalene-8-sulfonic acid fluorescence spectra supported this observation. A decrease in the suspension pH to 2 resulted in significant alterations in the MSP structure possibly because of protonation of unprotonated residues at lower pH, suggesting the existence of a large number of unprotonated amino acid residues at neutral pH possibly useful for proton transport in oxygen evolution. The acidic pH-induced conformational changes of MSP were reversible upon increase of pH to neutral pH; however, N-bromosuccinimide modification of tryptophan (Trp241) blocks the recovery of pH-induced conformational changes in MSP, implying that Trp241 is a key residue for the unfolded protein to form a functional structure. Thus, pH-induced structural changes of stable MSP (pH 6-4) may be utilized to analyze its functionality as a cofactor for oxygen evolution.  相似文献   

2.
The structural features of the native Ca2+-dependent protein modulator and two chemically modified derivatives, namely, nitrotyrosyl modulator and alkylated modulator, were examined by circular dichroism. The binding of Ca2+ to the native molecule was accompanied by an increase in helical content from 40 to 49%, with little effect on the local environments of aromatic residues in the modulator. The Mg2+ and Mn2+ do not elicit the conformational change induced by the binding of Ca2+, which also stabilizes the modulator against urea denaturation. The overall secondary structure of nitrotyrosyl modulator is indistinguishable from that of the native protein and undergoes a similar conformational change upon binding Ca2+. These observations are in agreement with the fact that nitration has no effect on modulator functions. Furthermore, nitrotyrosyl modulator interacts with troponin I only in the presence of Ca2+, as detected by circular dichroism (cd). On the other hand, alkylation of five methionine residues on the modulator with benzyl bromide affects protein conformation, as evidenced by a reduced helical content of only 35%. Alkylated modulator retains the ability of the native protein to bind Ca2+ although the affinity of this derivative for Ca2+ is reduced some three orders of magnitude relative to the native protein, with Kd = 3.2 X 10(-4) M. The results with the alkylated modulator, in conjunction with previous cd studies on N-chlorosuccinimide oxidized modulator are utilized to advance a model for the Ca2+ activation of modulator protein, based on three conformational states of the molecule.  相似文献   

3.
Biogenesis and repair of the inorganic core (Mn4CaO(x)Cl(y)), in the water-oxidizing complex of photosystem II (WOC-PSII), occurs through the light-induced (re)assembly of its free elementary ions and the apo-WOC-PSII protein, a reaction known as photoactivation. Herein, we use electron paramagnetic resonance (EPR) spectroscopy to characterize changes in the ligand coordination environment of the first photoactivation intermediate, the photo-oxidized Mn3+ bound to apo-WOC-PSII. On the basis of the observed changes in electron Zeeman (g(eff)), 55Mn hyperfine (A(Z)) interaction, and the EPR transition probabilities, the photogenerated Mn3+ is shown to exist in two pH-dependent forms, differing in terms of strength and symmetry of their ligand fields. The transition from an EPR-invisible low-pH form to an EPR-active high-pH form occurs by deprotonation of an ionizable ligand bound to Mn3+, implicated to be a water molecule: [Mn3+ (OH2)] <--> [Mn3+ (OH-)]. In the absence of Ca2+, the EPR-active Mn3+ exhibits a strong pH dependence (pH approximately 6.5-9) of its ligand-field symmetry (rhombicity Delta delta = 10%, derived from g(eff)) and A(Z) (DeltaA(Z) = 22%), attributable to a protein conformational change. Binding of Ca2+ to its effector site eliminates this pH dependence and locks both g(eff) and A(Z) at values observed in the absence of Ca2+ at alkaline pH. Thus, Ca2+ directly controls the coordination environment and binds close to the high-affinity Mn3+, probably sharing a bridging ligand. This Ca2+ effect and the pH-induced changes are consistent with the ionization of the bridging water molecule, predicting that [Mn3+-(mu-O(-2))-Ca2+] or [Mn3+-(mu-OH(-))2-Ca2+] is the first light intermediate in the presence of Ca2+. The formation of this intermediate templates the apo-WOC-PSII for the subsequent rapid cooperative binding and photo-oxidation of three additional Mn2+ ions, forming the active water oxidase.  相似文献   

4.
Sorcin is a 21.6 kDa calcium binding protein, expressed in a number of mammalian tissues that belongs to the small, recently identified penta-EF-hand (PEF) family. Like all members of this family, sorcin undergoes a Ca2+-dependent translocation from cytosol to membranes where it binds to target proteins. For sorcin, the targets differ in different tissues, indicating that it takes part in a number of Ca2+-regulated processes. The sorcin monomer is organized in two domains like in all PEF proteins: a flexible, hydrophobic, glycine-rich N-terminal region and a calcium binding C-terminal domain. In vitro, the PEF proteins are dimeric in their Ca2+-free form, but have a marked tendency to precipitate when bound to calcium. Stabilization of the dimeric structure is achieved by pairing of the uneven EF-hand, EF5. Sorcin can also form tetramers at acid pH.The sorcin calcium binding domain (SCBD, residues 33-198) expressed in Escherichia coli was crystallized in the Ca2+-free form. The structure was solved by molecular replacement and was refined to 2.2 A with a crystallographic R-factor of 22.4 %. Interestingly, the asymmetric unit contains two dimers.The structure of the SCBD leads to a model that explains the solution properties and describes the Ca2+-induced conformational changes. Phosphorylation studies show that the N-terminal domain hinders phosphorylation of SCBD, i.e. the rate of phosphorylation increased twofold in the absence of the N-terminal region. In addition, previous fluorescence studies indicated that hydrophobic residues are exposed to solvent upon Ca2+ binding to full-length sorcin. The model accounts for these data by proposing that Ca2+ binding weakens the interactions between the two domains and leads to their reorientation, which exposes hydrophobic regions facilitating the Ca2+-dependent binding to target proteins at or near membranes.  相似文献   

5.
Grancalcin is a recently described Ca(2+)-binding protein especially abundant in human neutrophils. Grancalcin belongs to the penta-EF-hand subfamily of EF-hand proteins, which also comprises calpain, sorcin, peflin, and ALG-2. Penta-EF-hand members are typified by two novel types of EF-hands: one that binds Ca(2+) although it has an unusual Ca(2+) coordination loop and one that does not bind Ca(2+) but is directly involved in homodimerization. We have developed a novel method for purification of native grancalcin and found that the N terminus of wild-type grancalcin is acetylated. This posttranslational modification does not affect the secondary structure or conformation of the protein. We found that both native and recombinant grancalcin always exists as a homodimer, regardless of the Ca(2+) load. Flow dialysis showed that recombinant grancalcin binds two Ca(2+) per subunit with positive cooperativity and moderate affinity ([Ca(2+)](0.5) of 25 and 83 microm in the presence and absence of octyl glycoside, respectively) and that the sites are of the Ca(2+)-specific type. Furthermore, we showed, by several independent methods, that grancalcin undergoes important conformational changes upon binding of Ca(2+) and subsequently exposes hydrophobic amino acid residues, which direct the protein to hydrophobic surfaces. By affinity chromatography of solubilized human neutrophils on immobilized grancalcin, L-plastin, a leukocyte-specific actin-bundling protein, was found to interact with grancalcin in a negative Ca(2+)-dependent manner. This was substantiated by co-immunoprecipitation of grancalcin by anti-L-plastin antibodies and vice versa.  相似文献   

6.
The effect of Ca2+, Mg2+, and Mn2+ on the initial rate of activation of human Factor X by the venom coagulant protein of Vipera russelli has been investigated. Neither Mg2+ nor Mn2+ alone support the reaction. Ca2+ is an essential activator and exhibits cooperative kinetics. Both Mg2+ and Mn2+ enhance the reaction cooperatively when Ca2+ is present at suboptimal concentrations. Similarly, Ca2+ quenches the intrinsic fluorescence of human Factor X in a cooperative manner. While neither Mg2+ nor Mn2+ by themselves affect the fluorescence of human Factor X, they decrease the cooperativity of the Ca2+ binding to the protein as judged by Hill plots of the Ca2+ -induced fluoresence quenching. EPR measurements indicate that there are three high affinity Mn2+ binding sites on human Factor X which can also bind Ca2+. Positive cooperativity was not observed for Mn2+ binding. These data indicate that Ca2+ can cause a conformational change of the Factor X molecule which allows the activation reaction to proceed. We propose that Mn2+ does not support the activation of human Factor X because it cannot induce a necessary conformational change in the absence of Ca2+.  相似文献   

7.
A new family of proteins (annexins) that bind to membranes at micromolar free Ca2+ has been recognized. Its members include an EGF-receptor kinase substrate (p35), a retroviral tyrosine kinase substrate (p36), the liver protein endonexin (p32) and an electric ray protein, calelectrin. Each protein contains four sequence repeats with a further 2-fold internal homology. Using the predicted secondary structure and pattern of conserved hydrophobic residues in each repeat, we have built a three-dimensional model that is largely isostructural with the known molecular conformation of bovine intestinal calcium-binding protein. The final (energy-refined) model had a core formed from the conserved hydrophobic residues. It differed from ICaBP principally in the length of the two Ca2+-binding loops with only one loop being able to bind. The model suggests a mechanism for interaction of these new Ca2+-binding proteins with phospholipid bilayers.  相似文献   

8.
T A Gerken 《Biochemistry》1984,23(20):4688-4697
13C NMR spectroscopy has been used to study the amino group environments and metal binding properties of 13C reductively methylated bovine alpha-lactalbumin. Bovine alpha-lactalbumin is a Ca2+ metalloprotein containing 12 lysyl amino groups and a free amino terminus. All 13 amino groups can be 13C-dimethylated without altering Ca2+ binding or biological activity. pH titrations (chemical shift vs. pH) of this dimethylated protein reveal unique behavior for each of the 13 amino groups. The pKa values for the lysyl amino groups range from 9.1 to 10.8 while the pKa for the N-terminal amino group is 8.3. This relatively high pKa (by 1 pH unit) for the N-terminal supports its interaction in an ion pair as proposed by Warme et al. [Warme, P. K., Momany, F. A., Rumball, S. V., Tuttle, R. W., & Scheraga, H. A. (1974) Biochemistry 13, 768-782]. Carbon-13 NMR studies further show that the removal of Ca2+ from the high-affinity binding site results in a conformational change, with the disruption of the N-terminal ion pair interaction (pKa decreased to 7.4). The study of Zn2+ binding to Ca2+-saturated protein suggests that Zn2+ binds initially at a low-affinity Ca2+ site while maintaining the N-terminal ion pair interaction. The further addition of Zn2+ leads to the disruption of this ion pair forming a presumed apoprotein-like conformation. Finally on the basis of the specific effects of added Mn2+ on the 13C NMR spectra of the methylated protein, a low-affinity divalent metal binding site is proposed about 7.5 A from the amino terminus.  相似文献   

9.
Parvalbumin (PV) and the homologous protein oncomodulin (OM) contain three EF-hand motifs, but the first site (AB) cannot bind Ca2+. Here we aimed to recreate the putative ancestral proteins [D19-28E]PV and [D19-28E]OM by replacing the 10-residue-long nonfunctional loop in the AB site by a 12-residue canonical loop. To create an optical conformational probe we also expressed the homologs with a F102W replacement. Unexpectedly, in none of the proteins did the mutation reactivate the AB site. The AB-remodeled parvalbumins bind two Ca2+ ions with strong positive cooperativity (nH = 2) and moderate affinity ([Ca2+]0.5 = 2 microM), compared with [Ca2+]0.5 = 37 nM and nH = 1 for the wild-type protein. Increasing Mg2+ concentrations changed nH from 2 to 0.65, but without modification of the [Ca2+]0. 5-value. CD revealed that the Ca2+ and Mg2+ forms of the remodeled parvalbumins lost one-third of their alpha helix content compared with the Ca2+ form of wild-type parvalbumin. However, the microenvironment of single Trp residues in the hydrophobic cores, monitored using intrinsic fluorescence and difference optical density, is the same. The metal-free remodeled parvalbumins possess unfolded conformations. The AB-remodeled oncomodulins also bind two Ca2+ with [Ca2+]0.5 = 43 microM and nH = 1.45. Mg2+ does not affect Ca2+ binding. Again the Ca2+ forms display two-thirds of the alpha-helical content in the wild-type, while their core is still strongly hydrophobic as monitored by Trp and Tyr fluorescence. The metal-free oncomodulins are partially unfolded and seem not to possess a hydrophobic core. Our data indicate that AB-remodeled parvalbumin has the potential to regulate cell functions, whereas it is unlikely that [D19-28E]OM can play a regulatory role in vivo. The predicted evolution of the AB site from a canonical to an abortive EF-hand may have been dictated by the need for stronger interaction with Mg2+ and Ca2+, and a high conformational stability of the metal-free forms.  相似文献   

10.
The interaction of the isolated EF-hand domain of phospholipase C delta1 with arachidonic acid (AA) was characterized using circular dichroism (CD) and fluorescence spectroscopy. The far-UV CD spectral changes indicate that AA binds to the EF domain. The near-UV CD spectra suggest that the orientations of aromatic residues in the peptide are affected when AA binds to the protein. The fluorescence of the single intrinsic tryptophan located in EF1 was enhanced by the addition of dodecylmaltoside (DDM) and AA suggesting that this region of the protein is involved in hydrophobic interactions. In the presence of a low concentration of DDM it was found that AA induced a change in fluorescence resonance energy transfer, which is indicative of a conformational change. The lipid induced conformational change may play a role in calcium binding because the isolated EF-hand domain did not bind Ca2+ in the absence of lipids, but Ca2+-dependent changes in the intrinsic tryptophan emission were observed when free fatty acids were present. These studies identify specific EF-hand domains as allosteric regulatory domains that require hydrophobic ligands such as lipids.  相似文献   

11.
DNase A studied by gel filtration on Sephadex G-100 at pH 7.4 in 40 mM Tris-HCl buffer, behaves hydrodynamically as a spherical monomeric macromolecule of around 31,000 molecular weight, with a Stokes radius = 24.7 A, f/fo = 1.19, and D20,W = 8.69. Similar results were obtained by analytical dialysis using zinc chloride-modified cellophane membranes. The elution volume of DNase A decreases as the pH increases between pH 4.7 and pH 9.5. This effect has been attributed to a change in the tridimensional structure of the protein and interpreted as a modification in the axial ratio due to unfolding of the polypeptide chain with increase in the apparent Stokes radius. The addition of Ca2+ produce reversion of the pH-induced changes at pH 9.5. The transition occurs when Ca2+ binds to at least two binding sites (n = 1.66 in a Hill plot) with a Kd = 8.9 X 10(-5) M and the effect appears to be cooperative. These findings support the hypothesis that Ca2+-binding to DNase A causes a conformational change that maintains a more active structure of the enzyme, especially when the pH-induced unfolding reduces its activity.  相似文献   

12.
Hemagglutnin (HA) mediates entry of influenza virus through a series of conformational changes triggered by the low pH of the endosome. The residue or combination of residues acting as pH sensors has not yet been fully elucidated. In this work, we assay pH effects on the structure of H5 HA by soaking HA crystallized at pH 6.5 in a series of buffers with lower pH, mimicking the conditions of the endosome. We find that HA1-H38, which is conserved in Group 1 HA, undergoes a striking change in side chain conformation, which we attribute to its protonation and cation-cation repulsion with conserved HA1-H18. This work suggests that x-ray crystallography can be applied for studying small-scale pH-induced conformational changes providing valuable information on the location of pH sensors in HA. Importantly, the observed change in HA1-H38 conformation is further evidence that the pH-induced conformational changes of HA are the result of a series of protonation events to conserved and non-conserved pH sensors.  相似文献   

13.
Xu X  Chen J  Zhang L  Liu Q 《Biopolymers》2007,85(1):81-90
Acutolysin A isolated from the venom of Agkistrodon acutus is a protein of 22 kDa with marked haemorrhagic and proteolytic activities. The metal ions- and pH-induced conformational changes of acutolysin A have been studied by following fluorescence and activity measurements. Here, we provide evidence for the fact that native holo-acutolysin A adopts two subtly different conformations, native state a (Na) stable in the weak acidic pH range from 6.0 to 7.0 with low activity and native state b (Nb) stable in the weak alkaline pH range from 7.5 to 9.0 with high activity. Holo-acutolysin A has an optimum pH of 8.5 for caseinolytic activity, and the protein adopts the most stable conformation with the maximum fluorescence at pH 8.5. The Ca2+ and Zn2+ ions have significant effects on both the pH-induced denaturing transition curve and the pH-dependent activity curve. Addition of 1 mM Ca2+ to holo-acutolysin A shifts both the acid-induced denaturing transition curve and the end zone of acid-induced inactivation curve towards lower pH value, and shifts both the alkali-induced denaturing transition curve and the end zone of alkali-induced inactivation curve towards higher pH value. Addition of 1 mM Zn2+ also shifts both the alkali-induced denaturing transition curve and the end zone of alkali-induced inactivation curve towards higher pH value and shifts the acid-induced denaturing transition curve to lower pH value, but has little effect on the acid-induced inactivation. Removal of Ca2+ and Zn2+ from the protein enhances its sensitivity to pH and significantly reduces its overall stability during acid-induced denaturation. It is also evident from the present work that the free Zn2+ -induced inactivation in the pH range from 8.0 to 9.0 should be attributed to the effect of Zn(OH)2 precipitation on the protein.  相似文献   

14.
Penetration of membranes by diphtheria toxin in vivo is at least partially triggered by a low pH-induced conformational change occurring within the lumen of an acidic organelle. In order to gain insight into the nature of this change the behavior of the toxin at high pH was characterized and compared to that previously determined at low pH. We find that near pH 10.5 a major conformational change occurs. This change is accompanied by a marked decrease in fluorescence intensity, a red shift in fluorescence emission maximum, and increased susceptibility of protein fluorescence to acrylamide quenching. Differential scanning calorimetry shows that the high pH conformational change involves a cooperative endothermic unfolding transition. These changes at high pH are very similar to those induced by low pH, supporting the conclusion that the changes at low pH also involve a denaturation-like process. In addition, at high pH the toxin gains the ability to bind to model membranes, again similar to its behavior at low pH. On the basis of these studies we conclude that exposure of hydrophobic sequences due to partial unfolding is one dominating component in inducing hydrophobic behavior at both high and low pH, but that at low pH Asp/Glu protonation also contributes to hydrophobicity.  相似文献   

15.
Li S  Yang W  Maniccia AW  Barrow D  Tjong H  Zhou HX  Yang JJ 《The FEBS journal》2008,275(20):5048-5061
Ca2+, as a messenger of signal transduction, regulates numerous target molecules via Ca2+-induced conformational changes. Investigation into the determinants for Ca2+-induced conformational change is often impeded by cooperativity between multiple metal-binding sites or protein oligomerization in naturally occurring proteins. To dissect the relative contributions of key determinants for Ca2+-dependent conformational changes, we report the design of a single-site Ca2+-binding protein (CD2.trigger) created by altering charged residues at an electrostatically sensitive location on the surface of the host protein rat Cluster of Differentiation 2 (CD2).CD2.trigger binds to Tb3+ and Ca2+ with dissociation constants of 0.3 +/- 0.1 and 90 +/- 25 microM, respectively. This protein is largely unfolded in the absence of metal ions at physiological pH, but Tb3+ or Ca2+ binding results in folding of the native-like conformation. Neutralization of the charged coordination residues, either by mutation or protonation, similarly induces folding of the protein. The control of a major conformational change by a single Ca2+ ion, achieved on a protein designed without reliance on sequence similarity to known Ca2+-dependent proteins and coupled metal-binding sites, represents an important step in the design of trigger proteins.  相似文献   

16.
S100A4, also known as mts1, is a member of the S100 family of Ca2+-binding proteins that is directly involved in tumor invasion and metastasis via interactions with specific protein targets, including nonmuscle myosin-IIA (MIIA). Human S100A4 binds two Ca2+ ions with the typical EF-hand exhibiting an affinity that is nearly 1 order of magnitude tighter than that of the pseudo-EF-hand. To examine how Ca2+ modifies the overall organization and structure of the protein, we determined the 1.7 A crystal structure of the human Ca2+-S100A4. Ca2+ binding induces a large reorientation of helix 3 in the typical EF-hand. This reorganization exposes a hydrophobic cleft that is comprised of residues from the hinge region,helix 3, and helix 4, which afford specific target recognition and binding. The Ca2+-dependent conformational change is required for S100A4 to bind peptide sequences derived from the C-terminal portion of the MIIA rod with submicromolar affinity. In addition, the level of binding of Ca2+ to both EF-hands increases by 1 order of magnitude in the presence of MIIA. NMR spectroscopy studies demonstrate that following titration with a MIIA peptide, the largest chemical shift perturbations and exchange broadening effects occur for residues in the hydrophobic pocket of Ca2+-S100A4. Most of these residues are not exposed in apo-S100A4 and explain the Ca2+ dependence of formation of theS100A4-MIIA complex. These studies provide the foundation for understanding S100A4 target recognition and may support the development of reagents that interfere with S100A4 function.  相似文献   

17.
The conformational state of sperm whale apomyoglobin (apoMb) was studied at neutral pH in the presence of negatively charged vesicles using near and far UV circular dichroism, tryptophan fluorescence, differential scanning microcalorimetry, and fast performance liquid chromatography. Under these conditions, the apoMb structure undergoes transition from its native to an intermediate state. In this state the protein loses its rigid native structure but retains its secondary structure. However, the environment of tryptophan residues remains rather hydrophobic. This intermediate state of apoMb shows properties similar to those of its molten globule state in solution. It is shown that apoMb can bind to negatively charged phospholipid vesicles even at neutral pH. A possible functional role of this intermediate state is discussed.  相似文献   

18.
Murine monoclonal antibodies, developed following immunization with human protein C, were characterized for their ability to bind antigen in the presence of either CaCl2 or excess EDTA. Three stable clones were obtained which produced antibodies that bound to protein C only in the presence of EDTA. All three antibodies bound to the light chain of protein C on immunoblots and also bound to the homologous proteins factor X and prothrombin in solid-phase radioimmunoassays. One antibody, 7D7B10 was purified and studied further. The binding of 7D7B10 to human protein C was characterized by a KD of 1.4 nM. In competition studies, it was found that the relative affinity of the antibody for protein C was 20-40-fold higher than for prothrombin, fragment 1 of prothrombin, or factor X. In contrast, 7D7B10 was unable to bind to factor IX or bovine protein C. The effect of varying Ca2+ concentration on the interaction of the antibody with protein C was complex. Low concentrations of Ca2+ enhanced the formation of the protein C-antibody complex with half-maximal effect occurring at approximately 60 microM metal ion. However, higher concentrations of Ca2+ completely inhibited 7D7B10 binding to protein C with a K0.5 of 1.1 mM. Furthermore, millimolar concentrations of Mn2+, Ba2+, or Mg2+ also completely abolished antibody binding to protein C. The location of the epitope was delineated by immunoblotting and peptide studies and found to be present in the NH2-terminal 15 residues of protein C. Although residues corresponding to positions 10-13 of human protein C were necessary for maximal binding of the antibody, they were not sufficient. No evidence could be found for involvement of the epitope in metal binding per se. Therefore, the effect of Ca2+ on antibody binding is thought to be due to metal-dependent conformational changes in protein C. It seems likely that Ca2+ occupation of a high affinity site, shown by others to be located in the epidermal growth factor-like domain, causes a conformational change in the NH2-terminal region of protein C which is favorable for antibody interaction, whereas Ca2+ binding to the low affinity site(s), known to be present in the gamma-carboxyglutamic acid domain, causes an unfavorable conformational change.  相似文献   

19.
The conformational state of sperm whale apomyoglobin (apoMb) was studied at neutral pH in the presence of negatively charged vesicles using near- and far-UV circular dichroism, tryptophan fluorescence, differential scanning microcalorimetry, and fast performance liquid chromatography. Under these conditions, the apoMb structure undergoes transition from its native to an intermediate state. In this state the protein loses its rigid native structure but retains its secondary structure. However, the environment of tryptophan residues remains rather hydrophobic. This intermediate state of apoMb shows properties similar to those of its molten globule state in solution. It is shown that apoMb can bind to negatively charged phospholipid vesicles even at neutral pH. A possible functional role of this intermediate state is discussed.  相似文献   

20.
We have examined the influence of monovalent and divalent cations on the secondary structure of bovine alpha-lactalbumin at neutral pH using Fourier-transform infrared spectroscopy. Our present studies are based on previously reported amide I' component band assignments for this protein [Prestrelski, S. J., Byler, D. M., & Thompson, M. P. (1991) Int. J. Pept. Protein Res. 37, 508-512]. The results indicate that upon dissolution, alpha-lactalbumin undergoes a small, but significant, time-dependent conformational change, regardless of the ions present. Additionally, these studies provide the first quantitative measure of the well-known secondary structural change which accompanies calcium binding. Results indicate that removal of Ca2+ from holo alpha-lactalbumin results in local unfolding of the Ca(2+)-binding loop; the spectra indicate that approximately 16% of the backbone chain changes from a rigid coordination complex to an unordered loop. We have also examined the effects of binding of several other metal ions. Our studies have revealed that binding of Mn2+ to apo alpha-lactalbumin (Ca(2+)-free), while inducing a small, but significant, conformational change, does not cause the alpha-lactalbumin backbone conformation to change to that of the holo (Ca(2+)-bound) form as characterized by infrared spectroscopy. Similar changes to those induced by Mn2+ are observed upon binding of Na+ to apo alpha-lactalbumin, and furthermore, even at very high concentrations (0.2 M), Na+ does not stabilize a structure similar to the holo form. Binding of Zn2+ to the apo form of alpha-lactalbumin does not result in significant backbone conformational changes, suggesting a rigid Zn(2+)-binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号