首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic realignment and rotational diffusion of cylindrical egg lecithin vesicles were measured under a phase contrast microscope. The anisotropy of magnetic susceptibility times membrane thickness was calculated from the data for several thin-walled vesicles. The resulting values were assigned to discrete numbers of bilayers. The difference between the susceptibilities parallel and perpendicular to the long axes of the lecithin molecules is deduced to be X parallel - X perpendicular = -(0.28 +/- 0.02) . 10(-8) cgs at 23 degrees C, if a bilayer thickness of 60 A is assumed.  相似文献   

2.
The concentration of guanosine 3',5'-cyclic monophosphate (cyclic GMP) has been examined in suspensions of freshly isolated frog rod outer segments using conditions which previously have been shown to maintain the ability of outer segments to perform a light-induced permeability change (presence of calf serum, anti-oxidant, and low calcium concentration). Illumination causes a rapid decrease in cyclic GMP levels which has a half-time approximately 125 ms. With light exposures that bleach less than 100 rhodopsin molecules in each rod outer segment, at least 10(4)-10(5) molecules of cyclic GMP are hydrolyzed for each rhodopsin molecule bleached. Half of the total cyclic GMP in each outer segment, approximately 2 X 10(7) molecules, is contained in the light-sensitive pool. If outer segments are exposed to continuous illumination, using intensities which bleach between 5.0 X 10(1) and 5.0 X 10(4) rhodopsin molecules/outer segment per second, cyclic GMP levels fall to a value characteristic for the intensity used. This suggests that a balance between synthesis and degradation of cyclic GMP is established. This constant level appears to be regulated by the rate of bleaching rhodopsin molecules (by the intensity of illumination), not the absolute number of rhodopsin molecules bleached...  相似文献   

3.
The magnetic anisotropy of a polymembrane cell, such as the external segment of the frog retinal rod, is defined as the difference between the axial magnetic susceptibility (chiar), chia - chir = deltachi of the segment. After the total photolysis of the rhodopsin in situ, deltachi decreases a significantly by 20%. This decrease in magnetic anisotrophy should involve a subtle molecular disorder, mostly due to an alteration of the rhodopsin molecule.  相似文献   

4.
I A Ostapenko 《Tsitologiia》1978,20(6):665-669
Regeneration of rhodopsin has been studied in the eyecup, isolated retina and retinal homogenate of frog Rana temporaia as well as in the eyecup and isolated retina of fish-flounder Limanda aspera (Pallas). Rhodopsin has been found to regenerate only in the eyecup of frog, while isorhodopsin appeared to be the final product in the frog retinal homogenate. Decrease in rhodopsin regeneration level has been resulted from addition of inhibitors--theophyllin (2.10-2 M), papaverine (10-4--10-3 M) and strophantin (2.10-4 M) To the eyecup preparations (60, 20, 23%, consequently). A conclusion is made that structural connection between pigment epithelium cells and photoreceptors is necessary to provide regeneration of native rhodopsin.  相似文献   

5.
In the presence of 10(-9) M calcium, rod outer segments freshly detached from dark-adapted frog retinas contain between 0.01 and 0.02 moles of guanosine 3',5'-cyclic monophosphate (cyclic GMP) per mole of rhodopsin. The dark level of cyclic GMP is reduced approximately 50% by illumination that bleaches 5 x 10(5) rhodopsin molecules/outer segments. The dark levels of cyclic GMP also can be suppressed to approximately 0.007 mol/mol of rhodopsin by increasing the concentration of calcium from 10(-9) M to 2 x 10(-9) M, and they remain at this level as calcium concentration is raised to 10(-3) M. The final level to which illumination reduces cyclic GMP in unaffected by the calcium concentration between 10(-9) and 10(-3) M. The maximal light-induced decrease in cyclic GMP occurs within 1 s from the onset of illumination at all calcium concentrations. The magnitude and time-course of the light-induced decrease in cyclic GMP measured in these experiments are comparable to values obtained previously (Woodruff et al. 1977. J. Gen. Physiol. 69:677-679; Woodruff and Bownds. 1979. J. Gen. Physiol. 73:629-653). The data are consistent with a role for cyclic GMP in visual transduction irrespective of the calcium concentration.  相似文献   

6.
Two-dimensional crystallization of bovine rhodopsin   总被引:1,自引:0,他引:1  
Bovine rhodopsin has been clustered into two-dimensional crystals in highly purified native rod disk membranes and studied with negative staining and transmission electron microscopy. The lattice is P2(1) with dimensions of 8.3 X 7.9 nm and interaxis angles of 86 +/- 3 degrees. 110 images of ordered areas were digitized and aligned with computer-correlation methods to calculate an average image with diffraction to the fourth order. The images were computer-filtered and reconstructed to approx. 2 nm resolution. When crystals appeared they covered 20-40% of the surface of the preparation and, since rhodopsin is at least 95% of the protein, there is no doubt that the crystals were due to rhodopsin. There appear to be two rhodopsin dimers per unit cell. Each rhodopsin molecules takes up about 7.5 nm2 of membrane area and is estimated to be associated with about 12 lipids on each side of the membrane. The membrane area found for bovine rhodopsin supports the rhodopsin origin of rarely seen but more highly ordered two-dimensional crystals found in detergent-treated frog rod membranes (Corless, J.M., McCaslin, D.R. and Scott, B.L. (1982) Proc. Natl. Acad. Sci. USA 79, 1116-1120). Furthermore, the rhodopsin membrane area is close to that of bacteriorhodopsin and is consistent with a seven transmembrane helix structure proposed for rhodopsin (for references see Dratz, E.A. and Hargrave, D.A. (1983) Trends Biochem. Sci. 8, 128-131). Crystallization was accomplished by lowering the pH to 5.5 near the isoelectric point of rhodopsin, raising the salt concentration of 2 M (NH4)2SO4, adding 5% glucose and 0.02% Hibitane (Ayerst), a cationic amphipathic antiseptic that favored crystal growth.  相似文献   

7.
We have measured the total permeability coefficients P as a function of stirring frequency omega for 133Xe through frog skins and toad bladders. The permeability coefficients for the frog skins and toad bladders proper are, respectively, Pm = (3.9 +/- 0.8) X 10(-4) cm/s and (7.4 +/- 4.2) X 10(-4) cm/s. "Unstirred" water layer thickness delta is determined concurrently, from the frequency dependence of P(omega); the result for frog skin is delta = (0.060 +/- 0.016) square root of omega(rad/s) cm. The stirring frequency range is from omega = 7.5 rad/s (72 rpm) to 55 rad/s (530 rpm). The results support the conclusions that the principal barrier to Xe diffusion in these epithelia is inter- and intracellular water, and that the diffusion is passive and rapid. The experimental method may be straightforwardly adapted to the measurement of diffusion or counterdiffusion of any gamma-radioactive soluble or partly soluble solute through any flat membrane or through a solvent. We estimate the amount of total body-absorbed radioactivity due to environmental 133Xe to be 50 fCi for an ambient concentration of 2.6 pCi/m3 of air.  相似文献   

8.
V G Tishchenkov 《Biofizika》1983,28(2):274-279
Rod outer segments (ROS) of the frog retina are shown to contain high affinity binding sites to guanylic nucleotides. Concentration of the binding sites comprises several per cent of rhodopsin concentration in our ROS preparations. These sites possess high affinity to GDP (Kd less than 10(-6) M) in dark-adapted preparations, and in the presence of bleached rhodopsin they effectively bind the non-hydrolizable analog of GTP--GPP (NH) P (Kd less than 10(-6) M). It is shown that one bleached rhodopsin molecule can induce the binding of up to 100 molecules of GPP (NH) P at low rhodopsin photolysis. Qur experimental results raise serious doubts as to the applicability of nucleotide exchange scheme by Fung and Stryer (1980).  相似文献   

9.
Protein complement of rod outer segments of frog retina   总被引:6,自引:0,他引:6  
H E Hamm  M D Bownds 《Biochemistry》1986,25(16):4512-4523
Rod outer segments (ROS) from frog retina have been purified by Percoll density gradient centrifugation, a procedure that preserves their form and intactness. One- and two-dimensional electrophoretic analysis reveals a smaller number of proteins than is observed in many cell organelles and permits quantitation of the 20 most abundant polypeptides. Rhodopsin accounts for 70% of the total protein (3 X 10(9) copies/outer segment), and approximately 70 other polypeptides are present at more than 6 X 10(4) copies/outer segment. Another 17% of the total protein is accounted for by the G-protein (3 X 10(8) copies/outer segment) that links rhodopsin bleaching and the activation of cyclic GMP phosphodiesterase (PDE). The phosphodiesterase accounts for 1.5% of the protein (1.5 X 10(7) copies/outer segment), and a 48,000-dalton component that binds to the membrane in the light accounts for a further 2.6%. The function of approximately 90% of the total protein in the outer segment is known, and two-thirds of the non-rhodopsin protein is accounted for by enzyme activities associated with cyclic GMP metabolism. The relative molar abundance of rhodopsin, G-protein, and PDE is 100:10:1. Apart from these major membrane-associated proteins, most of the other proteins are cytosolic. Thirteen other polypeptides are found at an abundance of one or more copies per 1000 rhodopsins, nine soluble and four membrane-bound, and their abundance relative to rhodopsin has been quantitated. ROS have been separated into subcellular fractions which resolve three classes of soluble, extrinsic membrane, and integral membrane proteins. A listing of the proteins that are phosphorylated and their subcellular localization is given. Approximately 25 phosphopeptides are detected, and most are in the soluble fraction. Fewer phosphorylated proteins are associated with the purified outer segments than with crude ROS. Distinct patterns of phosphorylation are associated with intact rods incubated with [32P]Pi and broken rods incubated with [gamma-32P]ATP.  相似文献   

10.
The light-activated guanosine 3',5'-cyclic monophosphate (cyclic GMP) phosphodiesterase (PDE) of frog photoreceptor membranes has been assayed by measuring the evolution of protons that accompanies cyclic GMP hydrolysis. The validity of this assay has been confirmed by comparison with an isotope assay used in previous studies (Robinson et al. 1980. J. Gen. Physiol. 76: 631-645). The PDE activity elicited by either flash or continuous dim illumination is reduced if ATP is added to outer segment suspensions. This desensitization is most pronounced at low calcium levels. In 10(-9) M Ca++, with 0.5 mM ATP and 0.5 mM GTP present, PDE activity remains almost constant as dim illumination and rhodopsin bleaching continue. At intermediate Ca++ levels (10-7-10-5M) the activity slowly increases during illumination. Finally, in 10(-4) and PDE activity is more a reflection of the total number of rhodopsin molecules bleached than of the rate of the rhodopsin bleaching. At intermediate or low calcium levels a short-lived inhibitory process is revealed by observing a nonlinear summation of responses of the enzyme to closely spaced flashes of light. Each flash makes PDE activity less responsive to successive flashes, and a steady state is obtained in which activation and inactivation are balanced. It is suggested that calcium and ATP regulation of PDE play a role in the normal light adaption processes of frog photoreceptor membranes.  相似文献   

11.
In frog photoreceptor membranes, light induces a dephosphorylation of two small proteins and a phosphorylation of rhodopsin. The level of phosphorylation of the two small proteins is influenced by cyclic GMP. Measurement of their phosphorylation as a function of cyclic GMP concentration shows fivefold stimulation as cyclic GMP is increased from 10(-5) to 10(-3) M. This includes the concentration range over which light activation of a cyclic GMP phosphodiesterase causes cyclic GMP levels to fall in vivo. Cyclic AMP does not affect the phosphorylations. Calcium ions inhibit the phosphorylation reactions. Calcium inhibits the cyclic GMP-stimulated phosphorylation of the small proteins as its concentration is increased from 10(-6) to 10(-3) M, with maximal inhibition of 70% being observed. Rhodopsin phosphorylation is not stimulated by cyclic nucleotides, but is inhibited by calcium, with 50% inhibition being observed as the Ca++ concentration is increased from 10(-9) to 10(-3) M. A nucleotide binding site appears to regulate rhodopsin phosphorylation. Several properties of the rhodopsin phosphorylation suggest that it does not play a role in a rapid ATP-dependent regulation of the cyclic GMP pathway. Calcium inhibition of protein phosphorylation is a distinctive feature of this system, and it is suggested that Ca++ regulation of protein phosphorylation plays a role in the visual adaptation process. Furthermore, the data provide support for the idea that calcium and cyclic GMP pathways interact in regulating the light-sensitive conductance.  相似文献   

12.
The effect of the antianginal drug nonachlazine displaying antiarrhythmic properties on transmembrane ionic currents in the frog atrial fibers was studied in experiments on isolated trabeculae of the frog atria. The transmembrane ionic currents were measured by a voltage clamp technique based on a double sucrose gap arrangement. Nonachlazine (1.03 X 10(-5) mol/l) decreased the amplitude of the fast inward current whatever the magnitude of membrane potential. The drug inhibited the slow inward current and prevented the adrenaline-increased permeability of the slow sodium-calcium channel if external sodium ions were replaced by choline chloride. Nonachlazine (1.03 X 10(-5) mol/l) diminished the amplitude of the inward ionic current in a calcium-free medium as well. The stimulatory effect of prostacycline (2 X 10(-7) mol/l) on the fast inward ionic current was inhibited by nonachlazine. The data obtained suggest that the antiarrhythmic effect of nonachlazine might be linked with the inhibition of the fast sodium inward current and the slow calcium inward current.  相似文献   

13.
Sulfonation of periodate-oxidized vicinal hydroxyl groups on a polysaccharide backbone allows binding of toluidine blue (aldehyde bisulfite-toluidine blue or ABT staining) with a concurrent metachromatic shift of the dye's absorption peak from 630 nm (monomer) to 580 nm (isolated dimer interaction at vicinal sulfonate groups) or 540 nm (dye polymer interaction). A molar absorptivity of 2.358 +/- 0.134 X 10(4) at 540 nm for polymeric toluidine blue O chloride (TB) aggregates was determined by spectrophotometry of TB bound to hyaluronic acid (HA) and sulfonated glycogen (SG) in water. Microspectrophotometry of ABT stained frog rod outer segments (FROS) showed spectra similar to TB in aqueous HA and SG solutions with absorbances corresponding to 0.063 M dye bound to sugar. Given two dye molecules bound per sugar residue and a rhodopsin concentration of 3.25 mM in FROS, the above indicates 10 stainable sugars per rhodopsin are contained in these cells. Half of these sugars are sensitive to hyaluronidase digestion implying 5 glycosaminoglycan (GAG) repeating units and 5 stainable oligosaccharide sugar residues per rhodopsin in FROS. The GAGs in FROS appear to be primarily HA. Birefringence measurements at 475 nm indicate that this HA and the oligosaccharide of rhodopsin are anisotropically oriented in these cells.  相似文献   

14.
Calmodulin and calmodulin binding proteins in amphibian rod outer segments   总被引:3,自引:0,他引:3  
The calmodulin (CaM) content of fully intact frog rod outer segments (ROS) has been measured. The molar ratio between rhodopsin and total CaM in ROS is 800:1. This is in good agreement with the data reported for bovine ROS CaM [Kohnken, R. E., Chafouleas, J. G., Eadie, D. M., Means, A. R., & McConnell, D.G. (1981) J. Biol. Chem. 256, 12517-12522]. In the absence of Ca2+, the ROS membrane fraction contains only 4% of total ROS CaM. In contrast, in the presence of Ca2+, 15% of total ROS CaM is found in the membrane fraction. For half-maximal binding of CaM to CaM-depleted ROS membranes, 3 X 10(-7) M Ca2+ is required. This CaM binding is inhibited by trifluoperazine. CaM binding proteins in the ROS membrane fraction are identified by using two different methods: the overlay method and the use of 3,3'-dithiobis(sulfosuccinimidyl propionate) (DTSSP), a bifunctional cross-linking reagent. Ca2+-dependent CaM binding proteins with apparent molecular weights of 240,000, 140,000, 53,000, and 47,000 are detected in the ROS membrane fraction by the overlay method. Anomalous, Ca2+-independent CaM binding to rhodopsin is also detected with this method, and this CaM binding is inhibited by the presence of Ca2+. With the bifunctional cross-linking reagent, DTSSP, three discrete proteins with molecular weights of 240,000, 53,000, and 47,000 are detected in the native ROS membrane fraction. CaM binding to rhodopsin is not detected with this method. Moreover, while the Mr 140,000 band is not detected with DTSSP, a smeared band with a molecular weight between 78,000 and 93,000 is identified (with DTSSP) in the ROS membrane fraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The sedimentation behavior of aqueous solutions of digitonin and of cattle rhodopsin in digitonin has been examined in the ultracentrifuge. In confirmation of earlier work, digitonin was found to sediment as a micelle (D-1) with an s20 of about 6.35 Svedberg units, and containing at least 60 molecules. The rhodopsin solutions sediment as a stoichiometric complex of rhodopsin with digitonin (RD-1) with an s20 of about 9.77 Svedberg units. The s20 of the RD-1 micelle is constant between pH 6.3 and 9.6, and in the presence of excess digitonin. RD-1 travels as a single boundary also in the electrophoresis apparatus at pH 8.5, and on filter paper at pH 8.0. The molecular weight of the RD-1 micelle lies between 260,000 and 290,000. Of this, only about 40,000 gm. are due to rhodopsin; the rest is digitonin (180 to 200 moles). Comparison of the relative concentrations of RD-1 and retinene in solutions of rhodopsin-digitonin shows that RD-1 contains only one retinene equivalent. It can therefore contain only one molecule of rhodopsin with a molecular weight of about 40,000. Cattle rhodopsin therefore contains only one chromophore consisting of a single molecule of retinene. It is likely that frog rhodopsin has a similar molecular weight and also contains only one chromophore per molecule. The molar extinction coefficient of rhodopsin is therefore identical with the extinction coefficient per mole of retinene (40,600 cm.2 per mole) and the E(1 per cent, 1 cm., 500 mµ) has a value of about 10. Rhodopsin constitutes about 14 per cent of the dry weight, and 3.7 per cent of the wet weight of cattle outer limbs. This corresponds to about 4.2 x 106 molecules of rhodopsin per outer limb. The rhodopsin content of frog outer limbs is considerably higher: about 35 per cent of the dry weight, and 10 per cent of the wet weight, corresponding to about 2.1 x 109 molecules per outer limb. Thus the frog outer limb contains about five hundred times as much rhodopsin as the cattle outer limb. But the relative volumes of these structures are such that the ratio of concentrations is only about 2.5 to 1 on a weight basis. Rhodopsin accounts for at least one-fifth of the total protein of the cattle outer limb; for the frog, this value must be higher. The extinction (K500) along its axis is about 0.037 cm.2 for the cattle outer limb, and about 0.50 cm.2 for the frog outer limb.  相似文献   

16.
Light detection by vertebrate rod photoreceptor outer segments results in the destruction of the visual pigment, rhodopsin, as its retinyl moiety is photoisomerized from 11-cis to all-trans. The regeneration of rhodopsin is necessary for vision and begins with the release of the all-trans retinal and its reduction to all-trans retinol. Retinol is then transported out of the rod outer segment for further processing. We used fluorescence imaging to monitor retinol fluorescence and quantify the kinetics of its formation and clearance after rhodopsin bleaching in the outer segments of living isolated frog (Rana pipiens) rod photoreceptors. We independently measured the release of all-trans retinal from bleached rhodopsin in frog rod outer segment membranes and the rate of all-trans retinol removal by the lipophilic carriers interphotoreceptor retinoid binding protein (IRBP) and serum albumin. We find that the kinetics of all-trans retinol formation in frog rod outer segments after rhodopsin bleaching are to a good first approximation determined by the kinetics of all-trans retinal release from the bleached pigment. For the physiological concentrations of carriers, the rate of retinol removal from the outer segment is determined by IRBP concentration, whereas the effect of serum albumin is negligible. The results indicate the presence of a specific interaction between IRBP and the rod outer segment, probably mediated by a receptor. The effect of different concentrations of IRBP on the rate of retinol removal shows no cooperativity and has an EC50 of 40 micromol/L.  相似文献   

17.
Frog rod outer segments contain approximately 0.25 mol of GTP and 0.25 mol of ATP per mol of rhodopsin 3 min after their isolation from the retina. UTP and CTP are present at 10-fold and 100-fold lower levels, respectively. Concentrations of GTP and ATP decline in parallel over the next 4 min to reach relatively stable levels of 0.1 mol per mol of rhodopsin. Illumination reduces the concentration of endogenous GTP but not ATP. This light-induced decrease in GTP can be as large as 70% and has a half-time of 7 s. GTP is reduced to steady intermediate levels during extended illumination of intermediate intensity, but partially returns to its dark-adapted level after brief illumination. The magnitude of the decrease increases as a linear function of the logarithm of continuous light intensity at levels which bleach between 5 X 10(2) and 5 X 10(6) rhodopsin molecules/outer segment per second. This exceeds the range of intensities over which illumination causes decreases in the cyclic GMP content and permeability of isolated outer segments (Woodruff and Bownds. 1979. J. Gen. Physiol. 73:629-653). Thus, over 4 log units of light intensity, a sensitivity control mechanism functions to make extended illumination less effective in stimulating a GTP decrease. GTP levels in dark-adapted outer segments are sensitive to changes in calcium concentration in the suspending medium. If the external calcium concentration is reduced to 10(-8) M, GTP concentration is lowered to the same level caused by saturating illumination, and the GTP remaining is no longer light-sensitive. Lowering calcium concentration to intermediate levels between 10(-6) and 10(-8) M reduces GTP to stable intermediate levels, and the GTP remaining can be reduced by light. Restoration of millimolar calcium drives synthesis of GTP, but not of ATP, and GTP lability towards illumination is again observed. These calcium-induced changes in GTP are diminished by the addition of the divalent cation ionophore A23187. Lowering or raising magnesium levels does not influence the GTP concentration. These data raise the possibility that light activates either a calcium transport mechanism driven by the hydrolysis of GTP, or some other calcium-sensitive GTPase activity of unknown function. Known light-dependent reactions involving cyclic nucleotide transformations and rhodopsin phosphorylation appear to account for only a small fraction of the light-induced GTP decrease.  相似文献   

18.
Two partly independent electrophysiological methods are described for measuring the number of rhodopsin molecules (R) in single ventral photoreceptors. Method 1 is based on measurements of the relative intensity required to elicit a quantal response and the relative intensity required to half-saturate the early receptor potential (ERP). Method 2 is based on measurements of the absolute intensity required to elicit a quantal response. Both methods give values of R approximately equal to 10(9). From these and other measurements, estimates are derived for the surface density of rhodopsin (8,000/micrometer2), the charge movement during the ERP per isomerized rhodopsin (20 X 10(-21) C), and the half-time for thermal isomerization of rhodopsin (36yr).  相似文献   

19.
The light-induced transient interaction between rhodopsin and G-protein in the presence of GTP has been measured by the formation of extra metarhodopsin II. Disc membranes were recombined with the hypotonic extract containing the G-protein. Without GTP, a flash induces stable rhodopsin-G-protein complexes which dissociate upon addition of GTP. In low GTP (less than 10 microM) transient rhodopsin X G-protein interaction is observed. Rhodopsin X G-protein dissociates the faster, the more GTP is present (rate of dissociation, 0.3/s at 5 microM GTP; T = 3.5 degrees C). The results corroborate that the uptake of GTP terminates the rhodopsin-G-protein complex and allow an estimation of the rhodopsin X G-protein lifetime.  相似文献   

20.
The major peripheral and soluble proteins in frog rod outer segment preparations, and their interactions with photoexcited rhodopsin, have been compared to those in cattle rod outer segments and found to be similar in both systems. In particular the GTP-binding protein (G) has the same subunit composition, the same abundance relative to rhodopsin (1/10) and it undergoes the same light and nucleotide-dependent interactions with rhodopsin in both preparations. Previous work on cattle rod outer segments has shown that photoexcited rhodopsin (R*), in a state identified with metarhodopsin II, associates with the G protein as a first step to the light-activated GDP/GTP exchange on G. The complex R*-G is stable in absence of GTP, but is rapidly dissociated by GTP owing to the GDP/GTP exchange reaction. Low bleaching extents (less than 10% R*) in absence of GTP therefore create predominantly R*-G complexes, whereas bleaching in presence of GTP creates free R*. We report here that, under conditions of complexed R*, two reactions of R* in frog rod outer segments are highly perturbed as compared to free R*: (a) the spectral decay of metarhodopsin II (MII) into later photoproducts, and (b) the phosphorylation of R* by an ATP-dependent protein kinase. a) The spectral measurements have been performed using linear dichroism on oriented frog rod outer segments; this technique allows discrimination between MII and later photoproducts absorbing at the same wavelength. Association of R* with G leads to a strong reduction of the amount of MIII formed and to an acceleration of the decay of MIII. Furthermore, MII is significantly stabilized, in agreement with the hypothesis that MII is the intermediate which binds to G. b) The phosphorylation of R* is strongly inhibited under conditions of R*-G complex formation as compared to free R*. Interferences between reactions at the three sites involved in R* are discussed: the retinal binding site in the hydrophobic core is sensitive to the presence of GTP-binding protein at its binding site on the cytoplasmic surface of R*; the kinase and the GTP-binding protein compete for access to their respective binding sites, both located on the surface of R*. We also observed a slow and nucleotide-dependent light-induced binding of a protein of molecular weight 50 000, which we consider as the equivalent of the 48 000 Mr light-dependent protein previously identified in cattle rod outer segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号