首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Pigment epithelium-derived factor (PEDF) is a survival factor for cerebellar granule cells in culture. In the present study, we have investigated the ability of a recombinant form of PEDF (rPEDF) to protect against glutamate neurotoxicity. When rPEDF was added to cerebellar granule cell cultures 30 min before addition of 100 µ M glutamate, glutamate-induced neuronal death was significantly reduced. The protective effect of rPEDF was dose-dependent in the range from 0.023 to 7.0 n M (1–500 ng/ml), with a half-maximal dose of 0.47 n M . An antibody to rPEDF blocked this protective effect. Measurement of intraneuronal free calcium levels demonstrated that rPEDF raised the basal calcium content. However, after the elevation of intracellular calcium in response to administration of glutamate, rPEDF reduced the plateau level seen in the presence of glutamate. These data show that PEDF can protect neurons against glutamate-induced neurotoxicity, possibly via a calcium-related pathway. The finding that only 30 min of preincubation is required for the neuroprotective effect, significantly faster than other known neurotrophic factors, suggests that PEDF may be useful clinically as a neuroprotective agent in the CNS.  相似文献   

2.
1. Midkine (MK) is known to be a member of a family of heparin-binding neurotrophic factors. We used a chemically defined culture system to examine neuronal activities of MK on embryonic rat cerebellar cells.2. In the culture system, a substrate surface was chemically modified either with amine or with laminin peptide to homogenize substrate conditions for culturing neurons.3. At the optimal concentration (2.5 ng/ml), MK moderately promoted survivability (1.3-fold) and accelerated neurite outgrowth (1.4-fold) of cerebellar cells, putatively granule neurons, grown on an amine-modified surface.4. Higher dosages (10 ng/ml or more) of MK, however, caused cellular fragmentation and detachment. Such degenerative effects were diminished by increasing the surface adhesiveness using laminin peptide, suggesting that the cellular degeneration might be caused by changes in the adhesive property of the neuron.5. Using this culture system, we have found that MK has a novel modulatory activity of neuronal adhesiveness on the cultured cerebellar granule cells. Together with the expression pattern of MK, our study supports the idea that MK may be involved in the developmental events of the cerebellum.  相似文献   

3.
When grown in the absence of astroglial cells, purified mouse cerebellar granule neurons survive less than 36 hr and do not extend neurites. Here we report that low concentrations of basic fibroblast growth factor (bFGF, 1-25 ng/ml) maintained the viability and promoted the differentiation of purified granule neurons. The effect of bFGF on granule cell neurite outgrowth was dose dependent. Neurite outgrowth was stimulated markedly in the presence of 1-25 ng/ml bFGF, but effects were not seen below 1 ng/ml or above 50 ng/ml. When affinity-purified antibodies against bFGF (1-5 micrograms/ml) were added either to purified granule cells or to co-cultures of neurons and astroglial cells, process extension by granule neurons was severely impaired. The inhibition of neurite outgrowth in the presence of anti-bFGF antibodies was reversed by the addition of 25 ng/ml of exogenous bFGF. In addition to neuronotrophic effects, bFGF influenced the rate of growth of the astroglial cells. This result depended on whether the astroglia were grown in isolation from neurons, where low doses of bFGF (10-25 ng) stimulated glial growth, or in coculture with neurons, where much higher doses of bFGF (100-250 ng/ml) were needed for glial mitogenesis. Immunoprecipitation of lysates from 35S-labeled cerebellar astroglial cells with anti-bFGF antibodies revealed a single band after SDS-PAGE at 18,000 Da, the molecular weight of bFGF. These results indicate that glial cells synthesize bFGF and are possibly an endogenous source of bFGF in cerebellar cultures. Thus, astroglial cells synthesize soluble factors needed for neuronal differentiation.  相似文献   

4.
5.
Pigment epithelium-derived factor (PEDF) combines neurotrophic, neuroprotective, anti-angiogenic, anti-tumor and neural stem cell self-renewal properties in a single molecule, making this protein a valuable potential therapeutic agent. We herein analyzed the expression of human recombinant full-length PEDF, and its N- and C-terminal regions (amino acids 1-243 and 195-418, respectively) in three mammalian cell lines (HEK-293T, COS-1, and 26HCMsv), and in the yeast Pichia pastoris. The highest production of recombinant PEDF was achieved in P. pastoris which secreted approximately 30 microg of full-length rPEDF, and 47 microg of C-terminal/ml of culture medium. Full-length rPEDF was purified by one-step Ni-chelating high-performance liquid chromatography, recovering almost 70% of secreted rPEDF with a purity of 98.6%. The C-terminal region of PEDF was isolated by low-pressure liquid chromatography, recovering around 4% of the recombinant molecule with a purity of 98%. The N-terminal region of PEDF was not secreted by any expression system assayed. The two isolated recombinant PEDF polypeptides inhibited in vitro endothelial cell migration, and full-length rPEDF also increased cerebellar granule cell survival, thus demonstrating their biological activity. These polypeptides can be used to investigate the therapeutic role of PEDF in cancer, neurodegenerative and ocular diseases, and stem cell-based therapies.  相似文献   

6.
Pigment epithelium-derived factor (PEDF) has neuronal differentiation and survival activity on retinoblastoma and cerebellar granule (CG) cells. Here, we investigated the presence of PEDF receptors on retinoblastoma Y-79 and CG cells. PEDF radiolabeled with (l25)I remained biologically active and was used for radioligand binding analysis. The binding was saturable and specific to a single class of receptors on both cells and with similar affinities (K(d) = 1.7-3.6 nM, B(max) = 0.5-2.7 x 10(5) sites/Y-79 cell; and K(d) = 3.2 nM, B(max) = 1.1 x 10(3) sites/CG cell). A polyclonal antiserum to PEDF, previously shown to block the PEDF neurotrophic activity, prevented the (125)I-PEDF binding. We designed two peptides from a region previously shown to confer the neurotrophic property to human PEDF, synthetic peptides 34-mer (positions 44-77) and 44-mer (positions 78-121). Only peptide 44-mer competed for the binding to Y-79 cell receptors (EC(50) = 5 nM) and exhibited neuronal differentiating activity. PEDF affinity column chromatography of membrane proteins from both cell types revealed a PEDF-binding protein of approximately 80 kDa. These results are the first demonstration of a PEDF-binding protein with characteristics of a PEDF receptor and suggest that the region comprising amino acid positions 78-121 of PEDF might be involved in ligand-receptor interactions.  相似文献   

7.
To determine the effect of neurotrophins on the survival and morphological differentiation of CNS neurons, we examined NT2-N cells, which provide a unique culture model for terminally differentiated and polar human neurons. Here we report the development of conditions for the long-term culture of NT2-N cells in low density and in chemically defined medium. We show that NT2-N cells express rRNAs for TrkA, TrkB, and TrkC tyrosine kinase receptors and the low-affinity nerve growth factor receptor (p75NTR). All members of the nerve growth factor-related family of neurotrophic factors promote neuronal survival in long-term cultures with approximately 1 ng/ml for half-maximal survival. At high concentrations (>20 ng/ml), the neurotrophins reversed the survival-promoting effect as judged by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] conversion. In contrast to the uniform effect of all neurotrophins on neuronal survival, brain-derived neurotrophic factor selectively induced an increased dendritic complexity. These results demonstrate that NT2-N cells provide a useful model to analyze the effect of neurotrophins on the survival and morphological differentiation of CNS neurons in vitro. In addition, the data indicate that neuronal survival and the development of morphological complexity are differentially regulated in a multireceptor context.  相似文献   

8.
Abstract: The ability of ethanol to interfere with insulin-like growth factor 1 (IGF-1)-mediated cell survival was examined in primary cultured cerebellar granule neurons. Cells underwent apoptosis when switched from medium containing 25 m M K+ to one containing 5 m M K+. IGF-1 protected granule neurons from apoptosis in medium containing 5 m M K+. Ethanol inhibited IGF-1-mediated neuronal survival but did not inhibit IGF-1 receptor binding or the neurotrophic action of elevated K+, and failed to potentiate cell death in the presence of 5 m M K+. Inhibition of neuronal survival by ethanol was not reversed by increasing the concentration of IGF-1. Significant inhibition by ethanol (15–20%) was observed at 1 m M and was half-maximal at 45 m M . The inhibition of IGF-1 protection by ethanol corresponded to a marked reduction in the phosphorylation of insulin receptor substrate 1, the binding of phosphatidylinositol 3-kinase (PI 3-kinase), and a block of IGF-1-stimulated PI 3-kinase activity. The neurotrophic response of IGF-1 was also inhibited by the PI 3-kinase inhibitor LY294002, the protein kinase C inhibitor chelerythrine chloride, and the protein kinase A inhibitor KT5720, but unaffected by the mitogen-activated protein kinase kinase inhibitor PD 98059. These data demonstrate that ethanol promotes cell death in cerebellar granule neurons by inhibiting the antiapoptotic action of IGF-1.  相似文献   

9.
Recent studies have shown that in the developing limb bud retinoic acid is a skeletal morphogen at physiological levels, but a potent teratogen at higher levels. Retinoic acid has also been shown to be teratogenic during facial development, but very low levels may have an as yet unspecified role in normal development. In the present study the effects of retinoic acid on chondrogenesis and myogenesis by craniofacial cells grown in micromass cell culture were investigated. Retinoic acid, at concentrations of 0.01-100 ng/ml, was supplied to cells derived from day-4 (H.H stage 23/24) chick embryo mandibular, maxillary and frontonasal processes, grown in micromass cultures for 4 days in both serum-containing and defined media. Based on Alcian-blue-staining, concentrations of retinoic acid of 0.1-1 ng/ml were found to enhance chondrogenesis by mandibular cells grown in defined medium, while greater concentrations up to 100 ng/ml inhibited chondrogenesis. By contrast, chondrogenesis was generally retarded by all concentrations of retinoic acid applied to frontonasal cells grown in defined medium and when applied to both mandibular and frontonasal cells when grown in serum-containing medium. Cells from stage-23/24 maxillae did not display any significant chondrogenic activity in either medium under these culture conditions. Unlike chondrogenesis, myogenesis in mandibular, frontonasal and maxillary cultures was greater in defined than serum-containing medium, based on the appearance of immunologically detectable muscle myosin, and was reduced considerably less in defined medium by all concentrations of retinoic acid tested. In the presence of serum however, myogenesis was retarded with increasing concentrations of retinoic acid beyond 1 ng/ml in micromass cultures from all three facial regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effects of 17 beta-estradiol (E2), epidermal growth factor (EGF) and insulin, alone or in association on guinea-pig uterine epithelial cell proliferation were examined in serum-free culture conditions. Primary cultures of epithelial cells were made quiescent by serum depletion, then incubated in a chemically defined medium. In this medium, insulin increased DNA synthesis but not in a dose-dependent manner for concentrations ranging from 0.2 to 10 micrograms/ml. A significant effect of EGF was found only for the highest concentration tested (100 ng/ml). E2 alone or in the presence of insulin (1 microgram/ml) had no effect whatsoever on the concentration tested (10(-10)-10(-5)M). Insulin (10 micrograms/ml) plus EGF (100 ng/ml) exerted on DNA synthesis and cell proliferation a significant additive effect which was identical to the growth stimulation induced by 10% fetal calf serum. The effects of insulin plus EGF were not modified by the addition of E2. These findings suggest that E2 is not directly mitogenic for uterine epithelial cells in defined culture conditions and that the mitogenic response to optimal concentration of insulin plus EGF is independent of E2.  相似文献   

11.
12.
巨噬细胞源性神经营养因子的纯化和鉴定   总被引:3,自引:0,他引:3  
Macrophage-derived neurotrophic factor (M phi DNF) is purified from macrophage conditioned medium by a procedure consisting of column chromatography with Sephacryl S-100-HR, high-performance liquid chromatography (HPLC), and a final step using reverse-phase HPLC. The product shows a single protein band in sodium dodecyl sulfate-polyacrylamide gel. It has a molecular weight of 60.5 kD and an isoelectric point of pI 5.1 and contains more leucine, lysine, glutamine and aspartic acids in its amino acid composition. Purified M phi DNF can promote the survival, activity, and neurite outgrowth of cultured cerebellar cortical neurons and that this effect reaches maximal levels with concentrations of the M phi DNF ranging from 500-1000 ng/ml.  相似文献   

13.
Cultured astrocytes from a syncytium after maturation   总被引:2,自引:0,他引:2  
The formation of functional gap junctions between astrocytes was investigated during differentiation of these cells in culture. Precursor cells of GFA (glial fibrillary acidic) protein-positive astrocytes were cultured in a chemically defined medium as a homogeneous population. These cells were rarely coupled to one neighbour, as revealed by electrical and dye coupling and never formed a large syncytium, as investigated by injection and spread of Lucifer Yellow. Differentiation with respect to GFA protein accumulation can be induced in these cells by culturing in horse serum-containing medium. The formation of functional junctions developed within 2 weeks in about 20% of the cells. Coupled cells formed a large syncytium. When the astrocytes were co-cultured with primary cerebellar cells (consisting predominantly of small neurons) after the switch to serum-containing medium the percentage of coupled astrocytes increased to about 65%. Again the coupled cells formed a large syncytium. Since no physical contact was possible between the astrocyte cultures and the primary cerebellar cells the stimulation of coupling had to be signalized by soluble factor(s).  相似文献   

14.
Angiogenesis, or neovascularization, is a finely balanced process controlled by pro- and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) is a major pro-angiogenic factor, whereas pigment epithelial-derived factor (PEDF) is the most potent natural angiogenesis inhibitor. In this study, the regulatory role of bone marrow stromal cells (BMSCs) during angiogenesis was assessed by the endothelial differentiation potential, VEGF/PEDF production and responses to pro-angiogenic and hypoxic conditions. The in vivo regulation of blood vessel formation by BMSCs was also explored in a SCID mouse model. Results showed that PEDF was expressed more prominently in BMSCs compared to VEGF. This contrasted with human umbilical vein endothelial cells (HUVECs) where the expression of VEGF was higher than that of PEDF. The ratio of VEGF/PEDF gene expression in BMSCs increased when VEGF concentration reached 40ng/ml in the culture medium, but decreased at 80ng/ml. Under CoCl(2)-induced hypoxic conditions, the VEGF/PEDF ratio of BMSCs increased significantly in both normal and angiogenic culture media. There was no expression of endothelial cell markers in BMSCs cultured in either pro-angiogenic or hypoxia culture conditions when compared with HUVECs. The in vivo study showed that VEGF/PEDF expression closely correlated with the degree of neovascularization, and that hypoxia significantly induced pro-angiogenic activity in BMSCs. These results indicate that, rather than being progenitors of endothelial cells, BMSCs play an important role in regulating the neovascularization process, and that the ratio of VEGF and PEDF may, in effect, be an indicator of the pro- or anti-angiogenic activities of BMSCs.  相似文献   

15.
Neurotrophic factors, such as nerve growth factor (NGF), have been shown to promote the differentiation of neural crest neuroblasts into sympathetic neurons, whereas glucocorticoids promote the endocrine phenotype of adrenal medullary chromaffin cells. This pluripotency is preserved to some extent in adult chromaffin cells, with NGF and other neurotrophic factors influencing the differentiation of these cells. In this study, the effects of glial cell line-derived neurotrophic factor (GDNF) on explanted chromaffin tissue have been investigated. The localization of mRNAs corresponding to the two components of the GDNF receptor, GDNF family receptor alpha 1 (GFRalpha1) and Ret, were demonstrated in adult adrenal medullary ganglion cells. GFRalpha1 mRNA was expressed in explanted chromaffin tissue at levels dependent on the presence of serum in the medium but decreased on the addition of blocking antibodies against transforming growth factor beta (TGFbeta). However, TGFbeta1 (1 ng/ml) did not upregulate GFRalpha1 mRNA expression when added to serum-free medium. GDNF induced neurite formation from chromaffin cells, as measured by the ratio of neurite-bearing versus total number of chromaffin cells in primary cultures of adult adrenal medulla. The most potent dose inducing neurites from chromaffin cells was 100 ng/ml GDNF. However, this dose was not as efficient as that seen when chromaffin cells were stimulated with NGF (100 ng/ml). Thus, adrenal medullary cells express mRNAs for the GDNF receptor components Ret and GFRalpha1, increase their expression upon being cultured in serum-containing medium and respond to GDNF treatment with an increase in the number of cells that develop nerve processes.  相似文献   

16.
Summary Cultured pig aortic smooth muscle cells maintain a viable, quiescent state in a chemically defined medium that contains 10−6 M insulin, 5μg/ml transferrin, and 0.2 mM ascorbate. DNA synthesis and DNA content were determined by measuring tritiated thymidine incorporation and DNA-binding to the fluorescent probe 4′,6-diamidino-2-phenylindole, respectively. The majority of the population of cells in defined medium cultures were diploid. Tritiated thymidine uptake in cells in defined medium was one-tenth that observed in cells in fetal bovine serum-containing medium. The study of cellular cyclic AMP level in response to extracellular adenosine stimulation in dividing cells and quiescent cells showed that cells in defined medium had a lower extent of response to adenosine compared to cells cultured in serum-containing medium. Both the cell growth index and the response to adenosine of cells cultured in defined medium were reversible after replacing the medium with 10% fetal bovine serum-containing medium, which suggests that the cells in defined medium were healthy and were capable of modulating cellular metabolism depending on culture conditions. This work was supported in part by National Institutes of Health grants HL31854, HL38130, and RR07048.  相似文献   

17.
目的:检测多能成体祖细胞(MAPC)的培养条件对猴骨髓间充质细胞(BMMSCs)和人脂肪干细胞(hADSCs)生长的影响,旨在获得更适合治疗视网膜变性疾病的供体细胞。方法通过细胞形态观察、MTT实验、克隆形成率、PCR检测、以及成脂、成骨、成软骨分化潜能检测等,研究MAPC培养条件下猴BMMSCs和hADSCs的特征,并用DMEM/LG和MAPC培养条件培养的hADSCs进行RCS大鼠视网膜下腔移植,通过视网膜电图(ERG)和TUNEL检测,判断细胞移植治疗对视功能及视网膜细胞凋亡的影响。结果与常规培养基相比,MAPC培养条件能促进猴BMMSCs增殖,细胞变小,但传2代后,细胞变得宽大扁平,出现衰老征象;然而,MAPC培养条件下的hADSCs细胞增殖能力及克隆形成率均增强,形成的克隆较大可稳定传10代以上,且具有成脂、成骨、成软骨的多向分化潜能,细胞表面标记物及细胞因子出现差异表达:CD140b、CD90、CD47、HGF和PEDF显著上调,CD73、CD105和IL-6显著下调。与对照组相比,移植DMEM/LG和MAPC培养条件培养的hADSCs(P4)3周后,RCS大鼠的B波波幅明显升高,外核层细胞凋亡明显减少。结论 MAPC培养条件培养的hADSCs显示出更好的视网膜神经保护作用,适合用于治疗视网膜退行性疾病。  相似文献   

18.
Thyroid hormones play an important role in brain development, but the mechanism(s) by which triiodothyronine (T3) mediates neuronal differentiation is poorly understood. Here we demonstrate that T3 regulates the neurotrophic factor, neurotrophin-3 (NT-3), in developing rat cerebellar granule cells both in cell culture and in vivo. In situ hybridization experiments showed that developing Purkinje cells do not express NT-3 mRNA but do express trkC, the putative neuronal receptor for NT-3. Addition of recombinant NT-3 to cerebellar cultures from embryonic rat brain induces hypertrophy and neurite sprouting of Purkinje cells, and upregulates the mRNA encoding the calcium-binding protein, calbindin-28 kD. The present study demonstrates a novel interaction between cerebellar granule neurons and developing Purkinje cells in which NT-3 induced by T3 in the granule cells promotes Purkinje cell differentiation.  相似文献   

19.
A medium consisting of a rich basal nutrient mixture supplemented with bovine insulin (10 micrograms/ml), human transferrin (10 micrograms/ml), human cold-insoluble globulin (5 micrograms/ml), and ethanolamine (0.5 mM) supported the growth of the A431 human epidermoid cell line in the absence of serum with a generation time equal to that of cells in serum-containing medium. Addition of epidermal growth factor (EGF) to this culture medium at concentration mitogenic for other cell types resulted in a marked inhibition of A431 cell growth. Inhibitory effects of EGF were observed at 1 ng/ml and near-maximal effects were observed at 10 ng/ml. The inhibitory effect of EGF could be reversed by the omission of EGF in subsequent medium changes and could be prevented by the addition of anti-EGF antibody to the culture medium. Inhibition of A431 cell growth by EGF also could be demonstrated in serum-containing medium.  相似文献   

20.
Liu Y  Liu T  Fan X  Ma X  Cui Z 《Journal of biotechnology》2006,124(3):592-601
Expansion of umbilical cord blood mononuclear cells (UCB MNCs) was carried out in a rotating wall vessel (RWV) bioreactor and tissue culture flasks (T-flasks) in serum-containing medium supplemented with relatively low doses of purified recombinant human cytokines (5.33 ng/ml IL-3, 16 ng/ml SCF, 3.33 ng/ml G-CSF, 2.13 ng/ml GM-CSF, 7.47 ng/ml FL and 7.47 ng/ml TPO) for 8 days. The cell density, pH and osmolality of the culture medium in the two culture systems were measured every 24h. Flow cytometric assay for CD34+ cells was carried out at 0, 144 and 197 h and methylcellulose colony assays were performed at 0, 72, 144 and 197 h. The pH and osmolality of the medium in the two culture systems were maintained in the proper ranges for hematopoietic stem cells (HSCs) and progenitors culture. The RWV bioreactor, combined with a cell-dilution feeding protocol, was efficient to expand UCB MNCs. At the end of 200 h culture, the total cell number was multiplied by 435.5+/-87.6 times, and CD34+ cells 32.7+/-15.6 times, and colony-forming units of granulocyte-macrophage (CFU-GM) 21.7+/-4.9 times. While in T-flasks, however, total cells density changed mildly, CD34+ cells and CFU-GM decreased in number. It is demonstrated that the RWV bioreactor can provide a better environment for UCB MNCs expansion, enhance the contact between HSCs and accessory cells and make the utilization of cytokines more effective than T-flask.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号