首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase C (PKC)-alpha phosphorylation of recombinant NG2 cytoplasmic domain and phorbol ester-induced PKC-dependent phosphorylation of full-length NG2 expressed in U251 cells are both blocked by mutation of Thr(2256), identifying this residue as a primary phosphorylation site. In untreated U251/NG2 cells, NG2 is present along with ezrin and alpha(3)beta(1) integrin in apical cell surface protrusions. Phorbol ester treatment causes redistribution of all three components to lamellipodia, accompanied by increased cell motility. U251 cells expressing NG2 with a valine substitution at position 2256 are resistant to phorbol ester treatment: NG2 remains in membrane protrusions and cell motility is unchanged. In contrast, NG2 with a glutamic acid substitution at position 2256 redistributes to lamellipodia even without phorbol ester treatment, rendering transfected U251 cells spontaneously motile. PKC-alpha-mediated NG2 phosphorylation at Thr(2256) is therefore a key step for initiating cell polarization and motility.  相似文献   

2.
Integrins are adhesion receptors that transmit signals bidirectionally across the plasma membrane. In our previous report we have shown that the squamous lung cancer cell line, Calu-1, binds to collagen type IV (Coll IV) through beta1-integrin and results in phosphorylation of focal adhesion kinase (FAK) (Ann Thorac Surg 2004; 78:450-457). Considering the critical role of FAK in cell migration, proliferation, and survival, here we investigated potential mechanisms of its activation and regulation in Calu-1 cells. We observed the phosphorylation of Tyr397 of FAK (the autophosphorylation site of FAK) and paxillin, the immediate downstream substrate of FAK following the adhesion of Calu-1 cells to Coll IV. FAK remains phosphorylated during proliferation either on Coll IV or on uncoated plates for 72 h, as determined by peroxivanadate treatment. Exposure of Calu-1 cells with 60 microM genistein, reduces FAK phosphorylation (7.6 fold) and cell proliferation. Extracellular signal regulated kinases (ERKs) were also phosphorylated after Coll IV attachment. Disruption of Calu-1 cell cytoskeleton integrity by 1-5 muM Cytochalasin D resulted in the inhibition of cell adhesion (50% to 75%, p<0.19 - 6.6 x 10(7)) and ERKs phosphorylation (2 fold) without any effect on FAK phosphorylation. Protein Kinase C inhibitor, Calphostin C at 100 and 250 nM concentrations did not block Coll IV induced FAK phosphorylation but activated the ERKs in a dose dependent manner. beta1-integrin is essential for Coll IV induced FAK activation, but it is not physically associated with FAK as determined by immunodetection assay. Collectively, this report defines the existence of multiple and potentially parallel Coll IV/beta1-integrin mediated signaling events in Calu-1 cells, which involve FAK, ERKs, and PKC.  相似文献   

3.
Epidermal growth factor (EGF) receptor (EGFR) is involved in various basic biochemical pathways and is thus thought to play an important role in cell migration. We examined the effect of EGF on motility, migration, and morphology of a human adenocarcinoma cell line CAC-1. EGF treatment increased the motility of cervical adenocarcinoma cells and promoted migration of the cells on fibronectin and type IV collagen. EGF induced morphological changes with lamellipodia during EGFR-mediated motility. The results of an immunoprecipitation study showed that EGF up-regulated the expression of alpha2beta1-integrin in a dose-dependent manner. EGF-induced cell migration was blocked by alpha2beta1-integrin antibody. Our results also showed that EGF treatment stimulated the level of tyrosine dephosphorylation of FAK, which is required for EGF-induced changes in motility, migration, and cell morphology. A tyrosine kinase inhibitor (ZD1839) blocked EGF-induced changes in cervical adenocarcinoma cells. The results suggest that EGF promotes cell motility and migration and increases the expression of alpha2beta1-integrin, possibly by decreasing FAK phosphorylation.  相似文献   

4.
We have previously shown that endogenous IGF-I regulates growth of human intestinal smooth muscle cells by stimulating proliferation and inhibiting apoptosis. In active Crohn's disease, expression of IGF-I and the alpha(v)beta(3)-integrin receptor ligands fibronectin and vitronectin is increased. The aim of the present study was to determine whether occupation of the alpha(v)beta(3)-receptor influences IGF-I receptor tyrosine kinase activation and function in human intestinal smooth muscle cells. In untreated cells, IGF-I elicited time-dependent tyrosine phosphorylation of its cognate receptor that was maximal within 2 min and sustained for 30 min. In the presence of the alpha(v)beta(3)-ligand fibronectin, IGF-I-stimulated IGF-I receptor activation was augmented. Conversely, in the presence of the alpha(v)beta(3)-specific disintegrin echistatin, IGF-I-stimulated IGF-I receptor tyrosine kinase phosphorylation was inhibited. IGF-I-stimulated IGF-I receptor activation was accompanied by recruitment of the adapter protein IRS-1, activation of Erk1/2, p70S6 kinase, and proliferation. These effects were augmented by fibronectin and attenuated by echistatin. IGF-I also elicited time-dependent recruitment of protein tyrosine phosphatase SHP-2 that coincided with dephosphorylation of the tyrosine phosphorylated IGF-I receptor tyrosine kinase. The alpha(v)beta(3)-disintegrin echistatin accelerated the rate of SHP-2 recruitment and deactivation of the IGF-I receptor tyrosine kinase. The results show that occupancy of the alpha(v)beta(3)-integrin receptor modulates IGF-I-induced IGF-I receptor activation and function in human intestinal muscle cells. We hypothesize that the concomitant increases in the expression of alpha(v)beta(3)-ligands and of IGF-I in active Crohn's disease may contribute to muscle hyperplasia and stricture formation by acting in concert to augment IGF-I-stimulated IGF-I receptor tyrosine kinase activity and IGF-I-mediated muscle cell growth.  相似文献   

5.
To identify the role of caveolin-1 in integrin mechanotransduction, we exposed bovine aortic endothelial cells to 10 dyn/cm2 of laminar shear stress. Caveolin-1 was acutely and transiently phosphorylated with shear, occurring downstream of beta1-integrin activation as the beta1-integrin blocking antibody JB1A was inhibitory. In manipulating Src family kinase (SFK) activity with knockdown of Csk or type 1 protein phosphatase (PP1) treatment, we observed coordinate increase and decrease in shear-induced caveolin-1 phosphorylation, respectively. Hence, shear-stimulated caveolin-1 phosphorylation is regulated by SFKs. Shear-induced recruitment and phosphorylation of caveolin-1 occurred at beta1-integrin sites in a beta1-integrin- and SFK-dependent manner. Csk, described to interact with pY14-caveolin-1 and integrins, bound to an increased pool of phosphorylated caveolin-1 after shear corresponding with elevated Csk at beta1-integrin sites. Like caveolin-1, treatment with JB1A and PP1 attenuated shear-induced Csk association with beta1-integrins. Csk function was assayed with transfection of a caveolin-1 phosphorylation domain peptide. The peptide attenuated shear-induced association of Csk at beta1-integrin sites, as well as colocalization of Csk with paxillin and phosphorylated caveolin-1. Because integrin and Csk activity regulate cytoskeletal reorganization, we evaluated the role of this mechanism in shear-induced myosin light chain (MLC) phosphorylation. Knockdown of Csk expression was sufficient to reduce MLC diphosphorylation due to shear. Disruption of Csk-integrin association by peptide treatment was also inhibitory of the MLC diphosphorylation response. Together these data indicate that integrin activation with shear stress results in SFK-regulated caveolin-1 phosphorylation that, in turn, mediates Csk association at integrin sites, where it plays a role in downstream, shear-stimulated MLC diphosphorylation.  相似文献   

6.
Both Ser(16) and Thr(17) of phospholamban (PLB) are phosphorylated, respectively, by cAMP-dependent protein kinase (PKA) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). PLB phosphorylation relieves cardiac sarcoplasmic reticulum Ca(2+) pump from inhibition by PLB. Previous studies have suggested that phosphorylation of Ser(16) by PKA is a prerequisite for Thr(17) phosphorylation by CaMKII and is essential to the relaxant effect of beta-adrenergic stimulation. To determine the role of Thr(17) PLB phosphorylation, we investigated the dual-site phosphorylation of PLB in isolated adult rat cardiac myocytes in response to beta(1)-adrenergic stimulation or electrical field stimulation (0. 1-3 Hz) or both. A beta(1)-adrenergic agonist, norepinephrine (10(-9)-10(-6) m), in the presence of an alpha(1)-adrenergic antagonist, prazosin (10(-6) m), selectively increases the PKA-dependent phosphorylation of PLB at Ser(16) in quiescent myocytes. In contrast, electrical pacing induces an opposite phosphorylation pattern, selectively enhancing the CaMKII-mediated Thr(17) PLB phosphorylation in a frequency-dependent manner. When combined, electric stimulation (2 Hz) and beta(1)-adrenergic stimulation lead to dual phosphorylation of PLB and exert a synergistic effect on phosphorylation of Thr(17) but not Ser(16). Frequency-dependent Thr(17) phosphorylation is closely correlated with a decrease in 50% relaxation time (t(50)) of cell contraction, which is independent of, but additive to, the relaxant effect of Ser(16) phosphorylation, resulting in hastened contractile relaxation at high stimulation frequencies. Thus, we conclude that in intact cardiac myocytes, phosphorylation of PLB at Thr(17) occurs in the absence of prior Ser(16) phosphorylation, and that frequencydependent Thr(17) PLB phosphorylation may provide an intrinsic mechanism for cardiac myocytes to adapt to a sudden change of heart rate.  相似文献   

7.
8.
Previous studies from our laboratory showed that p21Cip1/WAF1 can be phosphorylated by Pim-1 kinase in vitro, implying that part of the function of Pim-1 might involve influencing the cell cycle. In the present study, site-directed mutagenesis and phosphorylated-specific antibodies were used as tools to identify the sites phosphorylated by Pim-1 and the consequences of this phosphorylation. What we found was that Pim-1 can efficiently phosphorylate p21 on Thr145 in vitro using recombinant protein and in vivo in intact cells. Unexpectedly, we found that Ser146 is a second site that is phosphorylated in vivo, but this phosphorylation event seems to be an indirect result of Pim-1 expression. More importantly, the consequences of phosphorylation of either Thr145 or Ser146 are distinct. When p21 is phosphorylated on Thr145, it localizes to the nucleus and results in the disruption of the association between proliferating cell nuclear antigen and p21. Furthermore, phosphorylation of Thr145 promotes stabilization of p21. On the other hand, when p21 is phosphorylated on Ser146, it localizes primarily in the cytoplasm and the effect of phosphorylation on stability is minimal. Cotransfection of wild-type Pim-1 with p21 increases the rate of proliferation compared with cotransfection of p21 with kinase-dead Pim-1. Knocking down Pim-1 expression greatly decreases the rate of proliferation of H1299 cells and their ability to grow in soft agar. These data suggest that Pim-1 overexpression may contribute to tumorigenesis in part by influencing the cellular localization and stability of p21 and by promoting cell proliferation.  相似文献   

9.
Autophosphorylation is an important mechanism by which protein kinases regulate their own biological activities. Salt inducible kinase 1 (SIK1) is a regulator in the feedback cascades of cAMP-mediated gene expression, while its kinase domain also features autophosphorylation activity. We provide evidence that Ser186 in the activation loop is the site of autophosphorylation and essential for the kinase activity. Ser186 is located at the +4 position of the critical Thr residue Thr182, which is phosphorylated by upstream kinases such as LKB1. The relationship between phosphorylation at Ser186 and at Thr182 in COS-7 cells indicates that the former is a prerequisite for the latter. Glycogen synthase kinase-3beta (GSK-3beta) phosphorylates Ser/Thr residues located at the fourth position ahead of the pre-phosphorylated Ser/Thr residues, and inhibitors of GSK-3beta reduce the phosphorylation at Thr182. The results of an in vitro reconstitution assay also indicate that GSK-3beta could be the SIK1 kinase. However, overexpression and knockdown of GSK-3beta in LKB1-defective HeLa cells suggests that GSK-3beta alone may not be able to phosphorylate or activate SIK1, indicating that LKB1 may play a crucial role by phosphorylating SIK1 at Thr182, possibly as an initiator of the autophosphorylation cascade, and GSK-3beta may phosphorylate SIK1 at Thr182 by recognizing the priming-autophosphorylation at Ser186 in cultured cells. This may also be the case for the other isoform SIK2, but not for SIK3.  相似文献   

10.
Prothymosin alpha (ProT alpha) is a 12.5 kDa acidic polypeptide that is considered to have a nuclear function related to cell proliferation. Inspection of its amino acid sequence revealed the presence of sequences that may serve as targets for phosphorylation by casein kinase-2 (CK-2). ProT alpha isolated from calf thymocytes was phosphorylated in vitro by CK-2. The phosphorylation sites are Ser and Thr residues located among the first 14 amino acid residues in the ProT alpha sequence. Another site that is theoretically suitable for phosphorylation by CK-2, at the C-terminus of the polypeptide, is not, in fact, phosphorylated. Thymosin alpha 1 (T alpha 1), a peptide whose sequence corresponds to the first 28 amino acids of ProT alpha, is also phosphorylated by CK-2 at the same phosphorylation sites as ProT alpha. In cultured splenic lymphocytes ProT alpha was phosphorylated at Thr residues located at positions 7, 12 and/or 13. Based on these observations we conclude that CK-2, or another cellular kinase with similar sequence specificity, is responsible for phosphorylation of ProT alpha in vivo.  相似文献   

11.
Gliomas are the most frequently diagnosed adult primary brain malignancy. These tumors have a tendency to invade diffusely into the surrounding healthy brain tissue, thereby precluding their successful surgical removal. In this report, we examine the potential for the neuregulin-1/erbB receptor signaling network to contribute to this process by modulating glioma cell motility. Neuregulin-1 is expressed throughout the immature and adult central nervous system and has been demonstrated to influence the migration of a variety of cell types in the developing brain. In addition, erbB2, an integral member of the heterodimeric neuregulin-1 receptor, has been shown to be overexpressed in human glioma biopsies. Using antibodies specific for erbB2 and erbB3, we show that these receptors localize preferentially in regions of the plasma membrane which are involved in facilitating cellular movement. Here, erbB2 colocalizes and coimmunoprecipitates with members of the focal complex including beta1-integrin and focal adhesion kinase. Further, erbB receptor activation by neuregulin-1 enhances cell motility in two-dimensional scratch motility assays and stimulates cell invasion in three-dimensional Transwell migration assays. These effects of neuregulin-1 appear to involve the activation of focal adhesion kinase, which occurs downstream from erbB2 receptor stimulation. Taken together these data suggest that neuregulin-1 plays an important modulatory role in glioma cell invasion.  相似文献   

12.
Microtubule-associated protein tau contains a consensus motif for protein kinase B/Akt (Akt), which plays an essential role in anti-apoptotic signaling. The motif encompasses the AT100 double phospho-epitope (Thr212/Ser214), a specific marker for Alzheimer's disease (AD) and other neurodegenerations, raising the possibility that it could be generated by Akt. We studied Akt-dependent phosphorylation of tau protein in vitro. We found that Akt phosphorylated both Thr212 and Ser214 in the longest and shortest tau isoforms as determined using phospho site-specific antibodies against tau. Akt did not phosphorylate other tau epitopes, including Tau-1, AT8, AT180, 12E8 and PHF-1. The Akt-phosphorylated tau retained its initial electrophoretic mobility. Immunoprecipitation studies with phospho-specific Thr212 and Ser214 antibodies revealed that only one of the two sites is phosphorylated per single tau molecule, resulting in tau immunonegative for AT100. Mixed kinase studies showed that prior Ser214 phosphorylation by Akt blocked protein kinase A but not GSK3beta activity. On the other hand, GSK3beta selectively blocked Ser214 phosphorylation, which was prevented by lithium. The results suggest that Akt may be involved in AD-specific phosphorylation of tau at the AT100 epitope in conjunction with other kinases. Our data suggest that phosphorylation of tau by Akt may play specific role(s) in Akt-mediated anti-apoptotic signaling, particularly relevant to AD and other neurodegenerations.  相似文献   

13.
NDR protein kinases are involved in the regulation of cell cycle progression and morphology. NDR1/NDR2 protein kinase is activated by phosphorylation on the activation loop phosphorylation site Ser281/Ser282 and the hydrophobic motif phosphorylation site Thr444/Thr442. Autophosphorylation of NDR is responsible for phosphorylation on Ser281/Ser282, whereas Thr444/Thr442 is targeted by an upstream kinase. Here we show that MST3, a mammalian Ste20-like protein kinase, is able to phosphorylate NDR protein kinase at Thr444/Thr442. In vitro, MST3 selectively phosphorylated Thr442 of NDR2, resulting in a 10-fold stimulation of NDR activity. MOB1A (Mps one binder 1A) protein further increased the activity, leading to a fully active kinase. In vivo, Thr442 phosphorylation after okadaic acid stimulation was potently inhibited by MST3KR, a kinase-dead mutant of MST3. Knockdown of MST3 using short hairpin constructs abolished Thr442 hydrophobic motif phosphorylation of NDR in HEK293F cells. We conclude that activation of NDR is a multistep process involving phosphorylation of the hydrophobic motif site Thr444/2 by MST3, autophosphorylation of Ser281/2, and binding of MOB1A.  相似文献   

14.
15.
W Krek  E A Nigg 《The EMBO journal》1991,10(2):305-316
The cdc2 kinase is a key regulator of the eukaryotic cell cycle. The activity of its catalytic subunit, p34cdc2, is controlled by cell cycle dependent interactions with other proteins as well as by phosphorylation--dephosphorylation reactions. In this paper, we examine the phosphorylation state of chicken p34cdc2 at various stages of the cell cycle. By peptide mapping, we detect four major phosphopeptides in chicken p34cdc2; three phosphorylation sites are identified as threonine (Thr) 14, tyrosine (Tyr) 15 and serine (Ser) 277. Analysis of synchronized cells demonstrates that phosphorylation of all four sites is cell cycle regulated. Thr 14 and Tyr 15 are phosphorylated maximally during G2 phase but dephosphorylated abruptly at the G2/M transition, concomitant with activation of p34cdc2 kinase. This result suggests that phosphorylation of Thr 14 and/or Tyr 15 inhibits p34cdc2 kinase activity, in line with the location of these residues within the putative ATP binding site of the kinase. During M phase, p34cdc2 is also phosphorylated, but phosphorylation occurs on a threonine residue distinct from Thr 14. Finally, phosphorylation of Ser 277 peaks during G1 phase and drops markedly as cells progress through S phase, raising the possibility that this modification may contribute to control the proposed G1/S function of the vertebrate p34cdc2 kinase.  相似文献   

16.
Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3beta (GSK-3beta) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-alpha (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.  相似文献   

17.
18.
The epidermal growth factor (EGF) receptor is phosphorylated by protein kinase C at Thr654. It has been proposed that the phosphorylation of this site is an important regulatory mechanism for the control of EGF receptor function. However, the physiological significance of the phosphorylation of EGF receptor Thr654 in intact cells is not understood. To address this question, the design of an experimental strategy is required that can be used to distinguish between the pleiotropic effects of kinase C activation and the specific effects of kinase C that are mediated by the phosphorylation of the EGF receptor at Thr654. The approach that we used was to examine the function of EGF receptors that are constitutively phosphorylated at residue 654. It was observed that the constitutive phosphorylation of the EGF receptor blocked mitogenic signal transduction by the receptor. These data are consistent with the hypothesis that the phosphorylation of the EGF receptor at residue 654 in intact cells inhibits EGF-stimulated cellular proliferation.  相似文献   

19.
Inhibitor-2 (I-2) is a regulator of protein phosphatase type-1 (PP1), known to be phosphorylated in vitro by multiple kinases. In particular Thr72 is a Thr-Pro phosphorylation site conserved from yeast to human, but there is no evidence that this phosphorylation responds to any physiological signals. Here, we used electrophoretic mobility shift and immunoblotting with a site-specific phospho-Thr72 antibody to establish Thr72 phosphorylation in HeLa cells and show a 25-fold increase in phosphorylation during mitosis. Mass spectrometry demonstrated I-2 in actively growing HeLa cells was also phosphorylated at three other sites, Ser120, Ser121, and an additional Ser located between residues 70 and 90. In vitro kinase assays using recombinant I-2 as a substrate showed that the Thr72 kinase(s) was activated during mitosis, and sensitivity to kinase inhibitors indicated that the principal I-2 Thr72 kinase was not GSK3 but instead a member of the cyclin-dependent protein kinase family. Immunocytochemistry confirmed Thr72 phosphorylation of I-2 during mitosis, with peak intensity at prophase, and revealed subcellular concentration of the phospho-Thr72 I-2 at centrosomes. Together, the data show dynamic changes in I-2 phosphorylation during mitosis and localization of phosphorylated I-2 at centrosomes, suggesting involvement in mammalian cell division.  相似文献   

20.
Phosphorylation of vitronectin (Vn) by casein kinase II was previously shown to occur at Thr50 and Thr57 and to augment a major physiological function of vitronectin-cell adhesion and spreading. Here we show that this phosphorylation increases cell adhesion via the alpha(v)beta3 (not via the alpha(v)beta5 integrin), suggesting that alpha(v)beta3 differs from alpha(v)beta5 in its biorecognition profile. Although both the phospho (CK2-PVn) and non-phospho (Vn) analogs of vitronectin (simulated by mutants Vn(T50E,T57E), and Vn(T50A,T57A), respectively) trigger the alpha(v)beta3 as well as the alpha(v)beta5 integrins, and equally activate the ERK pathway, these two forms are different in their activation of the focal adhesion kinase/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) pathway. Specifically, we show (i) that, upon exposure of cells to Vn/CK2-PVn, their PKB activation depends on the availability of the alpha(v)beta3 integrin on their surface; (ii) that upon adhesion of the beta3-transfected cells onto the CK2-PVn, the extent of PKB activation coincides with the enhanced adhesion of these cells, and (iii) that both the PKB activation and the elevation in the adhesion of these cells is PI3K-dependent. The occurrence of a cell surface receptor that specifically distinguishes between a phosphorylated and a non-phosphorylated analog of Vn, together with the fact that it preferentially activates a distinct intra-cellular signaling pathway, suggest that extra-cellular CK2 phosphorylation may play an important role in the regulation of cell adhesion and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号