首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A ligand-blotting procedure which allows detection of heparin-binding proteins is described. Crude commercial heparin was fractionated by chromatography on a column of human plasma low-density lipoproteins immobilized to Sepharose CL-4B. Chromatography yielded an unbound and a bound fraction of heparin, designated URH and HRH, respectively. The HRH fraction was reacted with the N-hydroxysuccinimidyl ester of 3-(p-hydroxyphenyl)propionic acid and then labeled with 125I. Proteins were separated by 3-20% pore-gradient gel electrophoresis, transferred to nitrocellulose, and then assayed for their ability to bind 125I-labeled HRH. Human plasma apolipoproteins B-100, B-48, and E of chylomicrons, very low-density lipoproteins, and low-density lipoproteins bound the 125I-labeled HRH; the radiolabeled heparin did not bind to serum albumin, ferritin, catalase, and lactate dehydrogenase. The ligand-blotting procedure should facilitate the purification of heparin-binding domains from these proteins and, moreover, may be applicable to the investigation of heparin-protein interactions in general.  相似文献   

2.
Ligand blotting with 125I-fluoresceinamine-heparin   总被引:3,自引:0,他引:3  
A highly sensitive method for ligand blotting with heparin has been developed. This ligand-blotting method is successful largely due to the ability to prepare heparin derivatives of high radiospecific activity. Heparin was modified with fluoresceinamine according to the method of C.G. Glabe, P.K. Harty, and S.D. Rosen [1983) Anal. Biochem. 130, 287-294), and this fluoresceinamine-derivatized heparin can be radioiodinated to a specific activity of 100,000 cmp/ng of uronic acid. This is a 500-fold increase in specific activity over Bolton-Hunter-modified heparin, as prepared by A.D. Cardin, K.R. Witt, and R.L. Jackson [1984) Anal. Biochem. 137, 368-373). 125I-Fluoresceinamine-derivatized heparin retains its ability to interact specifically with heparin-binding proteins such as human protease nexin-I and antithrombin III. 125I-Fluoresceinamine-derivatized heparin can be used to visualize and quantify heparin binding proteins on nitrocellulose. Protease nexin-I can be visualized at the nanogram level. In addition, ligand blotting with 125I-fluoresceinamine heparin can be combined with Cleveland digestion (D.W. Cleveland, S. Fisher, M.W. Kirschner, and U.K. Laemmli (1977) J. Biol. Chem. 252, 1102-1106) in order to identify heparin binding fragments of proteins with heparin binding domains.  相似文献   

3.
125I-labeled heparin was used to detect basic fibroblast growth factor (bFGF) in crude tumor cell extracts after separation by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. 125I-labeled heparin bound avidly to native recombinant bFGF immobilized on nitrocellulose and eluted with 1.5-2.0 M NaCl. However, Western transfer of bFGF to nitrocellulose after SDS-polyacrylamide gel electrophoresis destroyed heparin-binding ability. In contrast, bFGF was detected by incubation of the polyacrylamide gels directly with 125I-labeled heparin in a gel overly technique. Heparin affinity and NaCl elution pattern from bFGF in gel were similar to those observed for native bFGF spotted on nitrocellulose. This procedure permitted detection of bFGF in crude extracts of a human astrocytoma cell line. In view of the rapid growth of the heparin-binding fibroblast growth factor gene family, this technique should prove useful for the rapid and sensitive detection of other heparin-binding growth factors.  相似文献   

4.
Platelet endothelial cell adhesion molecule 1 (PECAM-1) (CD31), a member of the immunoglobulin (Ig) superfamily of cell adhesion molecules with six Ig-like domains, has a range of functions, notably its contributions to leukocyte extravasation during inflammation and in maintaining vascular endothelial integrity. Although PECAM-1 is known to mediate cell adhesion by homophilic binding via domain 1, a number of PECAM-1 heterophilic ligands have been proposed. Here, the possibility that heparin and heparan sulfate (HS) are ligands for PECAM-1 was reinvestigated. The extracellular domain of PECAM-1 was expressed first as a fusion protein with the Fc region of human IgG1 fused to domain 6 and second with an N-terminal Flag tag on domain 1 (Flag-PECAM-1). Both proteins bound heparin immobilized on a biosensor chip in surface plasmon resonance (SPR) binding experiments. Binding was pH-sensitive but is easily measured at slightly acidic pH. A series of PECAM-1 domain deletions, prepared in both expression systems, were tested for heparin binding. This revealed that the main heparin-binding site required both domains 2 and 3. Flag-PECAM-1 and a Flag protein containing domains 1-3 bound HS on melanoma cell surfaces, but a Flag protein containing domains 1-2 did not. Heparin oligosaccharides inhibited Flag-PECAM-1 from binding immobilized heparin, with certain structures having greater inhibitory activity than others. Molecular modeling similarly identified the junction of domains 2 and 3 as the heparin-binding site and further revealed the importance of the iduronic acid conformation for binding. PECAM-1 does bind heparin/HS but by a site that is distinct from that required for homophilic binding.  相似文献   

5.
The hypothesis that neuropilin-1 (Npn-1) may interact with heparin-binding proteins other than vascular endothelial growth factor has been tested using an optical biosensor-based binding assay. The results show that fibroblast growth factor (FGF) 1, 2, 4, and 7, FGF receptor 1, hepatocyte growth factor/scatter factor (HGF/SF), FGF-binding protein, normal protease sensitive form of prion protein, antithrombin III, and Npn-1 itself are all able to interact with Npn-1 immobilized on the sensor surface. FGF-2, FGF-4, and HGF/SF are also shown to interact with Npn-1 in a solution assay. Moreover, these protein-protein interactions are dependent on the ionic strength of the medium and are inhibited by heparin, and the kinetics of binding of FGF-2, FGF-4 and HGF/SF to Npn-1 are characterized by fast association rate constants (270,000-1,600,000 m(-1) s(-1)). These results suggest that Npn-1 possesses a "heparin" mimetic site that is able to interact at least in part through ionic bonding with the heparin binding site on many of the proteins studied. Npn-1 was also found to potentiate the growth stimulatory activity of FGF-2 on human umbilical vein endothelial cells, indicating that Npn-1 may not just bind but also regulate the activity of heparin-binding proteins.  相似文献   

6.
The interference of the heparin-neutralizing plasma component S protein (vitronectin) (Mr = 78,000) with heparin-catalyzed inhibition of coagulation factor Xa by antithrombin III was investigated in plasma and in a purified system. In plasma, S protein effectively counteracted the anticoagulant activity of heparin, since factor Xa inhibition was markedly reduced in comparison to heparinized plasma deficient in S protein. Using purified components in the presence of heparin, S protein induced a concentration-dependent reduction of the inhibition rate of factor Xa by antithrombin III. This resulted in a decrease of the apparent pseudo-first order rate constant by more than 10-fold at a physiological ratio of antithrombin III to S protein. S protein not only counteracted the anticoagulant activity of commercial heparin but also of low molecular weight forms of heparin (mean Mr of 4,500). The heparin-neutralizing activity of S protein was found to be mainly expressed in the range 0.2-10 micrograms/ml of high Mr as well as low Mr heparin. S protein and high affinity heparin reacted with apparent 1:1 stoichiometry to form a complex with a dissociation constant KD = 1 X 10(-8) M as determined by a functional assay. As deduced from dot-blot analysis, direct interaction of radiolabeled heparin with S protein revealed a dissociation constant KD = 4 X 10(-8) M. Heparin binding as well as heparin neutralization by S protein increased significantly when reduced/carboxymethylated or guanidine-treated S protein was employed indicating the existence of a partly buried heparin-binding domain in native S protein. Radiolabeled heparin bound to the native protein molecule as well as to a BrCN fragment (Mr = 12,000) containing the heparin-binding domain as demonstrated by direct binding on nitrocellulose replicas of sodium dodecyl sulfate-polyacrylamide gels. Kinetic analysis revealed that the heparin neutralization activity of S protein in the inhibition of factor Xa by antithrombin III could be mimicked by a synthetic tridecapeptide from the amino-terminal portion of the heparin-binding domain. These data provide evidence that the heparin-binding domain of S protein appears to be unique in binding to heparin and thereby neutralizing its anticoagulant activity in the inhibition of coagulation factors by antithrombin III. The induction of heparin binding and neutralization may be considered a possible physiological mechanism initiated by conformational alteration of the S protein molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Bovine spermatozoa that have been exposed to seminal plasma possess more binding sites for heparin than sperm from the cauda epididymis that have not been exposed to accessory sex gland secretions. Seminal plasma exposure enables sperm, following incubation with heparin, to undergo zonae pellucidae-induced exocytosis of the acrosome. In this study, the regulatory role of seminal plasma heparin-binding proteins in capacitation of bovine spermatozoa by heparin was investigated. Plasma membranes from sperm exposed to seminal plasma in vivo or in vitro contained a series of acidic 15-17 kDa proteins not found in cauda epididymal sperm. Western blots of membrane proteins indicated that these 15-17 kDa proteins bound [125I]-heparin. Heparin-binding proteins were isolated by heparin affinity chromatography from seminal plasma from vasectomized bulls. Gel electrophoresis indicated that the heparin-binding peaks contained 14-18 kDa proteins with isoelectric variation, a basic 24 kDa protein, and a 31 kDa protein. Western blots probed with [125I]-heparin confirmed the ability of each of these proteins to bind heparin. Each of these proteins, as well as control proteins, bound to epididymal sperm. The seminal plasma proteins were peripherally associated with sperm since they were removed by hypertonic medium and did not segregate into the detergent phase of Triton X-114. Seminal plasma heparin-binding proteins potentiated zonae pellucidae-induced acrosome reactions in epididymal sperm. However, seminal plasma proteins that did not bind to the heparin affinity column were unable to stimulate zonae-sensitivity. Control proteins, including lysozyme--which binds to both heparin and sperm, were ineffective at enhancing zonae-induced acrosome reactions. These data provide evidence for a positive regulatory role of seminal plasma heparin-binding proteins in capacitation of bovine spermatozoa.  相似文献   

8.
The diversity-oriented chemical modification of heparin is shown to afford charge-reduced heparin derivatives that possess increased selectivity for binding heparin-binding proteins. Variable N-desulfonation of heparin was employed to afford heparin fractions possessing varied levels of free amine. These N-desulfonated heparin fractions were selectively N-acylated with structurally diverse carboxylic acids using a parallel synthesis protocol to generate a library of 133 heparin-derived structures. Screening library members to compare affinity for heparin-binding proteins revealed unique heparin-derived structures possessing increased affinity and selectivity for individual heparin-binding proteins. Moreover, N-sulfo groups in heparin previously shown to be required for heparin to bind specific proteins have been replaced with structurally diverse non-anionic moieties to afford identification of charge-reduced heparin derivatives that bind these proteins with equivalent or increased affinity compared to unmodified heparin. The methods described here outline a process that we feel will be applicable to the systematic chemical modification of natural polyanionic polysaccharides and the preparation of synthetic oligosaccharides to identify charge-reduced high affinity ligands for heparin-binding proteins.  相似文献   

9.
Recent studies using solid-phase-binding assays and electron microscopy suggested the presence of a heparin-binding domain between the inner globule of a lateral short arm and the cross region of laminin. Using the information from the amino acid sequence of the B1 chain of laminin, several peptides were synthesized from areas with a low hydropathy index and a high density of lysines and/or arginines. One of these, peptide F-9 (RYVVLPRPVCFEKGMNYTVR), which is derived from the inner globular domain of the lateral short arm, demonstrated specific binding to heparin. This was tested in direct solid-phase binding assays by coating the peptide either on nitrocellulose or on polystyrene and in indirect competition assays where the peptide was in solution and either laminin or heparin was immobilized on a solid support. The binding of [3H]heparin to peptide F-9 was dramatically reduced when heparin but not other glycosaminoglycans other than heparin (dextran sulfate, dermatan sulfate) were used in competition assays. Modification of the free amino groups of peptide F-9 by acetylation abolished its ability to inhibit the binding of [3H]heparin to laminin on polystyrene surfaces. Peptide F-9 promoted the adhesion of various cell lines (melanoma, fibrosarcoma, glioma, pheochromocytoma) and of aortic endothelial cells. Furthermore, when peptide F-9 was present in solution, it inhibited the adhesion of melanoma cells to laminin-coated substrates. These findings suggest that peptide F-9 defines a novel heparin-binding and cell adhesion-promoting site on laminin.  相似文献   

10.
The interaction between tenascin-C (TN-C), a multi-subunit extracellular matrix protein, and heparin was examined using a surface plasmon resonance-based technique on a Biacore system. The aims of the present study were to examine the affinity of fibronectin type III repeats of TN-C fragments (TNIII) for heparin, to investigate the role of the TNIII4 domains in the binding of TN-C to heparin, and to delineate a sequence of amino acids within the TNIII4 domain, which mediates cooperative heparin binding. At a physiological salt concentration, and pH 7.4, TNIII3-5 binds to heparin with high affinity (K(D) = 30 nm). However, a major heparin-binding site in TNIII5 produces a modest affinity binding at a K(D) near 4 microm, and a second site in TNIII4 enhances the binding by several orders of magnitude, although it was far too weak to produce an observable binding of TNIII4 by itself. Moreover, mutagenesis of the KEDK sequence in the TNIII4 domain resulted in the significant reduction of heparin-binding affinity. In addition, residues in the KEDK sequences are conserved in TN-C throughout mammalian evolution. Thus the structure-based sequence alignment, mutagenesis, and sequence conservation data together reveal a KEDK sequence in TNIII4 suggestive of a minor heparin-binding site. Finally, we demonstrate that TNIII4 contains binding sites for heparin sulfate proteoglycan and enhances the heparin sulfate proteoglycan-dependent human gingival fibroblast adhesion to TNIII5, thus providing the biological significance of heparin-binding site of TNIII4. These results suggest that the heparin-binding sites may traverse TNIII4-5 and thus require KEDK in TNIII4 for optimal heparin-binding.  相似文献   

11.
Heparin and heparan sulfate proteoglycans (HSPG) bind many soluble growth factors and this binding is now recognized as an important mechanism for modulation of cell activity. Fibroblast growth factor-2 (FGF-2) is one of the best characterized of the heparin-binding growth factors and it has been shown experimentally that heparin regulation of FGF-2 activity is dependent on the level of cell HSPG and the concentration of heparin. In this paper, we explore, using mathematical modeling, proposed mechanisms for heparin regulation and determine how they impact FGF receptor binding. We demonstrate that the experimentally observed receptor binding phenomena can be reproduced if cells (1) express heparin-binding cell surface molecules and if either (2) these heparin binding sites are FGFR and bind heparin and FGF-2-heparin complexes or (3) are surface molecules able to bind FGF-2 and couple with FGF-2 receptors to form high-affinity FGF-2-bound surface complexes. The ability of heparin to directly interact with the FGFR and bind FGF-2 in the absence of this coupling function was not sufficient to explain heparin activity. These findings have implications with regard to regulation of heparin-binding growth factors and could help guide the development of highly specific growth regulatory molecules through specific regulation by heparin and HSPG.  相似文献   

12.
Surface plasmon resonance (SPR) biosensors such as the BIAcore 2000 are a useful tool for the analysis of protein-heparin interactions. Generally, biotinylated heparin is captured on a streptavidin-coated surface to create heparinized surfaces for subsequent binding analyses. In this study we investigated three commonly used techniques for the biotinylation of heparin, namely coupling through either carboxylate groups or unsubstituted amines along the heparin chain, or through the reducing terminus of the heparin chain. Biotinylated heparin derivatives were immobilized on streptavidin sensor chips and several heparin-binding proteins were examined. Of the surfaces investigated, heparin attached through the reducing terminus had the highest binding capacity, and in some cases had a higher affinity for the proteins tested. Heparin immobilized via intrachain bare amines had intermediate binding capacity and affinity, and heparin immobilized through the carboxylate groups of uronic acids had the lowest capacity for the proteins tested. These results suggest that immobilizing heparin to a surface via intrachain modifications of the heparin molecule can affect the binding of particular heparin-binding proteins.  相似文献   

13.
K O Badellino  P N Walsh 《Biochemistry》2001,40(25):7569-7580
Inhibition of factor XIa by protease nexin II (K(i) approximately 450 pM) is potentiated by heparin (K(I) approximately 30 pM). The inhibition of the isolated catalytic domain of factor XIa demonstrates a similar potentiation by heparin (K(i) decreasing from 436 +/- 62 to 88 +/- 10 pM) and also binds to heparin on surface plasmon resonance (K(d) 11.2 +/- 3.2 nM vs K(d) 8.63 +/- 1.06 nM for factor XIa). The factor XIa catalytic domain contains a cysteine-constrained alpha-helix-containing loop: (527)CQKRYRGHKITHKMIC(542), identified as a heparin-binding region in other coagulation proteins. Heparin-binding studies of coagulation proteases allowed a grouping of these proteins into three categories: group A (binding within a cysteine-constrained loop or a C-terminal heparin-binding region), factors XIa, IXa, Xa, and thrombin; group B (binding by a different mechanism), factor XIIa and activated protein C; and group C (no binding), factor VIIa and kallikrein. Synthesized peptides representative of the factor XIa catalytic domain loop were used as competitors in factor XIa binding and inhibition studies. A native sequence peptide binds to heparin with a K(d) = 86 +/- 15 nM and competes with factor XIa in binding to heparin, K(i) = 241 +/- 37 nM. A peptide with alanine substitutions at (534)H, (535)K, (538)H, and (539)K binds and competes with factor XIa for heparin-binding in a manner nearly identical to that of the native peptide, whereas a scrambled peptide is approximately 10-fold less effective, and alanine substitutions at residues (529)K, (530)R, and (532)R result in loss of virtually all activity. We conclude that residues (529)K, (530)R, and (532)R comprise a high-affinity heparin-binding site in the factor XIa catalytic domain.  相似文献   

14.
A laminin-binding peptide (peptide G), predicted from the cDNA sequence for a 33-kDa protein related to the 67-kDa laminin receptor, specifically inhibits binding of laminin to heparin and sulfatide. Since the peptide binds directly to heparin and inhibits interaction of another heparin-binding protein with the same sulfated ligands, this inhibition is due to direct competition for binding to sulfated glycoconjugates rather than an indirect effect of interaction with the binding site on laminin for the 67-kDa receptor. Direct binding of laminin to the peptide is also inhibited by heparin. This interaction may result from contamination of the laminin with heparan sulfate, as binding is enhanced by the addition of substoichiometric amounts of heparin but inhibited by excess heparin and two heparin-binding proteins. Furthermore, laminin binds more avidly to a heparin-binding peptide derived from thrombospondin than to the putative receptor peptide. Adhesion of A2058 melanoma cells on immobilized peptide G is also heparin-dependent, whereas adhesion of the cells on laminin is not. Antibodies to the beta 1-integrin chain or laminin block adhesion of the melanoma cells to laminin but not to peptide G. Thus, the reported inhibition of melanoma cell adhesion to endothelial cells by peptide G may result from inhibition of binding of laminin or other proteins to sulfated glycoconjugate receptors rather than from specific inhibition of laminin binding to the 67-kDa receptor.  相似文献   

15.
《The Journal of cell biology》1994,125(5):1179-1188
The glycosaminoglycan chains of cell surface heparan sulfate proteoglycans are believed to regulate cell adhesion, proliferation, and extracellular matrix assembly, through their interactions with heparin-binding proteins (for review see Ruoslahti, E. 1988. Annu. Rev. Cell Biol. 4:229-255; and Bernfield, M., R. Kokenyesi, M. Kato, M. T. Hinkes, J. Spring, R. L. Gallo, and E. J. Lose. 1992. Annu. Rev. Cell Biol. 8:365-393). Heparin-binding sites on many extracellular matrix proteins have been described; however, the heparin-binding site on type I collagen, a ubiquitous heparin-binding protein of the extracellular matrix, remains undescribed. Here we used heparin, a structural and functional analogue of heparan sulfate, as a probe to study the nature of the heparan sulfate proteoglycan-binding site on type I collagen. We used affinity coelectrophoresis to study the binding of heparin to various forms of type I collagen, and electron microscopy to visualize the site(s) of interaction of heparin with type I collagen monomers and fibrils. Using affinity coelectrophoresis it was found that heparin has similar affinities for both procollagen and collagen fibrils (Kd's approximately 60-80 nM), suggesting that functionally similar heparin- binding sites exist in type I collagen independent of its aggregation state. Complexes of heparin-albumin-gold particles and procollagen were visualized by rotary shadowing and electron microscopy, and a preferred site of heparin binding was observed near the NH2 terminus of procollagen. Native or reconstituted type I collagen fibrils showed one region of significant heparin-gold binding within each 67-nm period, present near the division between the overlap and gap zones, within the "a" bands region. According to an accepted model of collagen fibril structure, our data are consistent with the presence of a single preferred heparin-binding site near the NH2 terminus of the collagen monomer. Correlating these data with known type I collagen sequences, we suggest that the heparin-binding site in type I collagen may consist of a highly basic triple helical domain, including several amino acids known sometimes to function as disaccharide acceptor sites. We propose that the heparin-binding site of type I collagen may play a key role in cell adhesion and migration within connective tissues, or in the cell- directed assembly or restructuring of the collagenous extracellular matrix.  相似文献   

16.
The binding of 125I-labeled derivatives of heparin has been used by several investigators to identify heparin-binding fragments of different heparin-binding proteins. In this report we utilize the procedure described by J.W. Smith and D.J. Knauer (1987, Anal. Biochem. 160, 105-114) to produce 125I-fluorescein-heparin. Using this derivative, we compare the use of gel overlay procedures with "Western blot" procedures for the detection of heparin-binding proteins following polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. We show that the gel overlay procedure is a relatively simple and sensitive method for visualizing heparin-binding proteins. In addition, we use the procedure to characterize the heparin-binding properties of heparin-binding growth factor 1 (acidic fibroblast growth factor) with synthetic peptide competitors and site-directed mutants of the growth factor.  相似文献   

17.
We have previously demonstrated that the heparin-binding lectin of human placenta dissociates into up to four distinct polypeptides with molecular weights of 14,400, 15,000, 16,200, and 16,700 (Kohnke-Godt, B., & Gabius, H.-J. (1989) Biochemistry 28, 6531-6538). Stable complexes to ligands can shift the molecular weight appearance of the lectin to higher values. They can be dissociated in the additional presence of 9 M urea or by enzymatic degradation of heparin in model studies. The binding of heparin is rather stable over a range of salt concentrations from 1 to 3 M NaCl. Chemical modification with group-specific reagents to arginine, lysine, histidine, tyrosine, and tryptophan results in substantial inactivation of binding activity. Further amino-terminal sequence analyses point to a high-scoring relationship in this region to histone sequences, namely, histone H2B, but to no published sequences for any heparin-binding growth factor. Calculation of relatedness on the basis of differences in amino acid composition corroborates the conclusion of molecular distinction between the lectin, histones H2A and H2B, and the fibroblast growth factor as well as angiogenin. Histones only weakly agglutinate type II erythrocytes in contrast to the lectin. The immobilized lectin exhibits two classes of binding sites with KD values of 3 and 110 nM in contrast to one estimated KD value of 250 nM with a commercially available histone fraction. Both fractions retain binding activity to biotinylated heparin in transblots and are immunologically cross-reactive to antibodies, raised against the lectin as antigen. Subcellular fractionation clearly demonstrates that heparin-inhibitable hemagglutination activity and immunologically cross-reactive protein bands, characteristic for the lectin, but not unequivocally distinguishable from certain histone fractions in blots, are not confined to the nuclear fraction in the human placenta.  相似文献   

18.
Interactions of heparin with intact human thrombospondin-1 (TSP1) and with two heparin-binding fragments of TSP1 were characterized using chemically modified heparins, a vascular heparan sulfate proteoglycan, and a series of heparin oligosaccharides prepared by partial deaminative cleavage. The avidity of TSP1 binding increased with oligosaccharide size, with plateaus at 4 to 6 and at 8 to 10 monosaccharide units. The dependence on oligosaccharide size for binding to the recombinant amino-terminal heparin-binding domain of TSP1 was the same as that of the intact TSP1 molecule but differed from that of a synthetic heparin-binding peptide from the type 1 repeats, suggesting that the interaction between intact TSP1 and heparin is primarily mediated by the amino-terminal domain. Based on activities of chemically modified heparins, binding to TSP1 depended primarily on 2-N- and 6-O-sulfation of glucosamine and to a lesser degree on 2,3-O-sulfation and the carboxyl residues of the uronic acids. In contrast, all of these modifications were required for binding of heparin to the type 1 repeat peptides. Affinity purification of heparin octasaccharides on immobilized TSP1 type 1 repeat peptides revealed a preference for oligosaccharides containing the disaccharide sequence IdoA(2-OSO(3))alpha1-4-GlcNS(6-OSO(3)). Binding of these oligosaccharides to the peptide required the Trp residues. These data demonstrate that the heparin-binding specificities of intact TSP1 and peptides from the type 1 repeats overlap with that of basic fibroblast growth factor (FGF2) and are consistent with the ability of these TSP1-derived molecules to inhibit FGF2-stimulated angiogenesis.  相似文献   

19.
Abstract: Recent studies have shown that the binding of the amyloid protein precursor (APP) of Alzheimer's disease to heparan sulfate proteoglycans (HSPGs) can modulate a neurite outgrowth-promoting function associated with APP. We used three different approaches to identify heparin-binding domains in APP. First, as heparin-binding domains are likely to be within highly folded regions of proteins, we analyzed the secondary structure of APP using several predictive algorithms. This analysis showed that two regions of APP695 contain a high degree of secondary structure, and clusters of basic residues, considered mandatory for heparin binding, were found principally within these regions. To determine which domains of APP bind heparin, deletion mutants of APP695 were prepared and analyzed for binding to a heparin affinity column. The results suggested that there must be at least two distinct heparin-binding regions in APP. To identify novel heparin-binding regions, peptides homologous to candidate heparin-binding domains were analyzed for their ability to bind heparin. These experiments suggested that APP contains at least four heparin-binding domains. The presence of more than one heparin-binding domain on APP suggests the possibility that APP may interact with more than one type of glycosaminoglycan.  相似文献   

20.
This report compares the binding of proteins to nitrocellulose membranes in acidic buffers (pH 2 and 3) with binding in neutral buffer (pH 7), basic buffers (pH 12 and 13), 8 M urea (pH 2, 3, and 7), and 6 M guanidine hydrochloride (pH unadjusted). Initially, similar amounts of antibodies and other proteins bound to the nitrocellulose membrane in all of these buffers and solvents. However, the susceptibility of individual proteins to displacement (stripping) from the membrane by the milk blocking agent depended on both the pH and the type of buffer or solvent used to bind the proteins to the membrane. Most proteins that were bound to nitrocellulose in acidic buffers were relatively resistant to milk stripping compared to proteins bound in pH 7 buffer. After correction for the amount of antibody remaining on the membrane after the milk block, it was found that acid-bound antibodies were unchanged in biological activity when compared with the same antibodies bound at neutral pH. These results suggest that acid binding of proteins could increase the sensitivity of nitrocellulose membrane assays using a milk block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号