首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported that As(2)O(3) affected cell cycle progression and cyclins D1 and B1 expression in two glioma cell lines differing in p53 status (U87MG-wt; T98G-mutated). In the present study, we further demonstrated that As(2)O(3) affected proliferation, viability and apoptosis of the two cell lines in a dose- and time-dependent manner, and T98G cells were more sensitive than U87MG cells to As(2)O(3) -induced apoptosis and inhibition of proliferation and viability. We further investigated the expression profiles of genes related with apoptosis and cell cycle in the two cell lines with a human cDNA-microarray (SuperArray) spotted with 267 genes of apoptosis and cell cycle. Thirty five genes were upregulated and 15 genes downregulated at least 2-fold by As(2)O(3) in U87-MG cells; whereas, 38 genes were upregulated and 21 genes downregulated at least 2-fold in T98G cells by As(2)O(3). After As(2)O(3) treatment, p53 expression was upregulated 56.5-fold in T98G cells, but only 6.0-fold in U87MG cells. The results indicate that As(2)O(3) suppresses the growth of U87MG cells mainly by regulating expression of genes of cell cycle arrest, stress and toxicity; whereas As(2)O(3) affects T98G cells mainly by regulating expression of genes belonging to Bcl-2, tumor necrotic factor receptor and ligand families. The data may be helpful for optimizing As(2)O(3) as an anti-cancer drug in the treatment of gliomas.  相似文献   

2.
Arsenic trioxide (As2O3; ATO, TRISENOX?) is used to treat patients with refractory or relapsed acute promyelocytic leukaemia while its application for treatment of solid cancers like glioblastoma is still under evaluation. In the present study, we investigated the interaction of arsenic trioxide with metallothionein (MT) isoforms as a possible (protective response) resistance of glioblastoma cells to arsenic-induced cytotoxicity. Special attention was focused on MT3, the isoform expressed mainly in the brain. MT3 has low metal inducibility, fast metal binding/releasing properties and outstanding neuronal inhibitory activity. The human astrocytoma (glioblastoma) cell line U87 MG was treated with 0.6, 2 and 6?C7???M arsenic (equivalent to 0.3, 1 and 3?C3.5???M As2O3) for 12, 24 or 48?h and gene expression for different MT isoforms, namely MT2A, MT1A, MT1F, MT1X, MT1E and MT3, was measured by real time qPCR using SYBR Green I and Taqman? gene expression assays. TfR, 18S rRNA, GAPDH and AB were tested as reference genes, and the last two evaluated to be appropriate in conditions of low (GAPDH) and high (AB) arsenic exposure. The gene expression of MT3 gene was additionally tested and confirmed by restriction enzyme analysis with PvuII. In the given conditions the mRNAs of six MT isoforms were identified in human glioblastoma cell line U87 MG. Depending on arsenic exposure conditions, an increase or decrease of MT gene expression was observed for each isoform, with the highest increase for isoforms MT1X, MT1F and MT2A mRNA (up to 13-fold) and more persistent decreases for MT1A, MT1E and MT3 mRNA. Despite the common assumption of the noninducibility of MT3, the evident MT3 mRNA increase was observed during high As exposure (up to 4-fold). In conclusion, our results clearly demonstrate the influence of As on MT isoform gene expression. The MT1X, MT1F and MT2A increase could represent brain tumour acquired resistance to As cytotoxicity while the MT3 increase is more enigmatic, with its possible involvement in arsenic-related induction of type II cell death.  相似文献   

3.
There is considerable controversy surrounding the biological effects of radiofrequency (RF) fields, as emitted by mobile phones. Previous work from our laboratory has shown no effect related to the exposure of 1.9 GHz pulse-modulated RF fields on the expression of 22,000 genes in a human glioblastoma-derived cell-line (U87MG) at 6 h following a 4 h RF field exposure period. As a follow-up to this study, we have now examined the effect of RF field exposure on the possible expression of late onset genes in U87MG cells after a 24 h RF exposure period. In addition, a human monocyte-derived cell-line (Mono-Mac-6, MM6) was exposed to intermittent (5 min ON, 10 min OFF) RF fields for 6 h and then gene expression was assessed immediately after exposure and at 18 h postexposure. Both cell lines were exposed to 1.9 GHz pulse-modulated RF fields for 6 or 24 h at specific absorption rates (SARs) of 0.1-10.0 W/kg. In support of our previous results, we found no evidence that nonthermal RF field exposure could alter gene expression in either cultured U87MG or MM6 cells, relative to nonirradiated control groups. However, exposure of both cell-lines to heat-shock conditions (43 degrees C for 1 h) caused an alteration in the expression of a number of well-characterized heat-shock proteins.  相似文献   

4.

Background

Multiple myeloma (MM) is a B-cell malignancy, where malignant plasma cells clonally expand in the bone marrow of older people, causing significant morbidity and mortality. Typical clinical symptoms include increased serum calcium levels, renal insufficiency, anemia, and bone lesions. With standard therapies, MM remains incurable; therefore, the development of new drugs or immune cell-based therapies is desirable. To advance the goal of finding a more effective treatment for MM, we aimed to develop a reliable preclinical MM mouse model applying sensitive and reproducible methods for monitoring of tumor growth and metastasis in response to therapy.

Material and Methods

A mouse model was created by intravenously injecting bone marrow-homing mouse myeloma cells (MOPC-315.BM) that expressed luciferase into BALB/c wild type mice. The luciferase in the myeloma cells allowed in vivo tracking before and after melphalan treatment with bioluminescence imaging (BLI). Homing of MOPC-315.BM luciferase+ myeloma cells to specific tissues was examined by flow cytometry. Idiotype-specific myeloma protein serum levels were measured by ELISA. In vivo measurements were validated with histopathology.

Results

Strong bone marrow tropism and subsequent dissemination of MOPC-315.BM luciferase+ cells in vivo closely mimicked the human disease. In vivo BLI and later histopathological analysis revealed that 12 days of melphalan treatment slowed tumor progression and reduced MM dissemination compared to untreated controls. MOPC-315.BM luciferase+ cells expressed CXCR4 and high levels of CD44 and α4β1 in vitro which could explain the strong bone marrow tropism. The results showed that MOPC-315.BM cells dynamically regulated homing receptor expression and depended on interactions with surrounding cells.

Conclusions

This study described a novel MM mouse model that facilitated convenient, reliable, and sensitive tracking of myeloma cells with whole body BLI in living animals. This model is highly suitable for monitoring the effects of different treatment regimens.  相似文献   

5.
NF-kappa B as a therapeutic target in multiple myeloma   总被引:35,自引:0,他引:35  
We have shown that thalidomide (Thal) and its immunomodulatory derivatives (IMiDs), proteasome inhibitor PS-341, and As(2)O(3) act directly on multiple myeloma (MM) cells and in the bone marrow (BM) milieu to overcome drug resistance. Although Thal/IMiDs, PS-341, and As(2)O(3) inhibit nuclear factor (NF)-kappaB activation, they also have multiple and varied other actions. In this study, we therefore specifically address the role of NF-kappaB blockade in mediating anti-MM activity. To characterize the effect of specific NF-kappaB blockade on MM cell growth and survival in vitro, we used an IkappaB kinase (IKK) inhibitor (PS-1145). Our studies demonstrate that PS-1145 and PS-341 block TNFalpha-induced NF-kappaB activation in a dose- and time-dependent fashion in MM cells through inhibition of IkappaBalpha phosphorylation and degradation of IkappaBalpha, respectively. Dexamethasone (Dex), which up-regulates IkappaBalpha protein, enhances blockade of NF-kappaB activation by PS-1145. Moreover, PS-1145 blocks the protective effect of IL-6 against Dex-induced apotosis. TNFalpha-induced intracellular adhesion molecule (ICAM)-1 expression on both RPMI8226 and MM.1S cells is also inhibited by PS-1145. Moreover, PS-1145 inhibits both IL-6 secretion from BMSCs triggered by MM cell adhesion and proliferation of MM cells adherent to BMSCs. However, in contrast to PS-341, PS-1145 only partially (20-50%) inhibits MM cell proliferation, suggesting that NF-kappaB blockade cannot account for all of the anti-MM activity of PS-341. Importantly, however, TNFalpha induces MM cell toxicity in the presence of PS-1145. These studies demonstrate that specific targeting of NF-kappaB can overcome the growth and survival advantage conferred both by tumor cell binding to BMSCs and cytokine secretion in the BM milieu. Furthermore, they provide the framework for clinical evaluation of novel MM therapies based upon targeting NF-kappaB.  相似文献   

6.
The interaction with bone marrow (BM) plays a crucial role in pathophysiological features of multiple myeloma (MM), including cell proliferation, chemoresistance, and bone lesion progression. To characterize the MM-BM interactions, we utilized an in vivo experimental model for human MM in which a GFP-expressing human MM cell line is transplanted into NOG mice (the NOG-hMM model). Transplanted MM cells preferentially engrafted at the metaphyseal region of the BM endosteum and formed a complex with osteoblasts and osteoclasts. A subpopulation of MM cells expressed VE-cadherin after transplantation and formed endothelial-like structures in the BM. CD138(+) myeloma cells in the BM were reduced by p53-dependent apoptosis following administration of the nitrogen mustard derivative bendamustine to mice in the NOG-hMM model. Bendamustine maintained the osteoblast lining on the bone surface and protected extracellular matrix structures. Furthermore, bendamustine suppressed the growth of osteoclasts and mesenchymal cells in the NOG-hMM model. Since VE-cadherin(+) MM cells were chemoresistant, hypoxic, and HIF-2α-positive compared to the VE-cadherin(-) population, VE-cadherin induction might depend on the oxygenation status. The NOG-hMM model described here is a useful system to analyze the dynamics of MM pathophysiology, interactions of MM cells with other cellular compartments, and the utility of novel anti-MM therapies.  相似文献   

7.
The role of the bone marrow microenvironment in multiple myeloma   总被引:6,自引:0,他引:6  
Multiple myeloma (MM) is a malignant disease that results from an excess of monotypic plasma cells in the bone marrow (BM). This malignancy is characterised by complex karyotypic aberrancies. In 60% of all MM there are recurrent primary translocations involving the heavy chain gene locus. The MM cells strongly interact with the BM microenvironment, which is composed of endothelial cells, stromal cells, osteoclasts, osteoblasts, immune cells, fat cells and the extracellular matrix. This interaction is responsible for the specific homing in the BM, the proliferation and survival of the MM cells, the resistance of MM cells to chemotherapy, the development of osteolysis, immunodeficiency and anaemia. New therapeutic agents target both the MM, as well as the interaction MM cell - BM microenviroment.  相似文献   

8.
We determined whether single nucleotide polymorphisms (SNPs) in the glutathione S-transferase omega (GSTO) and arsenic(III)methyltransferase (AS3MT) genes were associated with concentrations of urinary arsenic metabolites among 900 individuals without skin lesions in Bangladesh. Four SNPs were assessed in these genes. A pathway analysis evaluated the association between urinary arsenic metabolites and SNPs. GSTO1 rs4925 homozygous wild type was significantly associated with higher monomethylarsonic acid (MMA) and dimethylarsinic acid urinary concentrations, whereas wild-type AS3MT rs11191439 had significantly lower levels of As(III) and MMA. Genetic polymorphisms GSTO and As3MT modify arsenic metabolism as evidenced by altered urinary arsenic excretion.  相似文献   

9.

Introduction

Multiple myeloma (MM) development involves a series of genetic abnormalities and changes in the bone marrow (BM) microenvironment, favoring the growth of the tumor and failure of local immune control. T regulatory (Treg) cells play an important role in dampening anti-tumor immune responses while T-helper-17 (Th17) cells seem to be critical for the eradication of malignant cells. The aim of our study was to characterize the expression of Treg- and Th17-related genes in total myeloma BM samples to assess their role as biomarkers, prognostic factors, and possible therapeutic targets in this incurable disease.

Methods

Expression of markers for Treg (FOXP3, CTLA4) and Th17 cells (RORγt) was determined by quantitative real-time PCR in BM aspirates of 46 MM patients, four patients with monoclonal gammopathy of undetermined significance, five solitary plasmacytomas, and five healthy BM donors. Gene expression was evaluated regarding an influence on the patients’ overall survival (OS).

Results

FOXP3 and CTLA4 presented a sixfold (p = 0.02) and 30-fold higher expression (p = 0.03), respectively, in MM patients than in controls. RORγt expression was similar in MM patients and controls. Median OS of MM patients was 16.8 (range 4.5–29.1) months, and international staging system was the only independent prognostic factor for patients survival.

Conclusions

Overexpression of FOXP3 and CTLA4 in total BM samples suggests a local accumulation of immunosuppressive Tregs, the MM tumor environment, possibly dampening anti-tumor host immune responses. Therapeutic approaches targeting Treg cells and restoring local anti-tumor immunity may provide new treatment strategies for this incurable malignancy.  相似文献   

10.
In most mammalian species, inorganic arsenicals are extensively biotransformed and excreted both in unchanged form and as metabolites. In the bile of rats receiving arsenate (AsV) or arsenite (AsIII) we have identified monomethylarsonous acid (MMAsIII), purportedly the most toxic metabolite of inorganic arsenic. As rats are not commonly accepted for studying arsenic metabolism, we carried out a comparative investigation on the excretion of AsV, AsIII and their metabolites in five animal species in order to determine whether they also form MMAsIII from AsV and AsIII. Anaesthetised bile duct-cannulated rats, mice, hamsters, rabbits, and guinea pigs were injected with AsV or AsIII (50 micromol/kg, i.v.) and their bile and urine was collected for 2 h. Arsenic in bile and urine was speciated by HPLC-hydride generation-atomic fluorescence spectrometry and the excretion rates of AsV, AsIII, monomethylarsonic acid (MMAsV), MMAsIII and dimethylarsinic acid (DMAsV) were quantified. All species injected with AsV excreted arsenic preferentially into urine, whereas all animals receiving AsIII, except rabbits, delivered more arsenic into bile than urine. Bile contained almost exclusively trivalent arsenic (i.e. AsIII and/or MMAsIII), whereas AsV, AsIII and DMAsV appeared in urine. Except for guinea pigs, which do not methylate arsenic, the other species formed MMAsIII and excreted it into bile. Having excreted as much as 8% of the dose of AsIII or AsV in 2 h as MMAsIII, rats were by far the most efficient producers of this supertoxic metabolite. Thus, although the rat is not a good model for studying long-term arsenic disposition, this species appears especially valuable in studies on AsIII methyltransferase and in vivo formation of MMAsIII.  相似文献   

11.
12.
13.
Qu X  Du J  Zhang C  Fu W  Xi H  Zou J  Hou J 《PloS one》2012,7(2):e32215
Arsenic trioxide (As(2)O(3)) has shown remarkable efficacy for the treatment of multiple myeloma (MM). Histone deacetylases (HDAC) play an important role in the control of gene expression, and their dysregulation has been linked to myeloma. Especially, HDAC6, a unique cytoplasmic member of class II, which mainly functions as α-tubulin deacetylase and Hsp90 deacetylase, has become a target for drug development to treat cancer due to its major contribution in oncogenic cell transformation. However, the mechanisms of action for As(2)O(3) have not yet been defined. In this study, we investigated the effect of As(2)O(3) on proliferation and apoptosis in human myeloma cell line and primary myeloma cells, and then we studied that As(2)O(3) exerts antimyeloma effects by inhibiting activity in the α-tubulin and Hsp90 through western blot analysis and immunoprecipitation. We found that As(2)O(3) acts directly on MM cells at relatively low concentrations of 0.5~2.5 μM, which effects survival and apoptosis of MM cells. However, As(2)O(3) inhibited HDAC activity at the relatively high concentration and dose-dependent manner (great than 4 μM). Subsequently, we found that As(2)O(3) treatment in a dose- and time-dependent fashion markedly increased the level of acetylated α-tubulin and acetylated Hsp90, and inhibited the chaperone association with IKKα activities and increased degradation of IKKα. Importantly, the loss of IKKα-associated Hsp90 occurred prior to any detectable loss in the levels of IKKα, indicating a novel pathway by which As(2)O(3) down-regulates HDAC6 to destabilize IKKα protein via Hsp90 chaperone function. Furthermore, we observed the effect of As(2)O(3) on TNF-α-induced NF-κB signaling pathway was to significantly reduced phosphorylation of Ser-536 on NF-κB p65. Therefore, our studies provide an important insight into the molecular mechanism of anti-myeloma activity of As(2)O(3) in HDAC6-Hsp90-IKKα-NFκB signaling axis and the rationale for As(2)O(3) can be extended readily using all the HDAC associated diseases.  相似文献   

14.
15.
We investigated the lethal, UV killing-potentiating and repair-inhibiting effects of trivalent arsenic trioxide (As2O3) and pentavalent sodium arsenate (Na2HAsO4) in normal human and xeroderma pigmentosum (XP) fibroblasts. The presence of As2O3 for 24 h after UV irradiation inhibited the thymine dimer excision from the DNA of normal and XP variant cells and thus the subsequent unscheduled DNA synthesis (UDS): excision inhibitions were partial, 30-40%, at a physiological dose of 1 microgram/ml and 100% at a supralethal dose of 5 micrograms/ml. Correspondingly, As2O3 also potentiated the lethal effect of UV on excision-proficient normal and XP variant cells in a concentration-dependent manner, but not on excision-defective XP group A cells. Na2HAsO4 (As5+) was approximately an order of magnitude less effective in preventing all the above repair events than As2O3 (As3+) which is highly affinic to SH-containing proteins. The above results provide the first evidence that arsenic inhibits the excision of pyrimidine dimers. Partially repair-suppressing small doses of As2O3 (0.5 microgram/ml) and Na2HAsO4 (5 micrograms/ml) enhanced co-mutagenically the UV induction of 6-thioguanine-resistant mutations of V79 Chinese hamster cells. Thus, such a repair inhibition may be one of the basic mechanisms for the co-mutagenicity and presumably co-carcinogenicity of arsenic. XP group A and variant strains showed a unique higher sensitivity to As2O3 and Na2HAsO4 killing by a yet unidentified mechanism.  相似文献   

16.
Pleiotrophin (PTN, Ptn) is an 18kDa secretory cytokine that is expressed in many human cancers, including glioblastoma. In previous experiments, interruption of the constitutive PTN signaling in human U87MG glioblastoma cells that inappropriately express endogenous Ptn reversed their rapid growth in vitro and their malignant phenotype in vivo. To seek a mechanism for the effect of the dominant-negative PTN, flow cytometry was used to compare the profiles of U87MG cells and four clones of U87MG cells that express the dominant-negative PTN (U87MG/PTN1-40 cells); here, we report that the dominant-negative PTN in U87MG cells induces tetraploidy and aneuploidy and arrests the tetraploid and aneuploid cells in the G1 phase of the cell cycle. The data suggest that PTN signaling may have a critical role in chromosomal segregation and cell cycle progression; the data suggest induction of tetraploidy and aneuploidy in U87MG glioblastoma cells may be an important mechanism that contributes to the loss of the malignant phenotype of U87MG cells.  相似文献   

17.
目的:通过对研究脐带间充质干细胞(Umbilical cord mesenchymalstellcells,UCMSCs)与人恶性胶质母细胞瘤细胞U87MG细胞(U87 Malignant glioma cells)体外共培养,模拟肿瘤生长的内环境,以及其对U87MG细胞增值作用的影响及肿瘤细胞与间充质干细胞的共培养方法。方法:提取人脐带间充质干细胞进行体外培养、扩增,用MTT法测定uMSCS上清液对U87MG的影响,用瑞士染色法检测U87MG形态学变化。结果:MTT比色法结果显示UMSCS对U87MG有抑制作用。96小时培养后1:8、1:4、1:2及未稀释的UMSCs上清液对u87MG的抑制率分别为17%,24%,37.2%及46.4%,u87MG细胞形态亦随着培养时间的延长由多角形变为梭形,突起消失,细胞间骨架结构断裂。结论:通过对共培养前后U87MG与UMSCs共培养后形态学变化、生长曲线变化及对生长周期的影响作用的观察分析,得出UMSCs及其上清液对U87MG有抑制作用,而且呈时间及浓度依赖性。  相似文献   

18.
Despite the fact that temozolomide (TMZ) has been widely accepted as the key chemotherapeutic agent to prolong the survival of patients with glioblastoma, failure and recurrence cases can still be observed in clinics. Glioma stem-like cells (GSCs) are thought to be responsible for the drug resistance. In this study, we investigate whether endothelial monocyte-activating polypeptide-II (EMAP-II), a pro-inflammatory cytokine, can enhance TMZ cytotoxicity on U87MG and GSCs or not. As described in prior research, GSCs have been isolated from U87MG and maintained in the serum-free DMEM/F12 medium containing EGF, b-FGF, and B27. TMZ and/or EMAP-II administration were performed for 72 h, respectively. The results showed that TMZ combined with EMAP-II inhibit the proliferation of U87MG and GSCs by a larger measure than TMZ single treatment by decreasing the IC50. EMAP-II also enhanced TMZ-induced autophagy-mediated cell death and G2/M arrest. Moreover, we found that EMAP-II functioned a targeted suppression on mTOR, which may involve in the anti-neoplasm mechanism. The results suggest that EMAP-II could be considered as a combined chemotherapeutic agent against glioblastoma by sensitizing U87MG and GSCs to TMZ.  相似文献   

19.
Malignant glioblastoma is one of the most common malignant tumors in the neurological system. Tubeimoside V (1), a new cyclic bisdesmoside from tubers of Bolbostemma paniculatum, appears to exhibit various biological activities, including antitumor effect, but the function and mechanism of this new agent on glioblastoma cells has not previously been determined. In the present study, we investigated the proliferation change of human glioblastoma U87MG cells exposured to different concentrations (0.9-14.8 microM) of Tubeimoside V (1) for a certain time. The results showed that Tubeimoside V (1) significantly suppressed U87MG cell proliferation in a time- and dose-dependent manner (IC(50) = 3.6 microM). Flow cytometric analysis of DNA in U87MG cells showed that Tubeimoside V (1) induces the prominent appearance of a sub-G1 peak in the cell cycle suggestive of apoptosis. Furthermore, U87MG cells' treatment with Tubeimoside V (1) resulted in nuclear condensation with apoptotic bodies observed by both fluorescence and electron microscopy. The result of annexin V/PI assay showed that phosphatidylserine externalization began after treatment, and then increased in the following 24h. Molecular changes explored through Western-blot staining showed Tubeimoside V (1) decreased the expression levels of Bcl-2 protein and increased the expression levels of Bax protein. The novel findings suggest that the cytotoxic actions of Tubeimoside V (1) toward U87MG cells result from the induction of cell apoptosis. Overall, our data demonstrate that Tubeimoside V (1) is an efficient apoptotic killing agent of glioblastoma cells and suggest that this mechanism may play a critical role in anti-tumor chemotherapy.  相似文献   

20.
Macrophage colony stimulating factor (MCSF) regulates growth, proliferation and differentiation of haematopoietic cell lineages. Many cancers are known to secrete high level of MCSF, which recruit macrophages into the tumour micro-environment, supporting tumour growth. Herein, we report the cloning of MCSF and subsequent generation of U87MG expressing MCSF stable cell line (U87-MCSF). Cytotoxicity of anti-cancer drug 5-fluorouracil (5-FU) was evaluated on both U87MG and U87-MCSF cells. Interestingly, the proliferation of U87-MCSF cells was less (p<0.001) than that of U87MG cells alone, after treatment with 5-FU. Significant decrease in expression levels of cyclin E and A2 quantified by real time PCR analysis corroborated the reduced proliferation of 5-FU treated U87-MCSF cells. However, JC-1 staining did not reveal any apoptosis upon 5-FU treatment. Notch-1 upregulation induced a possible epithelial-mesenchymal transition in U87-MCSF cells, which accounted for an increase in the proportion of CD24high/CD44less cancer stem cells in U87-MCSF cells after 5-FU treatment. The elevated resistance of U87-MCSF cells towards 5-FU was due to the increase in the expressions (10.2 and 6 fold) of ABCB1 and mdm2, respectively. Furthermore, increase in expressions of ABCG1, mdm2 and CD24 was also observed in U87MG cells after prolonged incubation with 5-FU. Our studies provided mechanistic insights into drug resistance of U87MG cells and also described the pivotal role played by MCSF in augmenting the resistance of U87MG cells to 5-FU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号