首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The green algal genus Cladophora forms conspicuous nearshore populations in marine and freshwaters worldwide, commonly dominating peri‐phyton communities. As the result of human activities, including the nutrient pollution of nearshore waters, Cladophora‐dominated periphyton can form nuisance blooms. On the other hand, Cladophora has ecological functions that are beneficial, but less well appreciated. For example, Cladophora has previously been characterized as an ecological engineer because its complex structure fosters functional and taxonomic diversity of benthic microfauna. Here, we review classic and recent literature concerning taxonomy, cell biology, morphology, reproductive biology, and ecology of the genus Cladophora, to examine how this alga functions to modify habitats and influence littoral biogeochemistry. We review the evidence that Cladophora supports large, diverse populations of microalgal and bacterial epiphytes that influence the cycling of carbon and other key elements, and that the high production of cellulose and hydrocarbons by Cladophora‐dominated periphyton has the potential for diverse technological applications, including wastewater remediation coupled to renewable biofuel production. We postulate that well‐known aspects of Cladophora morphology, hydrodynamically stable and perennial holdfasts, distinctively branched architecture, unusually large cell and sporangial size and robust cell wall construction, are major factors contributing to the multiple roles of this organism as an ecological engineer.  相似文献   

2.
The branched periphytic green alga Cladophora glomerata, often abundant in nearshore waters of lakes and rivers worldwide, plays important ecosystem roles, some mediated by epibiotic microbiota that benefit from host‐provided surface, organic C, and O2. Previous microscopy and high‐throughput sequencing studies have indicated surprising epibiont taxonomic and functional diversity, but have not included adequate consideration of sample replication or the potential for spatial and temporal variation. Here, we report the results of 16S rRNA amplicon‐based phylum‐to‐genus taxonomic analysis of Cladophora‐associated bacterial epibiota sampled in replicate from three microsites and at six times during the open‐water season of 2014, from the same lake locale (Picnic Point, Lake Mendota, Dane Co., WI, USA) explored by high‐throughput sequencing studies in two previous years. Statistical methods were used to test null hypotheses that the bacterial community: (i) is homogeneous across microsites tested, and (ii) does not change over the course of a growth season or among successive years. Results indicated a dynamic microbial community that is more strongly influenced by sampling day during the growth season than by microsite variation. A surprising diversity of bacterial genera known to be associated with the key function of methane‐oxidation (methanotrophy), including relatively high‐abundance of Crenothrix, Methylomonas, Methylovulum, and Methylocaldum–showed intraseasonal and interannual variability possibly related to temperature differences, and microsite preferences possibly related to variation in methane abundance. By contrast, a core assemblage of bacterial genera seems to persist over a growth season and from year to year, possibly transmitted by a persistent attached host resting stage.  相似文献   

3.
The taxonomy of the Cladophoraceae, a large family of filamentous green algae, has been problematic for a long time due to morphological simplicity, parallel evolution, phenotypic plasticity, and unknown distribution ranges. Partial large subunit (LSU) rDNA sequences were generated for 362 isolates, and the analyses of a concatenated dataset consisting of unique LSU and small subunit (SSU) rDNA sequences of 95 specimens greatly clarified the phylogeny of the Cladophoraceae. The phylogenetic reconstructions showed that the three currently accepted genera Chaetomorpha, Cladophora, and Rhizoclonium are polyphyletic. The backbone of the phylogeny is robust and the relationships of the main lineages were inferred with high support, only the phylogenetic position of both Chaetomorpha melagonium and Cladophora rupestris could not be inferred unambiguously. There have been at least three independent switches between branched and unbranched morphologies within the Cladophoraceae. Freshwater environments have been colonized twice independently, namely by the freshwater Cladophora species as well as by several lineages of the Rhizoclonium riparium clade. In an effort to establish monophyletic genera, the genera Acrocladus and Willeella are resurrected and two new genera are described: Pseudorhizoclonium and Lurbica.  相似文献   

4.
The freshwater red algal order Thoreales has triphasic life history composed of a diminutive diploid “Chantransia” stage, a distinctive macroscopic gametophyte with multi‐axial growth and carposporophytes that develop on the gametophyte thallus. This order is comprised of two genera, Thorea and Nemalionopsis. Thorea has been widely reported with numerous species, whereas Nemalionopsis has been more rarely observed with only a few species described. DNA sequences from three loci (rbcL, cox1, and LSU) were used to examine the phylogenetic affinity of specimens collected from geographically distant locations including North America, South America, Europe, Pacific Islands, Southeast Asia, China, and India. Sixteen species of Thorea and two species of Nemalionopsis were recognized. Morphological observations confirmed the distinctness of the two genera and also provided some characters to distinguish species. However, many of the collections were in “Chantransia” stage rather than gametophyte stage, meaning that key diagnostic morphological characters were unavailable. Three new species are proposed primarily based on the DNA sequence data generated in this study, Thorea kokosinga‐pueschelii, T. mauitukitukii, and T. quisqueyana. In addition to these newly described species, one DNA sequence from GenBank was not closely associated with other Thorea clades and may represent further diversity in the genus. Two species in Nemalionopsis are recognized, N. shawii and N. parkeri nom. et stat. nov. Thorea harbors more diversity than had been recognized by morphological data alone. Distribution data indicated that Nemalionopsis is common in the Pacific region, whereas Thorea is more globally distributed. Most species of Thorea have a regional distribution, but Thorea hispida appears to be cosmopolitan.  相似文献   

5.
Although Cladophora species frequently appear in brackish environments, their genetic diversity, phenological patterns and physiological properties have not been well investigated in these environments. Cladophora is distributed throughout Mikata‐goko, an area consisting of five coastal lakes that are directly or indirectly connected to the sea, resulting in a salinity gradient ranging from fully marine to freshwater. To elucidate genetic and ecological variation in Cladophora, we monthly compared ribosomal internal transcribed spacer sequences of Cladophora specimens across six study sites characterized by different salinity regimes for a year. A total of 12 ribotypes were detected and assigned to six species, four of which were restricted to the marine habitat. Ribotype I of C. vagabunda (L.) Hoek was distributed in high‐salinity brackish waters (mean salinity ≤13 psu; maximum salinity ≤31 psu), whereas C. vagabunda ribotype II and C. glomerata were abundant in low‐salinity brackish waters (mean salinity ≤5 psu; maximum salinity ≤10 psu). Although Cladophora albida (Nees) Kütz. and C. glomerata (L.) Kütz. were collected during all four seasons, C. laetevirens (Dillwyn) Kütz., C. oligocladoidea Hoek and Chihara, C. opaca Sakai and C. vagabunda displayed marked seasonal variation. Culture experiments revealed that optimal salinity conditions for vegetative growth vary among ribotypes collected from different salinity regimes, suggesting that Cladophora distributions are controlled by ribotype‐specific ecophysiological adaptations. In contrast, temperature optima and tolerance were similar among ribotypes showing different seasonalities, and thus their phenologies may be controlled by other environmental factors or biotic conditions, such as reproductive maturity and spore germination.  相似文献   

6.
Microbes establish very diverse but still poorly understood associations with other microscopic or macroscopic organisms that do not follow the more conventional modes of competition or mutualism. Phaffia rhodozyma, an orange‐coloured yeast that produces the biotechnologically relevant carotenoid astaxanthin, exhibits a Holarctic association with birch trees in temperate forests that contrasts with the more recent finding of a South American population associated with Nothofagus (southern beech) and with stromata of its biotrophic fungal parasite Cyttaria spp. We investigated whether the association of Phaffia with Nothofagus–Cyttaria could be expanded to Australasia, the other region of the world where Nothofagus are endemic, studied the genetic structure of populations representing the known worldwide distribution of Phaffia and analysed the evolution of the association with tree hosts. The phylogenetic analysis revealed that Phaffia diversity in Australasia is much higher than in other regions of the globe and that two endemic and markedly divergent lineages seem to represent new species. The observed genetic diversity correlates with host tree genera rather than with geography, which suggests that adaptation to the different niches is driving population structure in this yeast. The high genetic diversity and endemism in Australasia indicate that the genus evolved in this region and that the association with Nothofagus is the ancestral tree association. Estimates of the divergence times of Phaffia lineages point to splits that are much more recent than the break‐up of Gondwana, supporting that long‐distance dispersal rather than vicariance is responsible for observed distribution of P. rhodozyma.  相似文献   

7.
The tapeworm species Spirometra erinaceieuropaei was documented mainly in Asia and Europe. In recent years, plerocercoid larvae (spargana) of this parasite have been found in different hosts in north‐eastern Poland. The evolutionary history and way of S. erinaceieuropaei spreading across Eurasia have been not described yet. However, this phenomenon could be closely related to the evolutionary history and migration routes of studied tapeworm host species. We investigated the genetic variability and divergence pattern among S. erinaceieuropaei populations in intermediate and paratenic hosts from north‐eastern Poland based on complete mitochondrial sequences of cytochrome b (cytb) and cytochrome c oxidase subunit I (cox1) genes. Analysis of 319 consolidated sequences of these two genes showed no genetic structure across study area. Comparison of sequences from Poland and China showed distinct separation of S. erinaceieuropaei populations from these two regions. They split from their common ancestor approximately 28.6 million years ago. Demographic expansion of Polish population of S. erinaceieuropaei started from glacial refugia approximately 12.5 thousand years ago, and recent population expansion has been observed in the tapeworm population from north‐eastern Poland.  相似文献   

8.
Phylogenetic relationships of Oceanian staple yams (species of Dioscorea section Enantiophyllum) were investigated using plastid trnL‐F and rpl32‐trnL(UAG) sequences and nine nuclear co‐dominant microsatellites. Analysis of herbarium specimens, used as taxonomic references, allowed the comparison with samples collected in the field. It appears that D. alata, D. transversa and D. hastifolia are closely related species. This study does not support a direct ancestry from D. nummularia to D. alata as previously hypothesized. The dichotomy in D. nummularia previously described by farmers in semi‐perennial and annual types was reflected by molecular markers, but the genetic structure of D. nummularia appears more complex. Dioscorea nummularia displayed two haplotypes, each corresponding to a different genetic group. One, including a D. nummularia voucher from New Guinea, is closer to D. tranversa, D. alata and D. hastifolia and encompasses only semi‐perennial types. The second group is composed of semi‐perennial and annual yams. However, some of these annual yams also displayed D. alata haplotypes. Nuclear markers revealed that some annual yams shared alleles with D. alata and semi‐perennial D. nummularia, suggesting a hybrid origin, which may explain their intermediate morphotypes and the difficulty met in classifying them.  相似文献   

9.
Members of the morphologically unusual cyanobacterial family Gomontiellaceae were studied using a polyphasic approach. Cultured strains of Hormoscilla pringsheimii, Starria zimbabweënsis, Crinalium magnum, and Crinalium epipsammum were thoroughly examined, and the type specimen of the family, Gomontiella subtubulosa, was investigated. The results of morphological observations using both light microscopy and transmission electron microscopy were consistent with previous reports and provided evidence for the unique morphological and ultrastructural traits of this family. Analysis of the 16S rRNA gene confirmed the monophyletic origin of non‐marine repre‐sentatives of genera traditionally classified into this family. The family was phylogenetically placed among other groups of filamentous cyanobacterial taxa. The presence of cellulose in the cell wall was analyzed and confirmed in all cultured Gomontiellaceae members using Fourier transform infrared spectroscopy and fluorescence microscopy. Evaluation of toxins produced by the studied strains revealed the hepatotoxin cylindrospermopsin (CYN) in available strains of the genus Hormoscilla. Production of this compound in both Hormoscilla strains was detected using high‐performance liquid chromatography in tandem with high resolution mass spectrometry and confirmed by positive PCR amplification of the cyrJ gene from the CYN biosynthetic cluster. To our knowledge, this is the first report of CYN production by soil cyanobacteria, establishing a previously unreported CYN‐producing lineage. This study indicates that cyanobacteria of the family Gomontiellaceae form a separate but coherent cluster defined by numerous intriguing morphological, ultrastructural, and biochemical features, and exhibiting a toxic potential worthy of further investigation.  相似文献   

10.
Taiwan, an island with three major mountain ranges, provides an ideal topography to study mountain–island effect on organisms that would be diversified in the isolation areas. Glaciations, however, might drive these organisms to lower elevations, causing gene flow among previously isolated populations. Two hypotheses have been proposed to depict the possible refugia for alpine organisms during glaciations. Nunatak hypothesis suggests that alpine species might have stayed in situ in high mountain areas during glaciations. Massif de refuge, on the other hand, proposes that alpine species might have migrated to lower ice‐free areas. By sampling five sympatric carabid species of Nebria and Leistus, and using two mitochondrial genes and two nuclear genes, we evaluated the mountain–island effect on alpine carabids and tested the two proposed hypotheses with comparative phylogeographic method. Results from the phylogenetic relationships, network analysis, lineage calibration, and genetic structure indicate that the deep divergence among populations in all L. smetanai, N. formosana, and N. niitakana was subjected to long‐term isolation, a phenomenon in agreement with the nunatak hypothesis. However, genetic admixture among populations of N. uenoiana and some populations of L. nokoensis complex suggests that gene flow occurred during glaciations, as a massif de refuge depicts. The speciation event in N. niitakana is estimated to have occurred before 1.89 million years ago (Mya), while differentiation among isolated populations in N. niitakana, N. formosana, L. smetanai, and L. nokoensis complex might have taken place during 0.65–1.65 Mya. While each of the alpine carabids arriving in Taiwan during different glaciation events acquired its evolutionary history, all of them had confronted the existing mountain ranges.  相似文献   

11.
Transient transfection of plants by vacuum infiltration of Agrobacterium vectors represents the state of the art in plant‐based protein manufacturing; however, the complexity and cost of this approach restrict it to pharmaceutical proteins. We demonstrated that simple spraying of Nicotiana plants with Agrobacterium vectors in the presence of a surfactant can substitute for vacuum inoculation. When the T‐DNA of Agrobacterium encodes viral replicons capable of cell‐to‐cell movement, up to 90% of the leaf cells can be transfected and express a recombinant protein at levels up to 50% of total soluble protein. This simple, fast and indefinitely scalable process was successfully applied to produce cellulases, one of the most volume‐ and cost‐sensitive biotechnology products. We demonstrate here for the first time that representatives of all hydrolase classes necessary for cellulosic biomass decomposition can be expressed at high levels, stored as silage without significant loss of activity and then used directly as enzyme additives. This process enables production of cellulases, and other potential high‐volume products such as noncaloric sweetener thaumatin and antiviral protein griffithsin, at commodity agricultural prices and could find broad applicability in the large‐scale production of many other cost‐sensitive proteins.  相似文献   

12.
13.
14.
The temperate woody bamboos (Arundinarieae) are highly diverse in morphology but lack a substantial amount of genetic variation. The taxonomy of this lineage is intractable, and the relationships within the tribe have not been well resolved. Recent studies indicated that this tribe could have a complex evolutionary history. Although phylogenetic studies of the tribe have been carried out, most of these phylogenetic reconstructions were based on plastid data, which provide lower phylogenetic resolution compared with nuclear data. In this study, we intended to identify a set of desirable nuclear genes for resolving the phylogeny of the temperate woody bamboos. Using two different methodologies, we identified 209 and 916 genes, respectively, as putative single copy orthologous genes. A total of 112 genes was successfully amplified and sequenced by next‐generation sequencing technologies in five species sampled from the tribe. As most of the genes exhibited intra‐individual allele heterozygotes, we investigated phylogenetic utility by reconstructing the phylogeny based on individual genes. Discordance among gene trees was observed and, to resolve the conflict, we performed a range of analyses using BUCKy and HybTree. While caution should be taken when inferring a phylogeny from multiple conflicting genes, our analysis indicated that 74 of the 112 investigated genes are potential markers for resolving the phylogeny of the temperate woody bamboos.  相似文献   

15.
Examination of material held at the Palaeontological Institute, Moscow, enables the identification of two novel chasmataspidid species: Nahlyostaspis bergstroemi gen. et sp. nov. and Skrytyaspis andersoni gen. et sp. nov. ‘Eurypterusstoermeri and ‘Tylopterellamenneri are both redescribed as chasmataspidids, having previously been assigned to Eurypterida. ‘T’. menneri is transferred to the new genus Dvulikiaspis gen. nov. An identical prosomal structure is identified in ‘Eurypterusstoermeri and Heteroaspis novojilovi from the Devonian of Germany and the two species are synonymized, with ‘Estoermeri having priority. The previous synonymy of H. novojilovi with Diploaspis casteri is rejected. The presence of ophthalmic ridges is confirmed within Diploaspididae, and new structural characteristics of their bucklers are identified.  相似文献   

16.
The Persian walnut (Juglans regia L.), a diploid species native to the mountainous regions of Central Asia, is the major walnut species cultivated for nut production and is one of the most widespread tree nut species in the world. The high nutritional value of J. regia nuts is associated with a rich array of polyphenolic compounds, whose complete biosynthetic pathways are still unknown. A J. regia genome sequence was obtained from the cultivar ‘Chandler’ to discover target genes and additional unknown genes. The 667‐Mbp genome was assembled using two different methods (SOAPdenovo2 and MaSuRCA), with an N50 scaffold size of 464 955 bp (based on a genome size of 606 Mbp), 221 640 contigs and a GC content of 37%. Annotation with MAKER‐P and other genomic resources yielded 32 498 gene models. Previous studies in walnut relying on tissue‐specific methods have only identified a single polyphenol oxidase (PPO) gene (JrPPO1). Enabled by the J. regia genome sequence, a second homolog of PPO (JrPPO2) was discovered. In addition, about 130 genes in the large gallate 1‐β‐glucosyltransferase (GGT) superfamily were detected. Specifically, two genes, JrGGT1 and JrGGT2, were significantly homologous to the GGT from Quercus robur (QrGGT), which is involved in the synthesis of 1‐O‐galloyl‐β‐d ‐glucose, a precursor for the synthesis of hydrolysable tannins. The reference genome for J. regia provides meaningful insight into the complex pathways required for the synthesis of polyphenols. The walnut genome sequence provides important tools and methods to accelerate breeding and to facilitate the genetic dissection of complex traits.  相似文献   

17.
Extant variation in temperate and boreal plant species has been influenced by both demographic histories associated with Pleistocene glacial cycles and adaptation to local climate. We used sequence capture to investigate the role of these neutral and adaptive processes in shaping diversity in black cottonwood (Populus trichocarpa). Nucleotide diversity and Tajima's D were lowest at replacement sites and highest at intergenic sites, while LD showed the opposite pattern. With samples grouped into three populations arrayed latitudinally, effective population size was highest in the north, followed by south and centre, and LD was highest in the south followed by the north and centre, suggesting a possible northern glacial refuge. FST outlier analysis revealed that promoter, 5′‐UTR and intronic sites were enriched for outliers compared with coding regions, while no outliers were found among intergenic sites. Codon usage bias was evident, and genes with synonymous outliers had 30% higher average expression compared with genes containing replacement outliers. These results suggest divergent selection related to regulation of gene expression is important to local adaptation in P. trichocarpa. Finally, within‐population selective sweeps were much more pronounced in the central population than in putative northern and southern refugia, which may reflect the different demographic histories of the populations and concomitant effects on signatures of genetic hitchhiking from standing variation.  相似文献   

18.
Sphagnum‐dominated peatlands comprise a globally important pool of soil carbon (C) and are vulnerable to climate change. While peat mosses of the genus Sphagnum are known to harbor diverse microbial communities that mediate C and nitrogen (N) cycling in peatlands, the effects of climate change on Sphagnum microbiome composition and functioning are largely unknown. We investigated the impacts of experimental whole‐ecosystem warming on the Sphagnum moss microbiome, focusing on N2 fixing microorganisms (diazotrophs). To characterize the microbiome response to warming, we performed next‐generation sequencing of small subunit (SSU) rRNA and nitrogenase (nifH) gene amplicons and quantified rates of N2 fixation activity in Sphagnum fallax individuals sampled from experimental enclosures over 2 years in a northern Minnesota, USA bog. The taxonomic diversity of overall microbial communities and diazotroph communities, as well as N2 fixation rates, decreased with warming (p < 0.05). Following warming, diazotrophs shifted from a mixed community of Nostocales (Cyanobacteria) and Rhizobiales (Alphaproteobacteria) to predominance of Nostocales. Microbiome community composition differed between years, with some diazotroph populations persisting while others declined in relative abundance in warmed plots in the second year. Our results demonstrate that warming substantially alters the community composition, diversity, and N2 fixation activity of peat moss microbiomes, which may ultimately impact host fitness, ecosystem productivity, and C storage potential in peatlands.  相似文献   

19.
Caprella penantis is considered a cosmopolitan species and one of the most challenging caprellids in taxonomic terms because of its remarkable intraspecific morphological variation. This study examined DNA sequences from mitochondrial (COI) and nuclear (18S) markers together with morphological data from 25 localities of C. penantis, and closely related species Caprella dilatata and Caprella andreae, all traditionally considered part of the old ‘acutifrons’ complex. The large genetic divergence and reciprocally allopatric distributions point to the existence of a species complex of at least four species, of which one is reported as a cryptic species. This study provides the first evidence of cryptic speciation in the family Caprellidae, and questions the validity of some traditional morphological characters used to delimit species in the genus Caprella. Our results are consistent with the idea that main factors were probably isolation by distance and ecological traits, promoting diversification in C. penantis. The strong genetic structure reported for this species in the Iberian Peninsula and Moroccan coasts also suggests restriction to dispersal as well as the presence of refugial areas. These results highlight the utility of the COI and 18S genes in combination with morphological characters for shedding light on systematic questions in caprellids, and patterns of genetic connectivity.  相似文献   

20.
Gut microbial diversity is thought to reflect the co‐evolution of microbes and their hosts as well as current host‐specific attributes such as genetic background and environmental setting. To explore interactions among these parameters, we characterized variation in gut microbiome composition of California voles (Microtus californicus) across a contact zone between two recently diverged lineages of this species. Because this contact zone contains individuals with mismatched mitochondrial‐nuclear genomes (cybrids), it provides an important opportunity to explore how different components of the genotype contribute to gut microbial diversity. Analyses of bacterial 16S rRNA sequences and joint species distribution modelling revealed that host genotypes and genetic differentiation among host populations together explained more than 50% of microbial community variation across our sampling transect. The ranked importance (most to least) of factors contributing to gut microbial diversity in our study populations were: genome‐wide population differentiation, local environmental conditions, and host genotypes. However, differences in microbial communities among vole populations (β‐diversity) did not follow patterns of lineage divergence (i.e., phylosymbiosis). Instead, among‐population variation was best explained by the spatial distribution of hosts, as expected if the environment is a primary source of gut microbial diversity (i.e., dispersal limitation hypothesis). Across the contact zone, several bacterial taxa differed in relative abundance between the two parental lineages as well as among individuals with mismatched mitochondrial and nuclear genomes. Thus, genetic divergence among host lineages and mitonuclear genomic mismatches may also contribute to microbial diversity by altering interactions between host genomes and gut microbiota (i.e., hologenome speciation hypothesis).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号