首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic, reproductive and morphological variation were studied in 193 global strains of the marine diatom species Pseudo-nitzschia pungens (Grunow ex Cleve) Hasle to assess potential intraspecific variation and biogeographic distribution patterns. Genetic differentiation between allo- and sympatric strains was investigated using the ITS1–5.8S–ITS2 rDNA region. Three ITS clades were found. Clones of opposite mating type were sexually compatible within clades I or II, and viable F1 hybrid offspring were produced in crosses between them. The molecular differences between these clades were correlated with slight but consistent morphological differences. At present, nothing can be said about morphology and mating behavior for clade III clones because only ITS data were available. The three ITS clades showed different geographic distributions. Clade II was restricted to the NE Pacific, whereas clones belonging to clade III originated from geographically widely separated areas (Vietnam, China and Mexico). ITS clade I was recovered in all locations studied: the North Sea (Belgium, The Netherlands, France), the eastern and western N Atlantic (Spain, Canada), the NW and S Pacific (Japan, New Zealand) and the NE Pacific (Washington State). Clade I thus appears to be globally distributed in temperate coastal areas and provides the first strong evidence to date for the global distribution of a biologically, genetically and morphologically defined diatom species.  相似文献   

2.
Pseudo-nitzschia pungens is a planktonic marine diatom known to be widespread in tropical and temperate coastal waters. We examined the population genetic structure of tropical Southeast Asian populations of P. pungens and compared it with those of northern and southern temperate populations. The secondary structures of the nuclear encoded internal transcribed spacer (ITS) region of 164 strains of P. pungens were modeled and analyzed. The tree revealed three ITS entities: clade I (comprised of P. pungens var. pungens) was distributed mainly in northern temperate waters; clade II (comprised of both P. pungens var. pungens and var. cingulata) was mainly from the NE Pacific; and clade III (comprised of both P. pungens var. pungens and var. aveirensis) was restricted to tropical and warm-temperate waters. Hybrids of both P. pungens var. pungens and var. cingulata co-occurred in clades I and II. Sixty haplotypes were revealed from the sequences of 164 strains. Haplotype diversity inferred from the median-joining network was in accordance with phylogenetic analysis, further supporting the grouping of the P. pungens haplogroups. Our results revealed limited gene flow between P. pungens from tropical and temperate waters, and significant population structure, as estimated by an analysis of molecular variance (AMOVA), with 75% of the total ITS variation found among populations (ФST = 0.75). This study suggests that distinct environmental clines, such as ocean thermohaline circulation, have a potential for fragmenting and dispersing global populations of P. pungens. Formation of the Isthmus of Panama, in particular, is speculated to play a role in this allopatric differentiation in P. pungens populations worldwide.  相似文献   

3.
Three genetic sub-populations (clade I, II and III) of Pseudo-nitzschia pungens, the potential toxic marine diatom, are known to have distinguishable growth characteristics under different culture conditions and distinct distributed patterns in the world. However, to date their exact eco-physiological traits are unrevealed in fields due to lack of the method to detect and/or measure abundances of each sub-populations, hence, the qPCR (quantitative real-time polymerase chain reaction) assay was developed to detect and quantify the P. pungens cells of each clade. Designed two specific primer sets, Pcla12F/R (for clade I and II) and Pcla3F/R (for clade III) only could amplify each target genomic DNA. The, significant linear relationships (R2 > 0.998) was established between Ct (threshold cycle) value and the log of cell abundance for each clade. Through the melting curve analysis, comparisons for gene copy numbers among the three clades and spike test for field study, our qPCR assay was reliable to quantify the cell numbers of each clade. There was strong linear correlation (R2 > 0.990) between cell abundances as estimated by qPCR assay and direct counting via light microscope in spike test, and 0.24 (clade I), 0.25 (clade II) and 0.33 (clade III) P. pungens cells per mL were detected markedly upon the use of specific two-primer set. Finally, developed qPCR assay was applied on field samples successfully. Our study implicate that our qPCR assay is an accurate and sensitive technique to estimate the cell abundances of each clade of P. pungens in field works.  相似文献   

4.
Analyses of the mitochondrial cox1, the nuclear‐encoded large subunit (LSU), and the internal transcribed spacer 2 (ITS2) RNA coding region of Pseudo‐nitzschia revealed that the P. pseudodelicatissima complex can be phylogenetically grouped into three distinct clades (Groups I–III), while the P. delicatissima complex forms another distinct clade (Group IV) in both the LSU and ITS2 phylogenetic trees. It was elucidated that comprehensive taxon sampling (sampling of sequences), selection of appropriate target genes and outgroup, and alignment strategies influenced the phylogenetic accuracy. Based on the genetic divergence, ITS2 resulted in the most resolved trees, followed by cox1 and LSU. The morphological characters available for Pseudo‐nitzschia, although limited in number, were overall in agreement with the phylogenies when mapped onto the ITS2 tree. Information on the presence/absence of a central nodule, number of rows of poroids in each stria, and of sectors dividing the poroids mapped onto the ITS2 tree revealed the evolution of the recently diverged species. The morphologically based species complexes showed evolutionary relevance in agreement with molecular phylogeny inferred from ITS2 sequence–structure data. The data set of the hypervariable region of ITS2 improved the phylogenetic inference compared to the cox1 and LSU data sets. The taxonomic status of P. cuspidata and P. pseudodelicatissima requires further elucidation.  相似文献   

5.
The delimitation of the invasive moss species Campylopus introflexus from its closest relative, Campylopus pilifer, has been long debated based on morphology. Previous molecular phylogenetic reconstructions based on the nuclear ribosomal internal transcribed spacers (ITS) 1 and 2 showed that C. pilifer is split into an Old World and a New World lineage, but remained partly inconclusive concerning the relationships between these two clades and C. introflexus. Analyses of an extended ITS dataset displayed statistically supported incongruence between ITS1 and ITS2. ITS1 separates the New World clade of C. pilifer from a clade comprising C. introflexus and the Old World C. pilifer. Ancestral state reconstruction showed that this topology is morphologically supported by differences in the height of the dorsal costal lamellae in leaf cross‐section (despite some overlap). ITS2, in contrast, supports the current morphological species concept, i.e., separating C. introflexus from C. pilifer, which is morphologically supported by the orientation of the hyaline hair point at leaf apex as well as costal lamellae height. Re‐analysis of published and newly generated plastid atpB‐rbcL spacer sequences supported the three ITS lineages. Ecological niche modeling proved a useful approach and showed that all three molecular lineages occupy distinct environmental spaces that are similar, but undoubtedly not equivalent. In line with the ITS1 topology, the C. pilifer lineage from the New World occupies the most distinct environmental niche, whereas the niches of Old World C. pilifer and C. introflexus are very similar. Taking the inferences from ecological niche comparisons, phylogenetics, and morphology together, we conclude that all three molecular lineages represent different taxa that should be recognized as independent species, viz. C. introflexus, C. pilifer (Old World clade), and the reinstated C. lamellatus Mont. (New World clade).  相似文献   

6.
The cryptomonad Rhinomonas nottbecki n. sp., isolated from the Baltic Sea, is described from live and fixed cells studied by light, scanning, and transmission electron microscopy together with sequences of the partial nucleus‐ and nucleomorph‐encoded 18S rRNA genes as well as the nucleus‐encoded ITS1, 5.8S, ITS2, and the 5′‐end of the 28S rRNA gene regions. The sequence analyses include comparison with 43 strains from the family Pyrenomonadaceae. Rhinomonas nottbecki cells are dorsoventrally flattened, obloid in shape; 10.0–17.2 μm long, 5.5–8.1 μm thick, and 4.4–8.8 μm wide. The inner periplast has roughly hexagonal plates. Rhinomonas nottbecki cells resemble those of Rhinomonas reticulata, but the nucleomorph 18S rRNA gene of R. nottbecki differs by 2% from that of R. reticulata, while the ITS region by 11%. The intraspecific variability in the ITS region of R. nottbecki is 5%. In addition, the predicted ITS2 secondary structures are different in R. nottbecki and R. reticulata. The family Pyrenomonadaceae includes three clades: Clade A, Clade B, and Clade C. All Rhinomonas sequences branched within the Clade C, while the genus Rhodomonas is paraphyletic. The analyses suggest that the genus Storeatula is an alternating morphotype of the genera Rhinomonas and Rhodomonas and that the family Pyrenomonadaceae includes some species that were described multiple times, as well as novel species.  相似文献   

7.
Aeschynanthus Jack, an epiphytic genus with c.160 species, is widespread in SE Asia. We selected 50 species for ITS nrDNA sequencing, to include all biogeographic areas and all infrageneric groupings, which are currently based on seed morphology. Some species were sequenced directly from PCR product; others cloned because of ITS length polymorphisms. The clone sequences were analysed individually and combined in an elision matrix. Results extend earlier findings that Aeschynanthus is divided into two clades, one occurring primarily in mainland SE Asia and the other in Malesia. This pattern is interpreted as indicating an ancient vicariance event followed by dispersal and plate fusion. Clade I has straight or clockwise spiral orientation of the testa cells and clade II anticlockwise spiral orientation. In clade I some species of section Microtrichium form a basal group with other sections being polyphyletic or paraphyletic. In clade II the monophyletic section Aeschynanthus is nested within the paraphyletic basal Microtrichium. Received February 8, 2001 Accepted June 8, 2001  相似文献   

8.
Heterogeneity of the rDNA ITS region in Pythium helicoides and the phylogenetic relationship between P. helicoides and closely related species were investigated. In PCR-RFLP analysis of the rDNA ITS region of six P. helicoides isolates investigated, including the type culture, intraspecific variation was found at the HhaI site. The total length of fragments was longer than before cutting, indicating sequence heterogeneity within isolates. Digestion of the cloned rDNA ITS region derived from seven isolates with HhaI revealed polymorphisms among and within single zoospore isolates, and variability of the region was also present among the clones derived from the same isolate. To test whether the rDNA ITS region of closely related species and other regions in the genome of P. helicoides are also variable, the rDNA ITS region of P. ultimum and the cytochrome oxydase II (cox II) gene encoded in mitochondria were sequenced. P. ultimum had little variation in the rDNA ITS region. The cox II gene sequences of both species revealed only a low intraspecific variability and no intra-isolate variation. In the phylogenic tree based on the rDNA ITS sequences, all clones of P. helicoides formed one large clade that was distinct from the clades comprising morphologically similar species, such as P. oedochilum and P. ostracodes, and was closely related to P. chamaehyphon rather than the other species.  相似文献   

9.
DNA sequence analysis of the nuclear ribosomal internal transcribed spacer region (ITS) was performed to determine phylogenetic relationship between 49 isolates of rusts infecting grain and forage legumes. Isolates were collected from different hosts and distinct geographic origins and represent eight species of Uromyces: U. anthyllidis, U. appendiculatus, U. ciceris‐arietini, U. minor, U. pisi, U. striatus, U. viciae‐fabae and U. vignae. ITS sequences revealed length polymorphisms and variation in DNA sequence that were used to characterize phylogenetic relationships by maximum parsimony, maximum likelihood and Bayesian analyses which in general agreed revealing the presence of four clearly distinct clades. Clade one included the isolates causing rust on chickpea, fenugreek and alfalfa. Clade two was composed by rust isolates of field clover and pea plants, while the third clade was formed by bean and cowpea isolates. Clade four was the largest and included all the rust isolates infecting faba bean. Within this clade, the highly supported subclusters of U. viciae‐fabae collected on Lens culinaris, U. viciae‐fabae collected on Vicia sativa and U. viciae‐fabae collected on Lathyrus palustris suggest an ongoing process of host specialization.  相似文献   

10.
The Gray Toad-headed Agama (Phrynocephalus scutellatus) occurs in Iran, Pakistan and Afghanistan and is represented in Iran by four distinctive genetic clades. We built distribution models for three of these clades (one clade was not included due to a low number of distribution records) using Maximum Entropy Algorithm in order to determine the contribution of ecological factors to the distribution pattern. The degree of spatial niche overlap between every pair of clades were measured using Schoener's D niche overlap metric. The results showed that at species-level climate variables (annual precipitation, annual mean temperature) were the most influential parameters determining the boundaries of the distribution in Iran. Temperature seasonality was found to be the most influential factor in the distribution of both Clade I and Clade II. However, this variable was replaced by the annual mean temperature for Clade VI. Based on the results of Schoener's D metric, Clades I and II had the lowest, and Clades II and VI the highest level of ecological niche overlap. Comparing the result of niche overlap with genetic distance between the clades, it was found that the ecologically least similar clades were those with the longer history of genetic segregation.  相似文献   

11.
Macrodasyidan gastrotrichs are hermaphrodites with complex reproductive organs that function in sperm transfer and receipt, but homology among the organs of members of different clades remains undetermined, as does a broader understanding of evolutionary trends in the reproductive biology of macrodasyidans. In this study, we investigate the evolution of reproduction in Urodasys, a clade of 15 macrodasyidan species that shows variability in reproductive mode (hermaphroditic and parthenogenetic) and sexual anatomy. We use partial 18S rDNA sequence data from 30 specimens representing five described species, sequence data from one undescribed species in GenBank, and sequence data from a potentially new species found at Capron Shoal, Florida, to gain insight into the phylogeny of the clade and clarify evolutionary trends in reproductive modality. Based on a total of 33 specimens of seven potential species, we found that members of Urodasys can be separated into three clades reflective of different reproductive modalities: Clade I, species with paired male and female gonads but without accessory sexual organs; Clade II, species with a single left testis, paired ova, and accessory organs including a sclerotic stylet; and Clade III, parthenogenetic species without testes or accessory organs. In addition, we find that the potentially new species from Florida can form spermatophores, a condition shared with another species in Clade I. Herein, we describe this novel spermatophore‐bearing species and discuss the significance of spermatophore formation in the genus.  相似文献   

12.
13.
Candida auris is an emerging fungal pathogen of rising concern due to global spread, the ability to cause healthcare-associated outbreaks, and antifungal resistance. Genomic analyses revealed that early contemporaneously detected cases of C. auris were geographically stratified into four major clades. While Clades I, III, and IV are responsible for ongoing outbreaks of invasive and multidrug-resistant infections, Clade II, also termed the East Asian clade, consists primarily of cases of ear infection, is often susceptible to all antifungal drugs, and has not been associated with outbreaks. Here, we generate chromosome-level assemblies of twelve isolates representing the phylogenetic breadth of these four clades and the only isolate described to date from Clade V. This Clade V genome is highly syntenic with those of Clades I, III, and IV, although the sequence is highly divergent from the other clades. Clade II genomes appear highly rearranged, with translocations occurring near GC-poor regions, and large subtelomeric deletions in most chromosomes, resulting in a substantially different karyotype. Rearrangements and deletion lengths vary across Clade II isolates, including two from a single patient, supporting ongoing genome instability. Deleted subtelomeric regions are enriched in Hyr/Iff-like cell-surface proteins, novel candidate cell wall proteins, and an ALS-like adhesin. Cell wall proteins from these families and other drug-related genes show clade-specific signatures of selection in Clades I, III, and IV. Subtelomeric dynamics and the conservation of cell surface proteins in the clades responsible for global outbreaks causing invasive infections suggest an explanation for the different phenotypes observed between clades.  相似文献   

14.
Straight‐billed Hermit Phaethornis bourcieri inhabits the understorey of upland terra firme forest throughout most of the Amazon basin. Currently, two allopatric taxa regarded as subspecies are recognized: P. b. bourcieri and P. b. major. However, the validity, interspecific limits and evolutionary history of these taxa are not yet fully elucidated. We use molecular characters to propose a phylogenetic hypothesis for populations and taxa grouped under Phaethornis bourcieri. Our results showed that P. bourcieri is part of the ‘Ametrornis’ clade, along with Phaethornis philippii and Phaethornis koepckeae, and that the subspecies major is more closely related to the latter two species than to populations grouped under nominate bourcieri. Our phylogenetic hypotheses recovered three main reciprocally monophyletic clades under nominate bourcieri separated by the lower Negro River and the Branco River or the Branco–Negro interfluve (clades B and C) and the upper Amazon (Solimões) or lower Marañon/Ucayali Rivers (clades C and D). Based on multi‐locus phylogeographic and population genetics approaches, we show that P. b. major is best treated as a separate species, and that P. b. bourcieri probably includes more than one evolutionary species, whose limits remain uncertain. The diversification of the ‘Ametrornis’ clade (P. bourcieri, P. philippii and P. koepckeae) is centred in the Amazon and appears to be closely linked to the formation of the modern Amazon drainage during the Plio‐Pleistocene.  相似文献   

15.
The taxonomy and phylogeny of Asian Meconopsis (Himalayan blue poppy) remain largely unresolved. We used the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (nrDNA) and the chloroplast DNA (cpDNA) trnL-F region for phylogenetic reconstruction of Meconopsis and its close relatives Papaver, Roemeria, and Stylomecon. We identified five main clades, which were well-supported in the gene trees reconstructed with the nrDNA ITS and cpDNA trnL-F sequences. We found that 41 species of Asian Meconopsis did not constitute a monophyletic clade, but formed two solid clades (I and V) separated in the phylogenetic tree by three clades (II, III and IV) of Papaver and its allies. Clade V includes only four Asian Meconopsis species, with the remaining 90 percent of Asian species included in clade I. In this core Asian Meconopsis clade, five subclades (Ia–Ie) were recognized in the nrDNA ITS tree. Three species (Meconopsis discigera, M. pinnatifolia, and M. torquata) of subgenus Discogyne were imbedded in subclade Ia, indicating that the present definition of subgenera in Meconopsis should be rejected. These subclades are inconsistent with any series or sections of the present classifications, suggesting that classifications of the genus should be completely revised. Finally, proposals for further revision of the genus Meconopsis were put forward based on molecular, morphological, and biogeographical evidences.  相似文献   

16.
珠母贝属的系统发育: 核rDNA ITS序列证据   总被引:15,自引:0,他引:15  
珠母贝属(pinctada)的一些种类是生产海水珍珠的重要母贝,个别种类已濒临灭绝。本文利用核糖体DNA内部转录间隔区1(ITS1)和2(ITS2)序列对珠母贝属常见种类的系统发育和分类地位进行了分析。结果表明:ITS1长410-482bp,其中Pinctada maxima最长,P.fucata,P.fucata martensii,P.imbricata和P.nigra最短。ITS2长210-249bp,其中P.albina和P.nigra最长,P.maxima和P.margaritifera最短。碱基替换的同质性检测发现,P.maxima、P.margaritifera和P.chemnitzi的碱基替换格局存在显著性差异,前二者的GC含量显著高于其他种,在进化上可能比较原始;而P.chemnitzi可能发生过染色体重排事件,可能是新近形成的种。系统发育分析表明,所研究的种类可分成3个类群:类群Ⅰ包含P.fucata、P.fucatamartensii和P.imbricata;类群Ⅱ包含P.albina、P.nigra、P.chemnitzi和P.radiata;类群Ⅲ包含P.maxima和P.margaritifera。在类群Ⅰ中,我国的P.fucata、日本的P.fucatamartensii和澳大利亚的P.imbricata的种间遗传分化不明显,可能为同种,根据命名优先原则应以P.imbricata命名该种为宜。类群Ⅱ中P.albina和P.nigra可能是两个亚种,而GenBank中的P.radiata(AY144603)可能是P.chemnitzi的误定。类群Ⅲ(P.maxima和P.margaritifera)分化较早,与碱基替换格局的检测结果相符。  相似文献   

17.
The taxonomic assignment of Prorocentrum species is based on morphological characteristics; however, morphological variability has been found for several taxa isolated from different geographical regions. In this study, we evaluated species boundaries of Prorocentrum hoffmannianum and Prorocentrum belizeanum based on morphological and molecular data. A detailed morphological analysis was done, concentrating on the periflagellar architecture. Molecular analyses were performed on partial Small Sub‐Unit (SSU) rDNA, partial Large Sub‐Unit (LSU) rDNA, complete Internal Transcribed Spacer Regions (ITS1‐5.8S‐ITS2), and partial cytochrome b (cob) sequences. We concatenated the SSU‐ITS‐LSU fragments and constructed a phylogenetic tree using Bayesian Inference (BI) and maximum likelihood (ML) methods. Morphological analyses indicated that the main characters, such as cell size and number of depressions per valve, normally used to distinguish P. hoffmannianum from P. belizeanum, overlapped. No clear differences were found in the periflagellar area architecture. Prorocentrum hoffmannianum and P. belizeanum were a highly supported monophyletic clade separated into three subclades, which broadly corresponded to the sample collection regions. Subtle morphological overlaps found in cell shape, size, and ornamentation lead us to conclude that P. hoffmanianum and P. belizeanum might be considered conspecific. The molecular data analyses did not separate P. hoffmannianum and P. belizeanum into two morphospecies, and thus, we considered them to be the P. hoffmannianum species complex because their clades are separated by their geographic origin. These geographic and genetically distinct clades could be referred to as ribotypes: (A) Belize, (B) Florida‐Cuba, (C1) India, and (C2) Australia.  相似文献   

18.
Alexandrium species can be very difficult to identify, with A. catenella, A. tamarense, and A. fundyense that compose “Alexandrium tamarense species complex” (Atama complex) as a distinct example. DNA barcoding is promising to offer a solution but remains to be established. In this study, we examined the utility of ITS in resolving the Atama species complex, by analyzing previously studied strains plus unstudied Chinese strains within the LSU- and SSU-rDNA based group/clade frameworks recently established. We further investigated the presence of intragenomic polymorphism and its implications in species delimitation. Similar to the previous SSU and LSU results, our ITS-based phylogenies divided the complex to five clusters, but with longer and evener branch lengths between the clusters. Based on the ITS region, the inter-cluster genetic distances (p = 0.134–0.216) were consistently and substantially greater than intra-cluster genetic distances (p = 0.000–0.066), with an average inter-cluster (species) distance (p = 0.167) 7.6-fold of the average intraspecific difference (p = 0.022), qualifying the approximately 510–520 bp ITS as a DNA barcode for Atama complex. We detected varying levels of intragenomic polymorphism in ITS but found that this did not impact the taxon-resolving power of this gene. With this DNA barcode, the new East and South China Sea strains and one Antarctic strain were placed in Clade IIC/Group IV, even though there were 7–10 polymorphic sites in their ITS, in contrast to none in SSU. Furthermore, our results suggest that the five clusters are recognizable as distinct species according to the phylogenetic species concept. Based on the phylogenetic placements of the type-locality strains of the existing three morphospecies and the dominant localities of other strains, we propose that Group I/Clade I be designated as A. fundyense, Group III/Clade IIB as A. tamarense, Group IV/Clade IIC as A. catenella, Group II/Clade IIA as A. mediterranis, and Group V/Clade IID as A. australis.  相似文献   

19.
Phylogenetic clades based on DNA sequences such as the chloroplast rbcL gene and the nuclear ITS region are frequently used to delimit algal species. However, these molecular markers cannot accurately delimit boundaries among some Ulva species. Although Ulva reticulata and Ulva ohnoi occasionally bloom in tropical to warm‐temperate regions and are clearly distinguishable by their reticulate or plain blade morphology, they have few or no sequence divergences in these molecular markers and form a monophyletic clade. In this study, to clarify the speciation and species delimitation in the U. reticulata‐ohnoi complex clade, reproductive relationships among several sexual strains from the Philippines and Japan including offspring that originated from the type specimen of U. ohnoi were examined by culturing and hybridization in addition to the ITS‐based analysis. As a result, both prezygotic and postzygotic reproductive isolation were revealed to occur between genetically perforated U. reticulata and imperforate U. ohnoi. They were also separated on the basis of sequence analysis of the ITS region. That strongly supports that the two taxa are independent biological species. Although no prezygotic barrier among the Philippine and Japanese strains of U. reticulata was observed, unexpectedly zoospores produced by hybrid sporophytes in some of their combinations mostly failed to develop, indicating partial formation of a postzygotic barrier despite a 0.2% divergence in the ITS sequence. These findings suggest speciation is still ongoing in U. reticulata.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号