首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Terrestrial filamentous green algae of the widely distributed, cosmopolitan genus Klebsormidium (Klebsormidiophyceae, Streptophyta) are typical components of biological soil crusts (BSCs). These communities occur in all climatic zones and on all continents, where soil moisture is limited or where there has been disturbance. BSCs form water-stable aggregates that have important ecological roles in primary production, nitrogen fixation, nutrient cycling, water retention and stabilization of soils. Although available data on Klebsormidium are limited, its functional importance in BSCs is regarded as high. Therefore, in the present study Klebsormidium strains were isolated from BSCs sampled from various grassland and forest plots of different land use intensities in Central Europe, as provided by the Biodiversity Exploratories, and its intraspecific genetic diversity was evaluated. Previous phylogenetic analyses revealed a relationship between sequence similarity and habitat preference with a higher genetic diversity than expected from a morphological classification. We isolated and sequenced 75 Klebsormidium strains. The molecular phylogeny based on the ITS regions showed that all strains belong to either the previously described clade B/C or clade E. This classification was supported by morphological characteristics: strains assigned to clade B/C were identified as Klebsormidium cf. flaccidum or Klebsormidium cf. dissectum, and strains from clade E as K. nitens or Klebsormidium cf. subtile. Within one clade the strains showed low sequence divergences. These minor differences were independent of the sampling region and land use intensity. Interestingly, most of the strains assigned to clade E were isolated from forest sites, whereas strains from clade B/C occurred equally in grassland and forest sites. Therefore, it is reasonable to assume that habitat with its microenvironmental conditions, and not biogeography, controls genetic diversity in Klebsormidium.  相似文献   

2.
Nuclear‐encoded SSU, group I intron, and internal transcribed spacer (ITS) rDNA sequences were obtained for 16 strains of green algae representing species of Klebsormidium, Hormidiella attenuata, and Entransia fimbriata (for taxonomic authorities, see Table S1 in the supplementary material). The SSU phylogeny resolved a well‐supported clade Klebsormidiales in the Streptophyta that comprised authentic Klebsormidium isolates described recently in a monograph by G. M. Lokhorst and various strains from culture collections. The H. attenuata and En. fimbriata pair was the sister group of Klebsormidium. Certain isolates from culture collections previously identified as “Klebsormidium” emerged as Trebouxiophyceae. Strains assigned to Koliella, Gloeotila, and Stichococcus previously allied with Klebsormidium because of shared morphological and ultrastructural characteristics also belonged to Trebouxiophyceae. Group I introns inserted at Escherichia coli position 516 were found in K. nitens and SAG strain 384‐1, and at position 1506 in H. attenuata and En. fimbriata. Introns were not observed in other Klebsormidiales. Unambiguous alignment of ITS regions of Klebsormidiales was only possible after thermodynamic folding had predicted eight conserved helical domains. The ITS phylogeny provided support for five of the morphospecies recognized by Lokhorst (K. flaccidum, K. elegans, K. bilatum, K. crenulatum, K. mucosum), but the sequences of K. dissectum, K. fluitans, and K. nitens formed an unresolved clade. The species with the earliest origin in the Klebsormidium phylogeny was K. flaccidum. The incongruence between Lokhorst’s morphology‐based cladograms and the ITS phylogenies demonstrated the need for a critical reappraisal of the taxonomy and the morphological and molecular species concept in Klebsormidium on the basis of a more extensive taxonomic and geographic sampling strategy.  相似文献   

3.
The osmotic potential and effects of plasmolysis were investigated in two different Klebsormidium strains from alpine habitats by incubation in 300–2,000 (3,000) mM sorbitol. Several members of this genus were previously found to tolerate desiccation in the vegetative state yet information was lacking on the osmotic potentials of these algae. The strains were morphologically determined as Klebsormidium crenulatum and Klebsormidium nitens. These species belong to distinct clades, as verified by phylogenetic analysis of the rbcL gene. K. crenulatum is part of to the K. crenulatum/mucosum (‘F’ clade) and K. nitens of the ‘E2’ clade. Plasmolysis occurred in K. crenulatum at 800 mM sorbitol (961 mOsmol kg?1, Ψ?=??2.09 MPa) and in K. nitens at 600 mM sorbitol (720 mOsmol kg?1, Ψ?=??1.67 MPa). These are extraordinarily high osmotic values (very negative osmotic potentials) compared with values reported for other green algae. In K. crenulatum, the maximum photosynthetic rate (Pmax) in the light-saturated range was 116 μmol O2 h?1 mg?1 chl a. Incubation in 1,000 mM sorbitol decreased Pmax to 74.1% of the initial value, whereas 2,000 mM sorbitol (Ψ?=??5.87 MPa) lead to an almost complete loss of oxygen production. In K. nitens, Pmax was 91 μmol O2 h?1 mg?1 chl a under control conditions and incubation in 800 mM sorbitol did not decrease Pmax, 2,000 mM sorbitol decreased Pmax only to about 62.6% of the initial value whereas 3,000 mM sorbitol stopped oxygen evolution. This indicated a broader amplitude for photosynthesis in the examined strain of K. nitens. Control samples and samples plasmolysed for 3 h in 800 mM sorbitol (K. nitens), 1,000 mM sorbitol (K. crenulatum), or 2,000 mM sorbitol were investigated by transmission electron microscopy after chemical or high-pressure freeze fixation. In cells undergoing plasmolysis the protoplasts were retracted from the cell wall, the cytoplasm appeared dense, vacuoles were small and fragmented, and the cytoplasm was filled with ribosomes. Thin cytoplasmic strands were connected to the cell wall; 2,000 mM sorbitol increased the effect. The content of soluble carbohydrates in these two strains was investigated by HPLC, as this is one known mechanism for cells to maintain high osmotic pressure of the cytosol. Both Klebsormidium species contained diverse soluble carbohydrates, including a dominant mixed peak of unidentified oligosaccharides, and more minor amounts of raffinose, sucrose, glucose, xylose, galactose, mannose, inositol, fructose, glycerol, mannitol, and sorbitol. The total content of soluble carbohydrates was approximately 1.2% of the dry weight, indicating that this is not a major factor contributing to the high osmotic potential in these strains of Klebsormidium.  相似文献   

4.
Aeroterrestrial filamentous green algae of the genus Klebsormidium (Klebsormidiales, Streptophyta) are typical components of biological soil crusts, which occur worldwide in arid and semiarid habitats including alpine regions. In the present study, Klebsormidium crenulatum (Kütz.) Lokhorst was isolated from an alpine soil crust above the timberline of the Austrian Alps. Growth responses, photosynthetic performance, and desiccation tolerance were measured under controlled laboratory conditions. K. crenulatum exhibited optimal growth and the highest photosynthetic efficiency under relatively low photon fluence densities (30 and 21.9 μmol photons · m?2 · s?1, respectively), indicating low‐light requirements. It grew in a narrow range of salinities between 1.2 and 15 practical salinity units (psu), pointing to a pronounced stenohaline response pattern. Increasing temperatures from 5°C to 40°C led to different effects on photosynthetic oxygen evolution and respiratory oxygen consumption in K. crenulatum. While at low temperatures (5°C–10°C) photosynthesis was relatively high, respiration was not detectable or was at a very low level. Conversely, at the highest temperature of 40°C, photosynthesis was inhibited, and respiration unaffected, indicating strong differences in temperature sensitivity between both physiological processes. K. crenulatum was capable of photosynthesizing efficiently for up to 2.5 h under desiccation, followed by a decrease to 15% of the initial value after 3 h. Complete recovery took place within 2 h after rehydration. All ecophysiological data explain the widespread abundance of K. crenulatum in soil crusts of the alpine regions of the European Alps.  相似文献   

5.
Members of the cosmopolitan streptophycean genus Klebsormidium live in various habitats, including sand dunes and polar/alpine environments. To survive in these harsh conditions they must possess an array of adaptive physiological and structural mechanisms, for example, to deal with chilling and photochilling stresses. Since these mechanisms have not been studied in detail, the objectives of this study were (i) to determine the physiological and biochemical responses of Klebsormidium cf. flaccidum (K. cf. flaccidum) to chilling (low temperature [LT]) and photochilling (LT in combination with high light [HL]) stresses; and (ii) to understand the cross-link between biochemical parameters and cellular ultrastructural changes. The results indicated that 5°C is a temperature threshold (i.e., at 5°C) but not at higher temperatures, physiological changes were observed (Fv/Fm and ETR decreased and energy-partitioning distribution changed, with an increase in Y[NPQ] under LT and an increase in Y[NO] under HL-LT). Also, pigment contents changed significantly, with increased concentrations of photoprotective pigments such as antheraxanthin, zeaxanthin, and total carotenes. All of these responses occurred under LT and, to a greater extent, under LT-HL, indicating that the two stresses (temperature and light) are additive. The cold treatment applied here induced the formation of spores under both LL and HL. The degree of photoinhibition was higher in spores than in vegetative cells, indicating that spores are less susceptible to photodamage. This study demonstrated a broad acclimation potential in different developmental stages of K. cf. flaccidum, which helps to explain the ecological success of this genus.  相似文献   

6.
Members of the green algal genus Klebsormidium (Klebsormidiales, Streptophyta) are typical components of biological soil crust communities worldwide, which exert important ecological functions. Klebsormidium fluitans (F. Gay) Lokhorst was isolated from an aeroterrestrial biofilm as well as from four different biological soil crusts along an elevational gradient between 600 and 2350 m in the Tyrolean and South Tyrolean Alps (Austria, Italy), which are characterised by seasonally high solar radiation. Since the UV tolerance of Klebsormidium has not been studied in detail, an ecophysiological and biochemical study was applied. The effects of controlled artificial ultraviolet radiation (UVR; <9 W m–2 UV-A, <0.5 W m–2 UV-B) on growth, photosynthetic performance and the capability to synthesise mycosporine-like amino acids (MAAs) as potential sunscreen compounds were comparatively investigated to evaluate physiological plasticity and possible ecotypic differentiation within this Klebsormidium species. Already under control conditions, the isolates showed significantly different growth rates ranging from 0.42 to 0.74 μm day?1. The UVR effects on growth were isolate specific, with only two strains affected by the UV treatments. Although all photosynthetic and respiratory data indicated strain-specific differences under control conditions, UV-A and UV-B treatment led only to rather minor effects. All physiological results clearly point to a high UV tolerance in the K. fluitans strains studied, which can be explained by their biochemical capability to synthesize and accumulate a putative MAA after exposure to UV-A and UV-B. Using HPLC, a UV-absorbing compound with an absorption maximum at 324 nm could be identified in all strains. The steady-state concentrations of this Klebsormidium MAA under control conditions ranged from 0.09 to 0.93 mg g?1 dry weight (DW). While UV-A led to a slight stimulation of MAA accumulation, exposure to UV-B was accompanied by a strong but strain-specific increase of this compound (5.34–12.02 mg?1 DW), thus supporting its function as UV sunscreen. Although ecotypic differences in the UVR response patterns of the five K. fluitans strains occurred, this did not correlate with the altitude of the respective sampling location. All data indicate a generally high UV tolerance which surely contributes to the aeroterrestrial lifestyle of K. fluitans in soil crusts of the alpine regions of the European Alps.  相似文献   

7.
Taxa of microbial eukaryotes defined on morphological basis display a large degree of genetic diversity, implying the existence of numerous cryptic species. However, it has been postulated that genetic diversity merely mirrors accumulation of neutral mutations. As a case taxon to study cryptic diversity in protists, we used a widely distributed filamentous genus, Klebsormidium, specifically the lineage E (K. flaccidum/K. nitens complex) containing a number of morphologically similar strains. Fourteen clades were recognized in the phylogenetic analysis based on a concatenated ITS rDNA + rbcL data set of more than 70 strains. The results of inferred character evolution indicated the existence of phylogenetic signal in at least two phenotypic characters (production of hydro‐repellent filaments and morphology of zoosporangia). Moreover, the lineages recovered exhibited strong ecological preferences to one of the three habitat types: natural subaerial substrata, artificial subaerial substrata, and aquatic habitats. We interpret these results as evidence of existence of a high number of cryptic species within the single morphospecies. We consider that the permanent existence of genetically and ecologically well‐defined cryptic species is enabled by the mechanism of selective sweep.  相似文献   

8.
Klebsormidium is a cosmopolitan genus of green algae, widespread in terrestrial and freshwater habitats. The classification of Klebsormidium is entirely based on morphological characters, and very little is understood about its phylogeny at the species level. We investigated the diversity and phylogenetic relationships of Klebsormidium in urban habitats in Europe by a combination of approaches including examination of field‐collected material, culture experiments conducted in many different combinations of factors, and phylogenetic analyses of the rbcL gene. Klebsormidium in European cities mainly occurs at the base of old walls, where it may produce green belts up to several meters in extent. Specimens from different cities showed a great morphological uniformity, consisting of long filaments 6–9 μm in width, with thin‐walled cylindrical cells and smooth wall, devoid of false branches, H‐shaped pieces, and biseriate parts. Conversely, the rbcL phylogeny showed a higher genetic diversity than expected from morphology. The strains were separated in four different clades supported by high bootstrap values and posterior probabilities. In culture, these clades differed in several characters, such as production of a superficial hydro‐repellent layer, tendency to break into short fragments, and inducibility of zoosporulation. On the basis of the taxonomic information available in the literature, most strains could not be identified unambiguously at the species level. The rbcL phylogeny showed no correspondence with classification based on morphology and suggested that the identity of many species, in particular the type species K. flaccidum (kütz.) P.C. Silva, Mattox et W. H. Blackw., needs critical reassessment.  相似文献   

9.
Three clades of Pseudo‐nitzschia pungens, determined by the internal transcribed space (ITS) region, are distributed throughout the world. We studied 15 P. pungens clones from various geographical locations and confirmed the existence of the three clades within P. pungens, based on ITS sequencing and described the three subgroups (IIIaa, IIIab, and IIIb) of clade III. Clade III (clade IIIaa) populations were reported for the first time in Korean coastal waters and the East China Sea. In morphometric analysis, we found the ultrastructural differences in the number of fibulae, striae, and poroids that separate the three clades. We carried out physiological tests on nine clones belonging to the three clades growing under various culture conditions. In temperature tests, only clade III clones could not grow at lower temperatures (10°C and 15°C), although clade I and II clones grew well. The estimated optimal growth range of clade I clones was wider than that of clades II and III. Clade II clones were considered to be adapted to lower temperatures and clade III to higher temperatures. In salinity tests, clade II and III clones did not grow well at a salinity of 40. Clade I clones were regarded as euryhaline and clade II and III clones were stenohaline. This supports the hypothesis that P. pungens clades have different ecophysiological characteristics based on their habitats. Our data show that physiological and morphological features are correlated with genetic intraspecific differentiation in P. pungens.  相似文献   

10.
The Klebsormidiophyceae are a class of green microalgae observed globally in both freshwater and terrestrial habitats. Morphology-based classification schemes of this class have been shown to be inadequate due to the simple morphology of these algae, the tendency of morphology to vary in culture versus field conditions, and rampant morphological homoplasy. Molecular studies revealing cryptic diversity have renewed interest in this group. We sequenced the complete chloroplast genomes of a broad series of taxa spanning the known taxonomic breadth of this class. We also sequenced the chloroplast genomes of three strains of Streptofilum, a recently discovered green algal lineage with close affinity to the Klebsormidiophyceae. Our results affirm the previously hypothesized polyphyly of the genus Klebsormidium as well as the polyphyly of the nominal species in this genus, K. flaccidum. Furthermore, plastome sequences strongly support the status of Streptofilum as a distinct, early-diverging lineage of charophytic algae sister to a clade comprising Klebsormidiophyceae plus Phragmoplastophyta. We also uncovered major structural alterations in the chloroplast genomes of species in Klebsormidium that have broad implications regarding the underlying mechanisms of chloroplast genome evolution.  相似文献   

11.
Members of the cosmopolitan green algal genus Klebsormidium (Klebsormidiales, Streptophyta) are typical components of terrestrial microbiotic communities such as biological soil crusts, which have many important ecological functions. In the present study, Klebsormidium dissectum (Gay) Ettl &; Gärtner was isolated from a high alpine soil crust in the Tyrolean Alps, Austria. Physiological performance in terms of growth and photosynthesis was investigated under different controlled abiotic conditions and compared with ultrastructural changes under the treatments applied. K. dissectum showed very low light requirements as reflected in growth patterns and photosynthetic efficiency. Increasing temperatures from 5°C to 40°C led to different effects on respiratory oxygen consumption and photosynthetic oxygen evolution. While at low temperatures (5–10°C), respiration was not detectable or on a very low level, photosynthesis was relatively high, Reversely, at the highest temperature, respiration was unaffected, and photosynthesis strongly inhibited pointing to strong differences in temperature sensitivity between both physiological processes. Although photosynthetic performance of K. dissectum was strongly affected under short-term desiccation and recovered only partly after rehydration, this species was capable to survive even 3 weeks at 5% relative air humidity. K. dissectum cells have a cell width of 5.6?±?0.3 μm and a cell length of 8.4?±?2.0 μm. Desiccated cells showed a strongly reduced cell width (46% of control) and cell length (65% of control). In addition, in desiccated cells, fewer mitochondria were stained by DIOC6, and damaged plasma membranes were detected by FM 1–43 staining. High-pressure freeze fixation as well as chemical fixation allowed visualizing ultrastructural changes caused by desiccation. In such cells, the nucleus and chloroplast were still visibly intact, but the extremely thin cell walls (75–180 nm) were substantially deformed. The cytoplasm appeared electron dense and mitochondria were altered. Although K. dissectum can be characterized as euryoecious species, all ecophysiological and ultrastructural data indicate susceptibility to desiccation. However, the steadily occurring fragmentation of filaments into smaller units leads to improved self protection and thus may represent a life strategy to better survive longer periods of drought in exposed alpine soil crusts.  相似文献   

12.
13.
Twenty‐six strains morphologically identified as Cylindrospermum as well as the closely related taxon Cronbergia siamensis were examined microscopically as well as phylogenetically using sequence data for the 16S rRNA gene and the 16S‐23S internal transcribed spacer (ITS) region. Phylogenetic analysis of the 16S rRNA revealed three distinct clades. The clade we designate as Cylindrospermum sensu stricto contained all five of the foundational species, C. maius, C. stagnale, C. licheniforme, C. muscicola, and C. catenatum. In addition to these taxa, three species new to science in this clade were described: C. badium, C. moravicum, and C. pellucidum. Our evidence indicated that Cronbergia is a later synonym of Cylindrospermum. The phylogenetic position of Cylindrospermum within the Nostocaceae was not clearly resolved in our analyses. Cylindrospermum is unusual among cyanobacterial genera in that the morphological diversity appears to be more evident than sequence divergence. Taxa were clearly separable using morphology, but had very high percent similarity among ribosomal sequences. Given the high diversity we noted in this study, we conclude that there is likely much more diversity remaining to be described in this genus.  相似文献   

14.
15.
16.
The charophycean order Klebsormidiales consists of two unbranched filamentous lineages, the fresh water Entransia and the semiterrestrial Klebsormidium. Molecular data have supported the close relationship Klebsormidiales have with land plants. A monograph exists for the European species of Klebsormidium; this monograph provides a cladistic analysis of morphological characteristics for eight Klebsormidium species, but a species level molecular phylogenetic analysis has not yet been performed for the group. We have obtained 50 strains of Klebsormidium, representing 11 morphological species, both from nature and from culture collections. Phylogenetic analyses using rbcL, atpB, coxIII and nad5 gene sequence data from these strains and 40 outgroup sequences suggest that several traditional Klebsormidium species may not be monophyletic.  相似文献   

17.
Phylogenetic clades based on DNA sequences such as the chloroplast rbcL gene and the nuclear ITS region are frequently used to delimit algal species. However, these molecular markers cannot accurately delimit boundaries among some Ulva species. Although Ulva reticulata and Ulva ohnoi occasionally bloom in tropical to warm‐temperate regions and are clearly distinguishable by their reticulate or plain blade morphology, they have few or no sequence divergences in these molecular markers and form a monophyletic clade. In this study, to clarify the speciation and species delimitation in the U. reticulata‐ohnoi complex clade, reproductive relationships among several sexual strains from the Philippines and Japan including offspring that originated from the type specimen of U. ohnoi were examined by culturing and hybridization in addition to the ITS‐based analysis. As a result, both prezygotic and postzygotic reproductive isolation were revealed to occur between genetically perforated U. reticulata and imperforate U. ohnoi. They were also separated on the basis of sequence analysis of the ITS region. That strongly supports that the two taxa are independent biological species. Although no prezygotic barrier among the Philippine and Japanese strains of U. reticulata was observed, unexpectedly zoospores produced by hybrid sporophytes in some of their combinations mostly failed to develop, indicating partial formation of a postzygotic barrier despite a 0.2% divergence in the ITS sequence. These findings suggest speciation is still ongoing in U. reticulata.  相似文献   

18.
The Balkan Peninsula is a hot spot for European herpetofaunal biodiversity and endemism. The rock climbing lizards Dalmatolacerta oxycephala and Dinarolacerta mosorensis and the ground‐dwelling Dalmatian wall lizard Podarcis melisellensis are endemic to the Western Balkans, and their ranges largely overlap. Here, we present a comparative phylogeographical study of these three species in the area of their codistribution in order to determine the level of concordance in their evolutionary patterns. Phylogenetic analyses were performed based on two mitochondrial genes (cytochrome b and 16S rRNA), and a molecular clock approach was used to date the most important events in their evolutionary histories. We also tested for correlations regarding genetic differentiation among populations and their geographical distances. For all three species, a significant correlation between genetic and geographical distances was found. Within D. oxycephala, two deeply separated clades (‘island’ and ‘mainland clade’), with further subdivision of the ‘mainland clade’ into two subclades (‘south‐eastern’ and ‘north‐western’), were found. High sequence divergences were observed between these groups. From our data, the time of separation of the two main clades of D. oxycephala can be estimated at about 5 mya and at about 0.8 mya for the two subclades of the mainland clade. Within D. mosorensis, coalescence time may be dated at about 1 mya, while D. mosorensis and D. montenegrina separated around 5 mya. The results imply the existence of complex palaeo‐biogeographical and geological factors that probably influenced the observed phylogeographical patterns in these lacertid species, and point to the presence of numerous glacial/interglacial refugia. Furthermore, the observed cryptic genetic diversity within the presently monotypic species D. oxycephala prompts for a revision of its taxonomic and conservation status.  相似文献   

19.
The delimitation of the invasive moss species Campylopus introflexus from its closest relative, Campylopus pilifer, has been long debated based on morphology. Previous molecular phylogenetic reconstructions based on the nuclear ribosomal internal transcribed spacers (ITS) 1 and 2 showed that C. pilifer is split into an Old World and a New World lineage, but remained partly inconclusive concerning the relationships between these two clades and C. introflexus. Analyses of an extended ITS dataset displayed statistically supported incongruence between ITS1 and ITS2. ITS1 separates the New World clade of C. pilifer from a clade comprising C. introflexus and the Old World C. pilifer. Ancestral state reconstruction showed that this topology is morphologically supported by differences in the height of the dorsal costal lamellae in leaf cross‐section (despite some overlap). ITS2, in contrast, supports the current morphological species concept, i.e., separating C. introflexus from C. pilifer, which is morphologically supported by the orientation of the hyaline hair point at leaf apex as well as costal lamellae height. Re‐analysis of published and newly generated plastid atpB‐rbcL spacer sequences supported the three ITS lineages. Ecological niche modeling proved a useful approach and showed that all three molecular lineages occupy distinct environmental spaces that are similar, but undoubtedly not equivalent. In line with the ITS1 topology, the C. pilifer lineage from the New World occupies the most distinct environmental niche, whereas the niches of Old World C. pilifer and C. introflexus are very similar. Taking the inferences from ecological niche comparisons, phylogenetics, and morphology together, we conclude that all three molecular lineages represent different taxa that should be recognized as independent species, viz. C. introflexus, C. pilifer (Old World clade), and the reinstated C. lamellatus Mont. (New World clade).  相似文献   

20.
The subfamily Crucigenioideae was traditionally classified within the well‐characterized family Scenedesmaceae (Chlorophyceae). Several morpho‐logical revisions and questionable taxonomic changes hampered the correct classification of crucigenoid species resulting in a high number of synonymous genera. We used a molecular approach to determine the phylogenetic position of several Tetrastrum and Crucigenia species. The molecular results were correlated with morphological and ontogenetic characters. Phylogenetic analyses of the SSU rDNA gene resolved the position of Tetrastrum heteracanthum and T. staurogeniaeforme as a new lineage within the Oocystis clade of the Trebouxiophyceae. Crucigenia tetrapedia, T. triangulare, T. punctatum, and T. komarekii were shown to be closely related to Botryococcus (Trebouxiophyceae) and were transferred to Lemmer‐mannia. Crucigenia lauterbornii was not closely related to the other Crucigenia strains, but was recovered within the Chlorella clade of the Trebouxiophyceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号