首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nostoc flagelliforme is a terrestrial cyanobacterium with high economic value. Dissociated cells separated from a natural colony of N. flagelliforme were cultivated for 7 days under either phototrophic, mixotrophic or heterotrophic culture conditions. The highest biomass, 1.67 g L−1 cell concentration, was obtained under mixotrophic culture, representing 4.98 and 2.28 times the biomass obtained in phototrophic and heterotrophic cultures, respectively. The biomass in mixotrophic culture was not the sum as that in photoautotrophic and heterotrophic cultures. During the first 4 days of culture, the cell concentration in mixotrophic culture was lower than the sum of those in photoautotrophic and heterotrophic cultures. However, from the 5th day, the cell concentration in mixotrophic culture surpassed the sum of those obtained from the other two trophic modes. Although the inhibitor of photosynthetic electron transport DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] efficiently inhibited autotrophic growth of N. flagelliforme cells, under mixotrophic culture they could grow by using glucose. The addition of glucose changed the response of N.flagelliforme cells to light. The maximal photosynthetic rate, dark respiration rate and light compensation point in mixotrophic culture were higher than those in photoautotrophic cultures. These results suggest that photoautotrophic (photosynthesis) and heterotrophic (oxidative metabolism of glucose) growth interact in mixotrophic growth of N. flagelliforme cells.  相似文献   

2.
Current culture methods based on monocultures under phototrophic regimes are prone to contamination, predation, and collapse. Native cultures of multiple species are adapted to the local conditions and are more robust against contamination and predation. Growth, lipid and biomass productivity of a Louisiana native coculture of microalgae (Chlorella vulgaris) and cyanobacteria (Leptolyngbya sp.) in heterotrophic and mixotrophic regimes were investigated. Dextrose and sodium acetate at C:N ratios of 15:1 and 30:1 under heterotrophic (dark) and mixotrophic (400 μmol m?2 s?1) regimes were compared with autotrophic controls. The carbon source and C:N ratio impacted growth and biomass productivity. Mixotrophic cultures with sodium acetate (C:N 15:1) resulted in the highest mean biomass productivity (156 g m?3 d?1) and neutral lipid productivity (24.07 g m?3 d?1). The maximum net specific growth rate (U) was higher (0.97 d?1) in mixotrophic cultures with dextrose (C:N 15:1) but could not be sustained resulting in lower total biomass than in mixotrophic cultures with acetate (C:N 15:1), with a U of 0.67 d?1. The ability of the Louisiana coculture to use organic carbon for biomass and lipid production makes it a viable feedstock for biofuels and bioproducts.  相似文献   

3.
Nannochloropsis oculata CCMP 525, Dunaliella salina FACHB 435, and Chlorella sorokiniana CCTCC M209220 were compared in mixotrophic and photoautotrophic cultures in terms of growth rate, protein, and lipid content. Growth improved in glucose, and the biomass productivities of N. oculata, D. salina, and C. sorokiniana were found to be 1.4-, 2.2- and 4.2-fold that observed photoautotrophically. However, biomass and lipid production decreased at the highest glucose concentrations. Meanwhile, the content of protein and lipid were significantly augmented for mixotrophic conditions at least for some species. C. sorokiniana was found to be well suited for lipid production based on its high biomass production rate and lipid content reaching 51% during mixotrophy. Expression levels of accD (heteromeric acetyl-CoA carboxylase beta subunit), acc1 (homomeric acetyl-CoA carboxylase), rbcL (ribulose 1, 5-bisphosphate carboxylase/oxygenase large subunit) genes in C. sorokiniana were studied by real-time PCR. Increased expression levels of accD reflect the increased lipid content in stationary phase of mixotrophic growth, but expression of the acc1 gene remains low, suggesting that this gene may not be critical to lipid accumulation. Additionally, reduction of expression of the rbcL gene during mixotrophy indicated that utilization of glucose was found to reduce the role of this gene and photosynthesis.  相似文献   

4.
5.
We attempted to enhance the growth and total lipid production of three microalgal species, Isochrysis galbana LB987, Nannochloropsis oculata CCAP849/1, and Dunaliella salina, which are capable of accumulating high content of lipid in cells. Low nitrogen concentration under photoautotrophic conditions stimulated total lipid production, but a decreasing total lipid content and an increasing biomass were observed with increasing nitrogen concentration. Among the different carbon sources tested for heterotrophic cultivation, glucose improved the growth of all three strains. The optimal glucose concentration for growth of I. galbana LB987 and N. oculata CCAP849/1 was 0.02 M, and that of D. salina was 0.05 M. Enhanced growth occurred when they were cultivated under heterotrophic or mixotrophic conditions compared with photoautotrophic conditions. Meanwhile, high total lipid accumulation in cells occurred when they were cultivated under photoautotrophic or mixotrophic conditions. During mixotrophic cultivation, biomass production was not affected significantly by light intensity; however, both chlorophyll concentration and total lipid content increased dramatically with increasing light intensity up to 150 µmol/m2/s. The amount and composition ratio of saturated and unsaturated fatty acids in cells were different from each other depending on both species and light intensity. The highest accumulation of total fatty acid (C16–C18) among the three strains was found from cells of N. oculata CCAP849/1, which indicates that this species can be used as a source for production of biodiesel.  相似文献   

6.
Synechocystis sp. PCC 6803 was grown in a 2.5 l enclosed photobioreactor on medium with or without glucose. The incident light intensities ranged from 1.5 klux to 7 klux. The highest average specific growth rates of mixotrophic culture and photoautotrophic culture were, respectively, 1.3 h–1 at a light intensity of 7 klux on 3.2 g l–1 glucose and 0.3 h–1 at both light intensities of 5 klux and 7 klux. The highest cell density 2.5 g l –1 was obtained at both of light intensities 5 klux and 7 klux on 3.2 g glucose l–1. Glucose consumption decreased with decreasing light intensity. The energy yields of mixotrophic cultures were 4 to 6 times higher than that of photoautotrophic cultures. Light favored mixotrophic growth of Synechocystis sp. PCC 6803, especially at higher light intensities (5–7 klux).  相似文献   

7.
Hu H  Gao K 《Biotechnology letters》2003,25(5):421-425
A unicellular marine picoplankton, Nannochloropsis sp., was grown under CO2-enriched photoautotrophic or/and acetate-added mixotrophic conditions. Photoautotrophic conditions with enriched CO2 of 2800 l CO2 l–1 and aeration gave the highest biomass yield (634 mg dry wt l–1), the highest total lipid content (9% of dry wt), total fatty acids (64 mg g–1 dry wt), polyunsaturated fatty acids (35% total fatty acids) and eicosapentaenoic acid (EPA, 20:53) (16 mg g–1 dry wt or 25% of total fatty acids). Mixotrophic cultures gave a greater protein content but less carbohydrates. Adding sodium acetate (2 mM) decreased the amounts of the total fatty acids and EPA. Elevation of CO2 in photoautotrophic culture thus enhances growth and raises the production of EPA in Nannochloropsis sp.  相似文献   

8.
A strain of Nannochloropsis isolated originally from the East China Sea and obtained from Institute of Hydrobiology, Chinese Academy of Sciences was shown to utilize glucose or ethanol for mixotrophic and heterotrophic growth. The highest cell density, 550 mg L− 1 dry weight after culture for 8 days, was obtained during mixotrophic culture with 30 mM glucose. The organic carbon sources had no effect on the net photosynthetic rate, but enhanced the respiratory rate. The addition of an organic carbon source led to an increase in the cell lipid content and a decrease in their eicosapentaenoic acid (EPA) content. The EPA yield was 21.9 mg L− 1 using photoautotrophic culture, and 23.4 mg L− 1 and 23.0 mg L− 1, respectively, in mixotrophic cultivation with glucose or ethanol as the carbon source.  相似文献   

9.
The growth, physiology, and ultrastructure of the marine, unicellular, diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142, was examined under mixotrophic and chemoheterotrophic conditions. Several organic substrates were tested for the capacity to support heterotrophic growth. Glycerol was the only substrate capable of enhancing mixotrophic growth in the light and supporting chemoheterotrophic growth in the dark. Dextrose enhanced mixotrophic growth but could not support chemoheterotrophic growth. Chemoheterotrophic cultures in continuous darkness grew faster and to higher densities than photoautotrophic cultures, thus demonstrating the great respiratory capacity of this cyanobacterial strain. Only small differences in the pigment content and ultrastructure of the heterotrophic strains were observed in comparison to photoautotrophic control strains. The chemoheterotrophic strain grown in continuous darkness and the mixotrophic strain grown in light/dark cycles exhibited daily metabolic oscillations in N2 fixation and glycogen accumulation similar to those manifested in photoautotrophic cultures grown in light/dark cycles or continuous light. This “temporal separation” helps protect O2-sensitive N2 fixation from photosynthetic O2 evolution. The rationale for cyclic glycogen accumulation in cultures with an ample source of organic carbon substrate is unclear, but the observation of similar daily rhythmicities in cultures grown in light/dark cycles, continuous light, and continuous dark suggests an underlying circadian mechanism.  相似文献   

10.
Chlorella minutissima was co-cultured with Escherichia coli in airlift reactors under mixotrophic conditions (glucose, glycerol, and acetate substrates) to determine possible effects of bacterial contamination on algal biofuel production. It was hypothesized that E. coli would compete with C. minutissima for nutrients, displacing algal biomass. However, C. minutissima grew more rapidly and to higher densities in the presence of E. coli, suggesting a symbiotic relationship between the organisms. At an initial 1% substrate concentration, the co-culture produced 200-587% more algal biomass than the axenic C. minutissima cultures. Co-cultures grown on 1% substrate consumed 23–737% more of the available carbon substrate than the sum of substrate consumed by E. coli and C. minutissima alone. At 1% substrate, total lipid and starch productivity were elevated in co-cultures compared to axenic cultures indicating that bacterial contamination was not detrimental to the production of biofuel precursors in this specific case. Bio-fouling of the reactors observed in co-cultures and acid formation in all mixotrophic cultures, however, could present challenges for scale-up.  相似文献   

11.
The relationship between selective logging and avian frugivores feeding on Celtis gomphophylla was examined in Budongo Forest Reserve, from June to July 2005, using scan sampling. Abundance and species richness of avian frugivores were compared between two compartments (N3 and W22 last logged in 1952 and 1997 respectively). Two 1‐ha plots were established in each compartment from which two C. gomphophylla trees selected for observation. A total of 203 avian frugivores comprising 17 species, visited the eight C. gomphophylla trees. Avian frugivore abundance and richness were significantly higher in N3 than W22 (χ2 = 5.83, χ2 = 0.03, P < 0.05). Fischer's alpha diversity index also indicated a higher avian frugivore (frugivory?) in N3 than that in W22. The Sorensen's similarity index showed that species composition between the two compartments was moderately similar. The diversity of forest specialists and generalists was not significantly different in the two compartments (F = 0.3451, P = 0.082 and F = 0.368, P = 0.553). Our results stress the significance of logging intensity on avian feeding guilds and confirm that forests which have had enough recovery time are better habitats for avian frugivore assemblages.  相似文献   

12.
【目的】探讨葡萄糖作为外加碳源对热带海洋小球藻(Chloralla sp.HN08)生物质生产和脂、光合色素、碳水化合物及可溶性蛋白等细胞主要成份含量的影响。【方法】分析比较小球藻HN08在光合自养和兼养(添加10 g/L葡萄糖)2种营养方式下的生长速率、细胞密度、光合放氧速率、油脂相对含量,以及可溶性总糖、淀粉和可溶性蛋白的含量。【结果】结果表明,在光照条件下葡萄糖(10 g/L)能促进小球藻(Chloralla sp.HN08)生长,提高细胞终密度,而异养条件下藻细胞逐渐衰亡。兼养条件下,细胞相对生长速率及细胞终密度分别是自养条件下的6.8倍和1.3倍。兼养藻细胞中可溶性糖、淀粉、油脂含量显著高于(P0.05)光合自养细胞,然而可溶性蛋白质和光合色素含量显著低于(P0.05)光合自养细胞。添加葡萄糖的小球藻液的光饱和点和呼吸速率均高于光自养条件下的细胞,但2种培养条件下藻液的净光合速率无显著差异(P0.05)。【结论】光照条件下,添加葡萄糖可显著提高小球藻HN08相对生长速率和细胞终密度,促进油脂与淀粉的积累。  相似文献   

13.
Prorocentrum minimum is a neritic dinoflagellate that forms seasonal blooms and red tides in estuarine ecosystems. While known to be mixotrophic, previous attempts to document feeding on algal prey have yielded low grazing rates. In this study, growth and ingestion rates of P. minimum were measured as a function of nitrogen (‐N) and phosphorous (‐P) starvation. A P. minimum isolate from Chesapeake Bay was found to ingest cryptophyte prey when in stationary phase and when starved of N or P. Prorocentrum minimum ingested two strains of Teleaulax amphioxeia at higher rates than six other cryptophyte species. In all cases ‐P treatments resulted in the highest grazing. Ingestion rates of ‐P cells on T. amphioxeia saturated at ~5 prey per predator per day, while ingestion by ‐N cells saturated at 1 prey per predator per day. In the presence of prey, ‐P treated cells reached a maximum mixotrophic growth rate (μmax) of 0.5 d?1, while ‐N cells had a μmax of 0.18 d?1. Calculations of ingested C, N, and P due to feeding on T. amphioxeia revealed that phagotrophy can be an important source of all three elements. While P. minimum is a proficient phototroph, inducible phagotrophy is an important nutritional source for this dinoflagellate.  相似文献   

14.
The roles of temperature and light on grazing and photosynthesis were examined for Dinobryon sociale, a common freshwater mixotrophic alga. Photosynthetic rate was determined for D. sociale adapted to temperatures of 8, 12, 16, and 20°C under photosynthetically active radiation light irradiances of 25, 66, and 130 μmol photons · m?2 · s?1, with concurrent measurement of bacterial ingestion at all temperatures under medium and high light (66 and 130 μmol photons · m?2 · s?1). Rates of ingestion and photosynthesis increased with temperature to a maximum at 16°C under the two higher light regimes, and declined at 20°C. Although both light and temperature had a marked effect on photosynthesis, there was no significant difference in bacterivory at medium and high irradiances at any given temperature. At the lowest light condition (25 μmol photons · m?2 · s?1), photosynthesis remained low and relatively stable at all temperatures. D. sociale acquired the majority of carbon from photosynthesis, although the low photosynthetic rate without a concurrent decline in feeding rate at 8°C suggested 20%–30% of the carbon budget could be attributed to bacterivory at low temperatures. Grazing experiments in nutrient‐modified media revealed that this mixotroph had increased ingestion rates when either dissolved nitrogen or phosphorus was decreased. This work increases our understanding of environmental effects on mixotrophic nutrition. Although the influence of abiotic factors on phagotrophy and phototrophy in pure heterotrophs and phototrophs has been well studied, much less is known for mixotrophic organisms.  相似文献   

15.
16.
Takayama helix is a mixotrophic dinoflagellate that can feed on diverse algal prey. We explored the effects of light intensity and water temperature, two important physical factors, on its autotrophic and mixotrophic growth rates when fed on Alexandrium minutum CCMP1888. Both the autotrophic and mixotrophic growth rates and ingestion rates of T. helix on A. minutum were significantly affected by photon flux density. Positive growth rates of T. helix at 6–58 μmol photons · m?2 · s?1 were observed in both the autotrophic (maximum rate = 0.2 · d?1) and mixotrophic modes (0.4 · d?1). Of course, it did not grow both autotrophically and mixotrophically in complete darkness. At ≥247 μmol photons · m?2 · s?1, the autotrophic growth rates were negative (i.e., photoinhibition), but mixotrophy turned these negative rates to positive. Both autotrophic and mixotrophic growth and ingestion rates were significantly affected by water temperature. Under both autotrophic and mixotrophic conditions, it grew at 15–28°C, but not at ≤10 or 30°C. Therefore, both light intensity and temperature are critical factors affecting the survival and growth of T. helix.  相似文献   

17.
Microalgae are among the most promising of non‐food based biomass fuel feedstock alternatives. Algal biofuels production is challenged by limited oil content, growth rate, and economical cultivation. To develop the optimum cultivation conditions for increasing biofuels feedstock production, the effect of light source, light intensity, photoperiod, and nitrogen starvation on the growth rate, cell density, and lipid content of Chlorella minutissima were studied. The fatty acid content and composition of Chlorella minutissima were also investigated under the above conditions. Fluorescent lights were more effective than red or white light‐emitting diodes for algal growth. Increasing light intensity resulted in more rapid algal growth, while increasing the period of light also significantly increased biomass productivity. Our results showed that the lipid and triacylglycerol content were increased under N starvation conditions. Thus, a two‐phase strategy with an initial nutrient‐sufficient reactor followed by a nutrient deprivation strategy could likely balance the desire for rapid and high biomass generation (124 mg/L) with a high oil content (50%) of Chlorella minutissima to maximize the total amount of oil produced for biodiesel production. Moreover, methyl palmitate (C16:0), methyl oleate (C18:1), methyl linoleate (C18:2), and methyl linolenate (C18:3) are the major components of Chlorella minutissima derived FAME, and choice of light source, intensity, and N starvation impacted the FAME composition of Chlorella minutissima. The optimized cultivation conditions resulted in higher growth rate, cell density, and oil content, making Chlorella minutissima a potentially suitable organism for biodiesel feedstock production. Biotechnol. Bioeng. 2011;108: 2280–2287. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
Plant essential oils are potential sources of insecticidal compounds, but have rarely been explored for their effect on termites. In the present study, we assessed the chemical composition of essential oils of Lippia sidoides Cham. (pepper‐rosmarin; Verbenaceae) and Pogostemon cablin (Blanco) Benth. (patchouli; Lamiacaeae) and evaluated their toxicity, behavioral impairment, and repellence to termite species of the genera Amitermes and Microcerotermes (Isoptera: Termitidae: Termitinae). The main components of essential oils of L. sidoides and P. cablin were thymol (44.6%) and patchouli alcohol (36.6%), respectively. The essential oil of P. cablin was most potent against Amitermes cf. amifer Silvestri and had the lowest LD50 (0.63 μg mg?1). There was no difference in toxicity for Microcerotermes indistinctus Mathews between the essential oils of L. sidoides (LD50 = 1.49 μg mg?1) and P. cablin (LD50 = 1.67 μg mg?1). Pogostemon cablin essential oil was the most toxic to M. indistinctus (LC50 = 0.32 μl ml?1) and A. cf. amifer (LC50 = 0.29 μl ml?1). The essential oils analyzed exhibited high toxicity and repellence to the termites, in addition to reducing behavioral interactions among individuals, thus constituting potential termiticides.  相似文献   

19.
Dissolved inorganic phosphorus (DIP ) is an essential macronutrient for maintaining metabolism and growth in autotrophs. Little is known about DIP uptake kinetics and internal P‐storage capacity in seaweeds, such as Ulva lactuca (Chlorophyta). Ulva lactuca is a promising candidate for biofiltration purposes and mass commercial cultivation. We exposed U. lactuca to a wide range of DIP concentrations (1–50 μmol · L?1) and a nonlimiting concentration of dissolved inorganic nitrogen (DIN ; 5,000 μmol · L?1) under fully controlled laboratory conditions in a “pulse‐and‐chase” assay over 10 d. Uptake kinetics were standardized per surface area of U. lactuca fronds. Two phases of responses to DIP ‐pulses were measured: (i) a surge uptake (VS ) of 0.67 ± 0.10 μmol · cm?2 · d?1 and (ii) a steady state uptake (VM ) of 0.07 ± 0.03 μmol · cm?2 · d?1. Mean internal storage capacity (ISCP ) of 0.73 ± 0.13 μmol · cm?2 was calculated for DIP . DIP uptake did not affect DIN uptake. Parameters of DIN uptake were also calculated: VS  = 12.54 ± 1.90 μmol · cm?2 · d?1, VM  = 2.26 ± 0.86 μmol · cm?2 · d?1, and ISCN  = 22.90 ± 6.99 μmol · cm?2. Combining ISC and VM values of P and N, nutrient storage capacity of U. lactuca was estimated to be sufficient for ~10 d. Both P and N storage capacities were filled within 2 d when exposed to saturating nutrient concentrations, and uptake rates declined thereafter at 90% for DIP and at 80% for DIN . Our results contribute to understanding the ecological aspects of nutrient uptake kinetics in U. lactuca and quantitatively evaluating its potential for bioremediation and/or biomass production for food, feed, and energy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号