首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G. D. Cook 《Austral ecology》2001,26(6):630-636
The ratios of stable nitrogen isotopes expressed as δ15N values can indicate the openness of nitrogen cycles in ecosystems. Southwards through the Northern Territory, values of foliar δ15N in savanna trees increase as mean annual rainfall decreases from approximately 1800 mm to approximately 750 mm, with foliar δ15N thereafter decreasing toward arid central Australia. Recent literature argues that this pattern is caused by higher grazing intensity in semi‐arid savannas, but counter views have attributed the pattern more directly to variations in aridity. In this paper, grazed and ungrazed sites in a semi‐arid savanna are compared, and it is shown that grazing has a relatively small effect on the positive foliar δ15N values of grasses, but no effect on δ15N values of trees. This gives little support to the argument that variations in grazing pressure at the scale of hundreds of kilometres could result in detectable differences in the foliar δ15N values of trees. I then compare the semi‐arid savannas with mesic savannas, where fires are frequent, and with mesic rainforests, which are rarely burnt. Greater foliar δ15N values in rainforest and fire‐excluded mesic savannas than in frequently burnt savannas suggests that fire regimes affect foliar δ15N. The previously observed pattern in δ15N values along the rainfall gradient in the Northern Territory is consistent with trends in fire frequency and possible direct effects of fire, but further work is required to determine the relative impacts of aridity and fire. Within a particular rainfall regime, foliar δ15N values may indicate historical fire frequencies.  相似文献   

2.
1. Species diversities of some insect lineages have been attributed to differentiation of feeding habits among species. Our objective was to determine variation in diet composition among harpaline ground beetle species occurring in a riverside grassland. 2. We examined the diet compositions of 14 species from six genera in the spring and 10 species from two genera in the autumn. We performed measurements of nitrogen and carbon stable isotope ratios in consumers and in their potential food items, and estimated relative contributions of different food items with two mixing models, IsoSource and MixSIR. 3. IsoSource and MixSIR software gave similar results, but IsoSource tended to calculate higher contributions of principal food items and smaller percentile ranges than MixSIR. Among harparine beetle species, there were diverse food utilisation patterns among four food categories (detritivorous invertebrates, herbivorous invertebrates, C3 plants, and C4 plants). Detritivores comprised the main diets of abundant harpaline species in the spring, whereas abundant harpaline species in the autumn were primarily herbivores feeding on C4 plants, or omnivores feeding on herbivorous invertebrates and C3 plants. Seasonal changes in food use were related to seasonal changes in the abundance of each food resource. 4. Mixing model analysis of stable isotope ratios is a convenient and effective method for roughly estimating diets of many species with diverse food habits (such as ground beetles). This method can contribute to determining the trophic relationships of related insects in one ecosystem.  相似文献   

3.
Carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope ratios were longitudinally measured in fingernail and hair samples from mother-infant pairs where infants were exclusively breastfed (n = 5), breast- and formula-fed (n = 2), or exclusively formula-fed (n = 1) from birth. All exclusively breastfed infants had a dual enrichment in carbon ( approximately 1 per thousand) and nitrogen ( approximately 2-3 per thousand) when compared to maternal values. In contrast, breast- and formula-fed subjects had reduced enrichments compared to exclusively breastfed subjects, and the exclusively formula-fed infant showed no increase in delta(13)C or delta(15)N values. This finding of a carbon trophic level effect in breastfeeding infants suggests that (13)C-enrichments of approximately 1 per thousand in archaeological populations are not necessarily the result of the consumption of C(4)-based weaning foods such as maize or millet. During the weaning process, the delta(13)C results for breastfed infants declined to maternal levels more rapidly than the delta(15)N results. This suggests that delta(13)C values have the potential to track the introduction of solid foods into the diet, whereas delta(15)N values monitor the length of time of breast milk consumption. These findings can be used to refine the isotopic analysis of breastfeeding and weaning patterns in past and modern populations.  相似文献   

4.
Although most carabids are primarily carnivorous, some carabid species are omnivorous, with mainly granivorous feeding habits during the larval and/or adult stages (granivorous carabids). This feeding habit has been established based on laboratory and field experiments; however, our knowledge of the feeding ecology of these beetles in the field is limited owing to the lack of an appropriate methodology. In this study, we tested the utility of stable isotope analysis in investigations of the feeding ecology of granivorous carabids in the field, using two closely related syntopic species, Amara chalcites and Amara congrua. We addressed two issues concerning the feeding ecology of granivorous carabids: food niche differentiation between related syntopic species during the larval stage and the effect on adult body size of supplementing seeds with an animal diet during the larval stage. To investigate larval feeding habits, we analysed newly emerged adults, most somatic tissues of which are considered of larval origin. In the two populations examined, both δ15N and δ13C were significantly higher in A. chalcites than A. congrua, suggesting that the two species differentiate food niches, with A. chalcites larvae being more carnivorous than A. congrua larvae. The two isotope ratios of A. chalcites samples from one locality were positively correlated with body size, suggesting that more carnivorous larvae become larger adults. However, this relationship was not detected in other species/locality groups. Thus, our results were inconclusive on the issue of diet supplementation. Nevertheless, overall, these results are comparable with those of previous laboratory‐rearing experiments and demonstrate the potential utility of stable isotope analysis in field studies on the feeding ecology of granivorous carabids.  相似文献   

5.
This study aimed to estimate trophic discrimination factors (TDFs) and metabolic turnover rates of nitrogen and carbon stable isotopes in blood and muscle of the smallnose fanskate Sympterygia bonapartii by feeding six adult individuals, maintained in captivity, with a constant diet for 365 days. TDFs were estimated as the difference between δ13C or δ15N values of the food and the tissues of S. bonapartii after they had reached equilibrium with their diet. The duration of the experiment was enough to reach the equilibrium condition in blood for both elements (estimated time to reach 95% of turnover: C t95%blood = 150 days, N t95%blood = 290 days), whilst turnover rates could not be estimated for muscle because of variation among samples. Estimates of Δ13C and Δ15N values in blood and muscle using all individuals were Δ13Cblood = 1·7‰, Δ13Cmuscle = 1·3‰, Δ15Nblood = 2·5‰ and Δ15Nmuscle = 1·5‰, but there was evidence of differences of c.0·4‰ in the Δ13C values between sexes. The present values for TDFs and turnover rates constitute the first evidence for dietary switching in batoids based on long‐term controlled feeding experiments. Overall, the results showed that S. bonapartii has relatively low turnover rates and isotopic measurements would not track seasonal movements adequately. The estimated Δ13C values in S. bonapartii blood and muscle were similar to previous estimations for elasmobranchs and to generally accepted values in bony fishes (Δ13C = 1·5‰). For Δ15N, the results were similar to published reports for blood but smaller than reports for muscle and notably smaller than the typical values used to estimate trophic position (Δ15N c. 3·4‰). Thus, trophic position estimations for elasmobranchs based on typical Δ15N values could lead to underestimates of actual trophic positions. Finally, the evidence of differences in TDFs between sexes reveals a need for more targeted research.  相似文献   

6.
The differential discrimination of nitrogen isotopes (15N/14N) within amino acids in consumers and their diets has been routinely used to estimate organismal tropic position (TP). Analogous isotopic discrimination can occur within plants, particularly in organs lacking chloroplasts. Such discrimination likely arises from the catabolic deamination of amino acids, resulting in a numerical elevation of estimated TP, within newly synthesized biomass. To investigate this phenomenon, we examined the 15N/14N of amino acids (δ15NAA) in spring leaves and flowers from eight deciduous and two annual plants. These plants were classified on the basis of their time of bloom, plants that bloomed when their leaves were absent (Type I) versus plants that bloomed while leaves were already present (Type II). Based on the δ15NAA values from leaves, both plant types occupied comparable and ecologically realistic mean TPs (=1.0 ± 0.1, mean ± 1σ). However, the estimated TPs of flowers varied significantly (Type I: 2.2 ± 0.2; Type II: 1.0 ± 0.1). We hypothesize that these results can be interpreted by the following sequence of events: (1) Type I floral biomass is synthesized in absence of active photosynthesis; (2) the catabolic deamination of amino acids in particular, leaves behind 15N in the residual pool of amino acids; and (3) the incorporation of these 15N‐enriched amino acids within the biomass of Type I flowers results in the numerical elevation of the TPs. In contrast, the actively photosynthesizing Type II leaves energetically sustain the synthesis of Type II flower biomass, precluding any reliance on catabolic deamination of amino acids. Amino acids within Type II flowers are therefore isotopically comparable to the Type II leaves. These findings demonstrate the idiosyncratic nature of the δ15NAA values within autotrophic organs and have implications for interpreting trophic hierarchies using primary producers and their consumers.  相似文献   

7.
Abstract 1. Termites (Isoptera) in tropical savannas are known as ecosystem engineers, affecting the spatial and temporal distribution of water, carbon, cations, and nutrients through their mound structures. Their mounds, however, also offer habitation to diverse taxa and feeding guilds of other invertebrates; a keystone role that has not been properly quantified. 2. The aim of this study was to explore the ecosystem role of termitaria in determining invertebrate diversity and their potential trophic interactions. We used stable isotopes to distinguish termite‐feeding invertebrates from invertebrates merely living in termite mounds under field conditions. 3. The results suggest that inquiline spiders (Arachnida) do not feed on termites directly, but on other invertebrates within the termitaria that are termitophagous, elevating the spiders three trophic levels higher than the termites. 4. This study is the first to demonstrate food web interactions among inquiline invertebrates with a stable isotope approach. It provides evidence that termites play a keystone role in the system by providing habitat for various, trophically interacting invertebrates. These results illustrate a rather unexplored ecosystem property of savanna termites.  相似文献   

8.
A combination of dietary guild analysis and nitrogen (δ15N) and carbon (δ13C) stable‐isotope analysis was used to assess the trophic structure of the fish community in Rhode Island and Block Island Sounds, an area off southern New England identified for offshore wind energy development. In the autumn of 2009, 2010 and 2011, stomach and tissue samples were taken from 20 fish and invertebrate species for analysis of diet composition and δ15N and δ13C signatures. The food chain in Rhode Island and Block Island Sounds comprises approximately four trophic levels within which the fish community is divided into distinct dietary guilds, including planktivores, benthivores, crustacivores and piscivores. Within these guilds, inter‐species isotopic and dietary overlap is high, suggesting that resource partitioning or competitive interactions play a major role in structuring the fish community. Carbon isotopes indicate that most fishes are supported by pelagic phytoplankton, although there is evidence that benthic production also plays a role, particularly for obligate benthivores such as skates Leucoraja spp. This type of analysis is useful for developing an ecosystem‐based approach to management, as it identifies species that act as direct links to basal resources as well as species groups that share trophic roles.  相似文献   

9.
1. The energetic hypothesis proposes that the vertical structure of food webs should increase in height with increasing system productivity. I measured the trophic positions and extent of trophic separation between the invertebrate planktivores Mysis relicta and Chaoborus spp. and their putative zooplankton prey along a gradient of lake productivity with the use of stable nitrogen isotopes. 2. In lakes of low productivity, these planktivores were found to be herbivorous, becoming omnivorous at intermediate lake productivities, and only able to be truly zooplanktivorous as lakes approached mesotrophy. A subsequent secondary analysis of literature data revealed that the strength of top‐down trophic cascades among these organisms increased with lake productivity as reflected by relationships between the abundance of planktivores and that of phytoplankton. 3. Increased omnivory under conditions of low productivity, effectively shortening the vertical structure of food webs as predicted by the energetic hypothesis, may produce increased community stability.  相似文献   

10.
Stable isotope natural abundance measurements integrate across several biogeochemical processes in ecosystem N and C dynamics. Here, we report trends in natural isotope abundance (δ13C and δ15N in plant and soil) along a climosequence of 33 Nothofagus forest stands located within Patagonia, Southern Argentina. We measured 28 different abiotic variables (both climatic variables and soil properties) to characterize environmental conditions at each of the 33 sites. Foliar δ13C values ranged from ?35.4‰ to ?27.7‰, and correlated positively with foliar δ15N values, ranging from ?3.7‰ to 5.2‰. Soil δ13C and δ15N values reflected the isotopic trends of the foliar tissues and ranged from ?29.8‰ to ?25.3‰, and ?4.8‰ to 6.4‰, respectively, with no significant differences between Nothofagus species (Nothofagus pumilio, Nothofagus antarctica, Nothofagus betuloides). Principal component analysis and multiple regressions suggested that mainly water availability variables (mean annual precipitation), but not soil properties, explained between 42% and 79% of the variations in foliar and soil δ13C and δ15N natural abundance, which declined with increased moisture supply. We conclude that a decline in water use efficiency at wetter sites promotes both the depletion of heavy C and N isotopes in soil and plant biomass. Soil δ13C values were higher than those of the plant tissues and this difference increased as annual precipitation increased. No such differences were apparent when δ15N values in soil and plant were compared, which indicates that climatic differences contributed more to the overall C balance than to the overall N balance in these forest ecosystems.  相似文献   

11.
12.
During the last century, the global biogeochemical cycles of carbon (C) and nitrogen (N) have been drastically altered by human activities. A century of land‐clearing and biomass burning, followed by fossil fuel combustion have increased the concentration of atmospheric CO2 by approximately 20%, and since the mid‐1900s, the use of agricultural fertilizers has been the primary driver of an approximate 90% increase in bioavailable N. Geochemical records obtained through stable isotope analysis of terrestrial and marine biota effectively illustrate rising anthropogenic C inputs. However, there are fewer records of anthropogenic N, despite the enormous magnitude of change and the known negative effects of N on ecosystem health. We used stable isotope values from independent octocorals (gorgonians) sampled across the Western Atlantic over the last 143 years to document human perturbations of the marine C and N pools. Here, we demonstrate that in sea plumes δ13C values and in both sea plumes and sea fans δ15N values declined significantly from 1862 to 2005. Sea plume δ 13C values were negatively correlated with increasing atmospheric CO2 concentrations and corroborate known rates of change resulting from global fossil fuel combustion, known as the Suess effect. We suggest that widespread input of agricultural fertilizers to near‐shore coastal waters is the dominant driver for the decreasing δ 15N trend, though multiple anthropogenic sources are likely affecting this trend. Given the interest in using δ 15N as an indicator for N pollution in aquatic systems, we highlight the risk of underestimating contributions of pollutants as a result of source mixing as demonstrated by a simple isotope‐mixing model. We conclude that signals of major human‐induced perturbations of the C and N pools are detectable in specimens collected over wide geographic scales, and that archived materials are invaluable for establishing baselines against which we can assess environmental change.  相似文献   

13.
14.
  • The fast growth of mulberry depends on high water consumption, but considerable variations in drought tolerance exist across different cultivars. Physiological and anatomical mechanisms are important to plant survival under drought. However, few research efforts have been made to reveal the relationships of these two aspects in relation to drought tolerance.
  • In this study, growth rates, leaf functional physiology and anatomical characteristics of leaf and xylem of 1‐year‐old saplings of seven mulberry cultivars at a common garden were compared. Their relationships were also explored.
  • Growth, leaf physiology and anatomy were significantly different among the tested cultivars. Foliar stable carbon isotope composition (δ13C) was negatively correlated with growth rates, and closely related to several leaf and xylem anatomical traits. Particularly, leaf thickness, predicted hydraulic conductivity and vessel element length jointly contributed 77% of the variability in δ13C. Cultivar Wupu had small stomata, intermediate leaf thickness, the smallest hydraulically weighted vessel diameter and highest vessel number, and higher δ13C; Yunguo1 had high abaxial stomatal density, low specific leaf area, moderate hydraulic conductivity and δ13C; these are beneficial features to reduce leaf water loss and drought‐induced xylem embolism in arid areas. Cultivar Liaolu11 had contrasting physiological and anatomical traits compared with the previous two cultivars, suggesting that it might be sensitive to drought.
  • Our findings indicate that growth and δ13C are closely associated with both leaf and xylem anatomical characteristics in mulberry, which provides fundamental information to assist evaluation of drought tolerance in mulberry cultivars and in other woody trees.
  相似文献   

15.
This study examines the role of tree canopies in processing atmospheric nitrogen (Ndep) for four forests in the United Kingdom subjected to different Ndep: Scots pine and beech stands under high Ndep (HN, 13–19 kg N ha?1 yr?1), compared to Scots pine and beech stands under low Ndep (LN, 9 kg N ha?1 yr?1). Changes of NO3‐N and NH4‐N concentrations in rainfall (RF) and throughfall (TF) together with a quadruple isotope approach, which combines δ18O, Δ17O and δ15N in NO3? and δ15N in NH4+, were used to assess N transformations by the canopies. Generally, HN sites showed higher NH4‐N and NO3‐N concentrations in RF compared to the LN sites. Similar values of δ15N‐NO3? and δ18O in RF suggested similar source of atmospheric NO3? (i.e. local traffic), while more positive values for δ15N‐NH4+ at HN compared to LN likely reflected the contribution of dry NHx deposition from intensive local farming. The isotopic signatures of the N‐forms changed after interacting with tree canopies. Indeed, 15N‐enriched NH4+ in TF compared to RF at all sites suggested that canopies played an important role in buffering dry Ndep also at the low Ndep site. Using two independent methods, based on δ18O and Δ17O, we quantified for the first time the proportion of NO3? in TF, which derived from nitrification occurring in tree canopies at the HN site. Specifically, for Scots pine, all the considered isotope approaches detected biological nitrification. By contrast for the beech, only using the mixing model with Δ17O, we were able to depict the occurrence of nitrification within canopies. Our study suggests that tree canopies play an active role in the N cycling within forest ecosystems. Processing of Ndep within canopies should not be neglected and needs further exploration, with the combination of multiple isotope tracers, with particular reference to Δ17O.  相似文献   

16.
Understanding the ecological patterns of invasive species and their habitats require an understanding of the species’ foraging ecology. Stable carbon (δ13C) and nitrogen (δ15N) isotope values provide useful information into the study of animal ecology and evolution, since the isotope ratios of consumers reflect consumer's dietary patterns. Nevertheless, the lack of species‐ and element‐specific laboratory‐derived turnover rates could limit their application. Using a laboratory‐based dual stable isotope tracer approach (Na15NO3 and NaH13CO3), we evaluated the δ15N and δ13C isotope turnover rates in full‐grown adult invasive Limnomysis benedeni from Lake Constance. We provide δ15N and δ13C turnover rates based on nonlinear least‐squares regression and posterior linear regression models. Model precisions and fit were evaluated using Akaike's information criterion. Within a couple of days, the δ15N and δ13C of mysids began to change. Nevertheless, after about 14 days, L. benedeni did not reach equilibrium with their new isotope values. Since the experiment was conducted on adult subjects, it is evident that turnover was mainly influenced by metabolism (in contrast to growth). Unlike traditional dietary shifts, our laboratory‐based dual stable isotope tracer approach does not shift the experimental organisms into a new diet and avoids dietary effects on isotope values. Results confirm the application of isotopic tracers to label mysid subpopulations and could be used to reflect assimilation and turnover from the labeled dietary sources. Field‐based stable isotope studies often use isotopic mixing models commonly assuming diet‐tissue steady state. Unfortunately, in cases where the isotopic composition of the animal is not in equilibrium with its diet, this can lead to highly misleading conclusions. Thus, our laboratory‐based isotopic incorporation rates assist interpretation of the isotopic values from the field and provide a foundation for future research into using isotopic tracers to investigate invasion ecology.  相似文献   

17.
Increasing nitrogen (N) deposition in subtropical forests in south China causes N saturation, associated with significant nitrate (NO3?) leaching. Strong N attenuation may occur in groundwater discharge zones hydrologically connected to well‐drained hillslopes, as has been shown for the subtropical headwater catchment “TieShanPing”, where dual NO3? isotopes indicated that groundwater discharge zones act as an important N sink and hotspot for denitrification. Here, we present a regional study reporting inorganic N fluxes over two years together with dual NO3? isotope signatures obtained in two summer campaigns from seven forested catchments in China, representing a gradient in climate and atmospheric N input. In all catchments, fluxes of dissolved inorganic N indicated efficient conversion of NH4+ to NO3? on well‐drained hillslopes, and subsequent interflow of NO3? over the argic B‐horizons to groundwater discharge zones. Depletion of 15N‐ and 18O–NO3? on hillslopes suggested nitrification as the main source of NO3?. In all catchments, except one of the northern sites, which had low N deposition rates, NO3? attenuation by denitrification occurred in groundwater discharge zones, as indicated by simultaneous 15N and 18O enrichment in residual NO3?. By contrast to the southern sites, the northern catchments lack continuous and well‐developed groundwater discharge zones, explaining less efficient N removal. Using a model based on 15NO3? signatures, we estimated denitrification fluxes from 2.4 to 21.7 kg N ha?1 year?1 for the southern sites, accounting for more than half of the observed N removal. Across the southern catchments, estimated denitrification scaled proportionally with N deposition. Together, this indicates that N removal by denitrification is an important component of the N budget of southern Chinese forests and that natural NO3? attenuation may increase with increasing N input, thus partly counteracting further aggravation of N contamination of surface waters in the region.  相似文献   

18.
  1. Stable isotopes represent a unique approach to provide insights into the ecology of organisms. δ13C and δ15N have specifically been used to obtain information on the trophic ecology and food‐web interactions. Trophic discrimination factors (TDF, Δ13C and Δ15N) describe the isotopic fractionation occurring from diet to consumer tissue, and these factors are critical for obtaining precise estimates within any application of δ13C and δ15N values. It is widely acknowledged that metabolism influences TDF, being responsible for different TDF between tissues of variable metabolic activity (e.g., liver vs. muscle tissue) or species body size (small vs. large). However, the connection between the variation of metabolism occurring within a single species during its ontogeny and TDF has rarely been considered.
  2. Here, we conducted a 9‐month feeding experiment to report Δ13C and Δ15N of muscle and liver tissues for several weight classes of Eurasian perch (Perca fluviatilis), a widespread teleost often studied using stable isotopes, but without established TDF for feeding on a natural diet. In addition, we assessed the relationship between the standard metabolic rate (SMR) and TDF by measuring the oxygen consumption of the individuals.
  3. Our results showed a significant negative relationship of SMR with Δ13C, and a significant positive relationship of SMR with Δ15N of muscle tissue, but not with TDF of liver tissue. SMR varies inversely with size, which translated into a significantly different TDF of muscle tissue between size classes.
  4. In summary, our results emphasize the role of metabolism in shaping‐specific TDF (i.e., Δ13C and Δ15N of muscle tissue) and especially highlight the substantial differences between individuals of different ontogenetic stages within a species. Our findings thus have direct implications for the use of stable isotope data and the applications of stable isotopes in food‐web studies.
  相似文献   

19.
Aim We sought to quantify geographical variation in the stable isotope values of mouse lemurs (Microcebus) and to determine whether this variation reflects trophic differences among populations or baseline isotopic differences among habitats. If the latter pattern is demonstrated, then Microcebus can become a proxy for tracking baseline habitat isotopic variability. Establishing such a baseline is crucial for identifying niche partitioning in modern and ancient communities. Location We studied five species of Microcebus from eight distinct habitats across Madagascar. Methods We compared isotopic variation in C3 plants and Microcebus fur within and among localities. We predicted that carbon and nitrogen isotope values of Microcebus should: (1) vary as a function of abiotic variables such as rainfall and temperature, and (2) covary with isotopic values in plants. We checked for trophic differences among Microcebus populations by comparing the average difference between mouse lemur and plant isotope values for each locality. We then used multiple regression models to explain spatial isotope variation in mouse lemurs, testing a suite of explanatory abiotic variables. Results We found substantial isotopic variation geographically. Ranges for mean isotope values were similar for both Microcebus and plants across localities (carbon 3.5–4.0‰; nitrogen 10.5–11.0‰). Mean mouse lemur and plant isotope values were lowest in cool, moist localities and highest in hot, dry localities. Rainfall explained 58% of the variation in Microcebus carbon isotope values, and mean plant nitrogen isotope values explained 99.7% of the variation in Microcebus nitrogen isotope values. Average differences between mouse lemur and plant isotope values (carbon 5.0‰; nitrogen 5.9‰) were similar across localities. Main conclusions Isotopic data suggest that trophic differences among Microcebus populations were small. Carbon isotope values in mouse lemurs were negatively correlated with rainfall. Nitrogen isotope values in Microcebus and plants covaried. Such findings suggest that nitrogen isotope values for Microcebus are a particularly good proxy for tracking baseline isotopic differences among habitats. Our results will facilitate future comparative research on modern mouse lemur communities, and ecological interpretations of extinct Holocene communities.  相似文献   

20.
Synopsis We measured stable isotope ratios (δ13C and δ15N) of invertebrates, Atlantic salmon, Salmo salar, and brook trout, Salvelinus fontinalis, in three distinct freshwater environments (headwater tributary, ultra-oligotrophic lake, and main-stem river) in the Western Brook system, Newfoundland, Canada. Large differences in the stable carbon signatures of invertebrates allowed the identification of organic matter assimilation from each environment by resident parr and migrating smolts. Brook trout captured in the headwater tributary in June had a carbon signature characteristic of the tributary, while those collected in August had enriched 13C (maximum = −15.6‰) and 15N (maximum = 12.8‰) values. These enriched carbon and nitrogen signatures were indicative of foraging at sea. There was a low correlation between δ13C and δ15N (r2 = 0.198) for individual fish that was likely due to the confounding influence of trout feeding in the lake and the lower main-stem of the river, where δ13C of food sources was high but δ15N was low. Smolts emigrating from Western Brook Pond where they had been foraging (based on lacustrine carbon signatures) were significantly larger than those emigrating from a nursery brook and the main river in the same basin, despite having the same median age. These results suggest better growth opportunities in the lake environment. Trout fork length was positively correlated with δ13C and δ15N, demonstrating that larger individuals had been feeding outside the brook. These results support previous studies that found increased growth potential for salmonids in lacustrine and marine environments, and further, indicate possible adaptive advantages for salmonid movement away from natal brooks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号