首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Coral polyps have a fluid-filled internal compartment, the gastrovascular cavity (GVC). Respiration and photosynthesis cause large daily excursions in GVC oxygen concentration (O2) and pH, but few studies have examined how this correlates with calcification rates. We hypothesized that GVC chemistry can mediate and ameliorate the effects of decreasing seawater pH (pHSW) on coral calcification. Microelectrodes were used to monitor O2 and pH within the GVC of Montastraea cavernosa and Duncanopsammia axifuga (pH only) in both the light and the dark, and three pHSW levels (8.2, 7.9, and 7.6). At pHSW 8.2, GVC O2 ranged from ca. 0 to over 400% saturation in the dark and light, respectively, with transitions from low to high (and vice versa) within minutes of turning the light on or off. For all three pHSW treatments and both species, pHGVC was always significantly above and below pHSW in the light and dark, respectively. For M. cavernosa in the light, pHGVC reached levels of pH 8.4–8.7 with no difference among pHSW treatments tested; in the dark, pHGVC dropped below pHSW and even below pH 7.0 in some trials at pHSW 7.6. For D. axifuga in both the light and the dark, pHGVC decreased linearly as pHSW decreased. Calcification rates were measured in the light concurrent with measurements of GVC O2 and pHGVC. For both species, calcification rates were similar at pHSW 8.2 and 7.9 but were significantly lower at pHSW 7.6. Thus, for both species, calcification was protected from seawater acidification by intrinsic coral physiology at pHSW 7.9 but not 7.6. Calcification was not correlated with pHGVC for M. cavernosa but was for D. axifuga. These results highlight the diverse responses of corals to changes in pHSW, their varying abilities to control pHGVC, and consequently their susceptibility to ocean acidification.

  相似文献   

2.
Rising global CO2 is changing the carbonate chemistry of seawater, which is expected to influence the way phytoplankton acquire inorganic carbon. All phytoplankton rely on ribulose‐bisphosphate carboxylase oxygenase (RUBISCO) for assimilation of inorganic carbon in photosynthesis, but this enzyme is inefficient at present day CO2 levels. Many algae have developed a range of energy demanding mechanisms, referred to as carbon concentrating mechanisms (CCMs), which increase the efficiency of carbon acquisition. We investigated CCM activity in three southern hemisphere strains of the coccolithophorid Emiliania huxleyi W. W. Hay & H. P. Mohler. Both calcifying and non‐calcifying strains showed strong CCM activity, with HCO3? as a preferred source of photosynthetic carbon in the non‐calcifying strain, but a higher preference for CO2 in the calcifying strains. All three strains were characterized by the presence of pyrenoids, external carbonic anhydrase (CA) and high affinity for CO2 in photosynthesis, indicative of active CCMs. We postulate that under higher CO2 levels cocco‐lithophorids will be able to down‐regulate their CCMs, and re‐direct some of the metabolic energy to processes such as calcification. Due to the expected rise in CO2 levels, photosynthesis in calcifying strains is expected to benefit most, due to their use of CO2 for carbon uptake. The non‐calcifying strain, on the other hand, will experience only a 10% increase in HCO3?, thus making it less responsive to changes in carbonate chemistry of water.  相似文献   

3.
Macrocystis pyrifera is a widely distributed, highly productive, seaweed. It is known to use bicarbonate (HCO3?) from seawater in photosynthesis and the main mechanism of utilization is attributed to the external catalyzed dehydration of HCO3? by the surface‐bound enzyme carbonic anhydrase (CAext). Here, we examined other putative HCO3? uptake mechanisms in M. pyrifera under pHT 9.00 (HCO3?: CO2 = 940:1) and pHT 7.65 (HCO3?: CO2 = 51:1). Rates of photosynthesis, and internal CA (CAint) and CAext activity were measured following the application of AZ which inhibits CAext, and DIDS which inhibits a different HCO3? uptake system, via an anion exchange (AE) protein. We found that the main mechanism of HCO3? uptake by M. pyrifera is via an AE protein, regardless of the HCO3?: CO2 ratio, with CAext making little contribution. Inhibiting the AE protein led to a 55%–65% decrease in photosynthetic rates. Inhibiting both the AE protein and CAext at pHT 9.00 led to 80%–100% inhibition of photosynthesis, whereas at pHT 7.65, passive CO2 diffusion supported 33% of photosynthesis. CAint was active at pHT 7.65 and 9.00, and activity was always higher than CAext, because of its role in dehydrating HCO3? to supply CO2 to RuBisCO. Interestingly, the main mechanism of HCO3? uptake in M. pyrifera was different than that in other Laminariales studied (CAext‐catalyzed reaction) and we suggest that species‐specific knowledge of carbon uptake mechanisms is required in order to elucidate how seaweeds might respond to future changes in HCO3?:CO2 due to ocean acidification.  相似文献   

4.
Coralline algae provide important ecosystem services but are susceptible to the impacts of ocean acidification. However, the mechanisms are uncertain, and the magnitude is species specific. Here, we assess whether species‐specific responses to ocean acidification of coralline algae are related to differences in pH at the site of calcification within the calcifying fluid/medium (pHcf) using δ11B as a proxy. Declines in δ11B for all three species are consistent with shifts in δ11B expected if B(OH)4? was incorporated during precipitation. In particular, the δ11B ratio in Amphiroa anceps was too low to allow for reasonable pHcf values if B(OH)3 rather than B(OH)4? was directly incorporated from the calcifying fluid. This points towards δ11B being a reliable proxy for pHcf for coralline algal calcite and that if B(OH)3 is present in detectable proportions, it can be attributed to secondary postincorporation transformation of B(OH)4?. We thus show that pHcf is elevated during calcification and that the extent is species specific. The net calcification of two species of coralline algae (Sporolithon durum, and Amphiroa anceps) declined under elevated CO2, as did their pHcf. Neogoniolithon sp. had the highest pHcf, and most constant calcification rates, with the decrease in pHcf being ¼ that of seawater pH in the treatments, demonstrating a control of coralline algae on carbonate chemistry at their site of calcification. The discovery that coralline algae upregulate pHcf under ocean acidification is physiologically important and should be included in future models involving calcification.  相似文献   

5.
The absorption of anthropogenic CO2 by the oceans is causing a reduction in the pH of the surface waters termed ocean acidification (OA). This could have substantial effects on marine coastal environments where fleshy (non‐calcareous) macroalgae are dominant primary producers and ecosystem engineers. Few OA studies have focused on the early life stages of large macroalgae such as kelps. This study evaluated the effects of seawater pH on the ontogenic development of meiospores of the native kelp Macrocystis pyrifera and the invasive kelp Undaria pinnatifida, in south‐eastern New Zealand. Meiospores of both kelps were released into four seawater pH treatments (pHT 7.20, extreme OA predicted for 2300; pHT 7.65, OA predicted for 2100; pHT 8.01, ambient pH; and pHT 8.40, pre‐industrial pH) and cultured for 15 d. Meiospore germination, germling growth rate, and gametophyte size and sex ratio were monitored and measured. Exposure to reduced pHT (7.20 and 7.65) had positive effects on germling growth rate and gametophyte size in both M. pyrifera and U. pinnatifida, whereas, higher pHT (8.01 and 8.40) reduced the gametophyte size in both kelps. Sex ratio of gametophytes of both kelps was biased toward females under all pHT treatments, except for U. pinnatifida at pHT 7.65. Germling growth rate under OA was significantly higher in M. pyrifera compared to U. pinnatifida but gametophyte development was equal for both kelps under all seawater pHT treatments, indicating that the microscopic stages of the native M. pyrifera and the invasive U. pinnatifida will respond similarly to OA.  相似文献   

6.
The red seaweed Gracilariopsis is an important crop extensively cultivated in China for high‐quality raw agar. In the cultivation site at Nanao Island, Shantou, China, G. lemaneiformis experiences high variability in environmental conditions like seawater temperature. In this study, G. lemaneiformis was cultured at 12, 19, or 26°C for 3 weeks, to examine its photosynthetic acclimation to changing temperature. Growth rates were highest in G. lemaneiformis thalli grown at 19°C, and were reduced with either decreased or increased temperature. The irradiance‐saturated rate of photosynthesis (Pmax) decreased with decreasing temperature, but increased significantly with prolonged cultivation at lower temperatures, indicating the potential for photosynthesis acclimation to lower temperature. Moreover, Pmax increased with increasing temperature (~30 μmol O2 · g?1FW · h?1 at 12°C to 70 μmol O2 · g?1FW · h?1 at 26°C). The irradiance compensation point for photosynthesis (Ic) decreased significantly with increasing temperature (28 μmol photons · m?2 · s?1 at high temperature vs. 38 μmol photons · m?2 · s?1 at low temperature). Both the photosynthetic light‐ and carbon‐use efficiencies increased with increasing growth or temperatures (from 12°C to 26°C). The results suggested that the thermal acclimation of photosynthetic performance of G. lemaneiformis would have important ecophysiological implications in sea cultivation for improving photosynthesis at low temperature and maintaining high standing biomass during summer. Ongoing climate change (increasing atmospheric CO2 and global warming) may enhance biomass production in G. lemaneiformis mariculture through the improved photosynthetic performances in response to increasing temperature.  相似文献   

7.
Ocean acidification will disproportionately impact the growth of calcifying organisms in coral reef ecosystems. Simultaneously, sponge bioerosion rates have been shown to increase as seawater pH decreases. We conducted a 20‐week experiment that included a 4‐week acclimation period with a high number of replicate tanks and a fully orthogonal design with two levels of temperature (ambient and +1 °C), three levels of pH (8.1, 7.8, and 7.6), and two levels of boring sponge (Cliona varians, present and absent) to account for differences in sponge attachment and carbonate change for both living and dead coral substrate (Porites furcata). Net coral calcification, net dissolution/bioerosion, coral and sponge survival, sponge attachment, and sponge symbiont health were evaluated. Additionally, we used the empirical data from the experiment to develop a stochastic simulation of carbonate change for small coral clusters (i.e., simulated reefs). Our findings suggest differential impacts of temperature, pH and sponge presence for living and dead corals. Net coral calcification (mg CaCO3 cm?2 day?1) was significantly reduced in treatments with increased temperature (+1 °C) and when sponges were present; acidification had no significant effect on coral calcification. Net dissolution of dead coral was primarily driven by pH, regardless of sponge presence or seawater temperature. A reevaluation of the current paradigm of coral carbonate change under future acidification and warming scenarios should include ecologically relevant timescales, species interactions, and community organization to more accurately predict ecosystem‐level response to future conditions.  相似文献   

8.
Ocean acidification (OA), the ongoing decline in seawater pH, is predicted to have wide‐ranging effects on marine organisms and ecosystems. For seaweeds, the pH at the thallus surface, within the diffusion boundary layer (DBL), is one of the factors controlling their response to OA. Surface pH is controlled by both the pH of the bulk seawater and by the seaweeds' metabolism: photosynthesis and respiration increase and decrease pH within the DBL (pHDBL), respectively. However, other metabolic processes, especially the uptake of inorganic nitrogen (Ni; NO3? and NH4+) may also affect the pHDBL. Using Macrocystis pyrifera, we hypothesized that (1) NO3? uptake will increase the pHDBL, whereas NH4+ uptake will decrease it, (2) if NO3? is cotransported with H+, increases in pHDBL would be greater under an OA treatment (pH = 7.65) than under an ambient treatment (pH = 8.00), and (3) decreases in pHDBL will be smaller at pH 7.65 than at pH 8.00, as higher external [H+] might affect the strength of the diffusion gradient. Overall, Ni source did not affect the pHDBL. However, increases in pHDBL were greater at pH 7.65 than at pH 8.00. CO2 uptake was higher at pH 7.65 than at pH 8.00, whereas HCO3? uptake was unaffected by pH. Photosynthesis and respiration control pHDBL rather than Ni uptake. We suggest that under future OA, Macrocystis pyrifera will metabolically modify its surface microenvironment such that the physiological processes of photosynthesis and Ni uptake will not be affected by a reduced pH.  相似文献   

9.
Carbonic anhydrase (CA) inhibitors lower the rate of aqueous humor (AH) secretion into the eye. Different CA isozymes might play different roles in the response. Here we have studied the effects of carbonic anhydrase inhibitors on cytoplasmic pH (pH i ) regulation, using a dextran-bound CA inhibitor (DBI) to selectively inhibit membrane-associated CA in a cell line derived from rabbit NPE. pH i was measured using the fluorescent dye BCECF and the pH i responses to the cell permeable CA inhibitor acetazolamide (ACTZ) and DBI were compared. ACTZ markedly inhibited the rapid pH i changes elicited by bicarbonate/CO2 removal and readdition but DBI was ineffective in this respect, consistent with the inability of DBI to enter the cell and inhibit cytoplasmic CA isozymes. Added alone, ACTZ and DBI caused a similar reduction (0.2 pH units) of baseline pH i . We considered whether CA-IV might facilitate H+ extrusion via Na-H exchange. The Na-H exchanger inhibitor amiloride (1 mm) reduced pH i 0.52 ± 0.10 pH units. In the presence of DBI, the magnitude of pH i reduction caused by amiloride was significantly (P < 0.05) reduced to 0.26 ± 0.09 pH units. ACTZ similarly reduced the magnitude of the pH i reduction. DBI also reduced by ∼40% the rate of pH i recovery in cells acidified by an ammonium chloride (20 mm) prepulse; a reduction in pH i recovery rate was also caused by ACTZ and amiloride. DBI failed to alter the pH i alkalinization response caused by elevating external potassium concentration, a response insensitive to amiloride but sensitive to ACTZ. These observations are consistent with a reduction in Na-H exchanger activity in the presence of DBI or ACTZ. We suggest that the CA-IV isozyme might catalyze rapid equilibration of H+ and HCO 3 with CO2 in the unstirred layer outside the plasma membrane, preventing local accumulation of H+ which competes with sodium for the same external Na-H exchanger binding site. Inhibition of CA-IV could produce pH i changes that might alter the function of other ion transporters and channels in the NPE. Received: 24 April 1997/Revised: 4 November 1997  相似文献   

10.
Leaf responses to elevated atmospheric CO2 concentration (Ca) are central to models of forest CO2 exchange with the atmosphere and constrain the magnitude of the future carbon sink. Estimating the magnitude of primary productivity enhancement of forests in elevated Ca requires an understanding of how photosynthesis is regulated by diffusional and biochemical components and up‐scaled to entire canopies. To test the sensitivity of leaf photosynthesis and stomatal conductance to elevated Ca in time and space, we compiled a comprehensive dataset measured over 10 years for a temperate pine forest of Pinus taeda, but also including deciduous species, primarily Liquidambar styraciflua. We combined over one thousand controlled‐response curves of photosynthesis as a function of environmental drivers (light, air Ca and temperature) measured at canopy heights up to 20 m over 11 years (1996–2006) to generate parameterizations for leaf‐scale models for the Duke free‐air CO2 enrichment (FACE) experiment. The enhancement of leaf net photosynthesis (Anet) in P. taeda by elevated Ca of +200 μmol mol?1 was 67% for current‐year needles in the upper crown in summer conditions over 10 years. Photosynthetic enhancement of P. taeda at the leaf‐scale increased by two‐fold from the driest to wettest growing seasons. Current‐year pine foliage Anet was sensitive to temporal variation, whereas previous‐year foliage Anet was less responsive and overall showed less enhancement (+30%). Photosynthetic downregulation in overwintering upper canopy pine needles was small at average leaf N (Narea), but statistically significant. In contrast, co‐dominant and subcanopy L. styraciflua trees showed Anet enhancement of 62% and no AnetNarea adjustments. Various understory deciduous tree species showed an average Anet enhancement of 42%. Differences in photosynthetic responses between overwintering pine needles and subcanopy deciduous leaves suggest that increased Ca has the potential to enhance the mixed‐species composition of planted pine stands and, by extension, naturally regenerating pine‐dominated stands.  相似文献   

11.
In the Monterey Bay region of central California, the giant kelp Macrocystis pyrifera experiences broad fluctuations in wave forces, temperature, light availability, nutrient availability, and seawater carbonate chemistry, all of which may impact their productivity. In particular, current velocities and light intensity may strongly regulate the supply and demand of inorganic carbon (Ci) as substrates for photosynthesis. Macrocystis pyrifera can acquire and utilize both CO2 and bicarbonate (HCO3?) as Ci substrates for photosynthesis and growth. Given the variability in carbon delivery (due to current velocities and varying [DIC]) and demand (in the form of saturating irradiance), we hypothesized that the proportion of CO2 and bicarbonate utilized is not constant for M. pyrifera, but a variable function of their fluctuating environment. We further hypothesized that populations acclimated to different wave exposure and irradiance habitats would display different patterns of bicarbonate uptake. To test these hypotheses, we carried out oxygen evolution trials in the laboratory to measure the proportion of bicarbonate utilized by M. pyrifera via external CA under an orthogonal cross of velocity, irradiance, and acclimation treatments. Our Monterey Bay populations of M. pyrifera exhibited proportionally higher external bicarbonate utilization in high irradiance and high flow velocity conditions than in sub‐saturating irradiance or low flow velocity conditions. However, there was no significant difference in proportional bicarbonate use between deep blades and canopy blades, nor between individuals from wave‐exposed versus wave‐protected sites. This study contributes a new field‐oriented perspective on the abiotic controls of carbon utilization physiology in macroalgae.  相似文献   

12.
Ocean acidification (OA) is a major threat to marine ecosystems, particularly coral reefs which are heavily reliant on calcareous species. OA decreases seawater pH and calcium carbonate saturation state (Ω), and increases the concentration of dissolved inorganic carbon (DIC). Intense scientific effort has attempted to determine the mechanisms via which ocean acidification (OA) influences calcification, led by early hypotheses that calcium carbonate saturation state (Ω) is the main driver. We grew corals and coralline algae for 8–21 weeks, under treatments where the seawater parameters Ω, pH, and DIC were manipulated to examine their differential effects on calcification rates and calcifying fluid chemistry (Ωcf, pHcf, and DICcf). Here, using long duration experiments, we provide geochemical evidence that differing physiological controls on carbonate chemistry at the site of calcification, rather than seawater Ω, are the main determinants of calcification. We found that changes in seawater pH and DIC rather than Ω had the greatest effects on calcification and calcifying fluid chemistry, though the effects of seawater carbonate chemistry were limited. Our results demonstrate the capacity of organisms from taxa with vastly different calcification mechanisms to regulate their internal chemistry under extreme chemical conditions. These findings provide an explanation for the resistance of some species to OA, while also demonstrating how changes in seawater DIC and pH under OA influence calcification of key coral reef taxa.  相似文献   

13.
Ocean acidification describes changes in the carbonate chemistry of the ocean due to the increased absorption of anthropogenically released CO2. Experiments to elucidate the biological effects of ocean acidification on algae are not straightforward because when pH is altered, the carbon speciation in seawater is altered, which has implications for photosynthesis and, for calcifying algae, calcification. Furthermore, photosynthesis, respiration, and calcification will themselves alter the pH of the seawater medium. In this review, algal physiologists and seawater carbonate chemists combine their knowledge to provide the fundamental information on carbon physiology and seawater carbonate chemistry required to comprehend the complexities of how ocean acidification might affect algae metabolism. A wide range in responses of algae to ocean acidification has been observed, which may be explained by differences in algal physiology, timescales of the responses measured, study duration, and the method employed to alter pH. Two methods have been widely used in a range of experimental systems: CO2 bubbling and HCl/NaOH additions. These methods affect the speciation of carbonate ions in the culture medium differently; we discuss how this could influence the biological responses of algae and suggest a third method based on HCl/NaHCO3 additions. We then discuss eight key points that should be considered prior to setting up experiments, including which method of manipulating pH to choose, monitoring during experiments, techniques for adding acidified seawater, biological side effects, and other environmental factors. Finally, we consider incubation timescales and prior conditioning of algae in terms of regulation, acclimation, and adaptation to ocean acidification.  相似文献   

14.
The effect of CO2 supply is likely to play an important role in algal ecology. Since inorganic carbon (Ci) acquisition strategies are very diverse among microalgae and Ci availability varies greatly within and among habitats, we hypothesized that Ci acquisition depends on the pH of their preferred natural environment (adaptation) and that the efficiency of Ci uptake is affected by CO2 availability (acclimation). To test this, four species of green algae originating from different habitats were studied. The pH‐drift and Ci uptake kinetic experiments were used to characterize Ci acquisition strategies and their ability to acclimate to high and low CO2 conditions and high and low pH was evaluated. Results from pH drift experiments revealed that the acidophile and acidotolerant Chlamydomonas species were mainly restricted to CO2, whereas the two neutrophiles were efficient bicarbonate users. CO2 compensation points in low CO2‐acclimated cultures ranged between 0.6 and 1.4 μM CO2 and acclimation to different culture pH and CO2 conditions suggested that CO2 concentrating mechanisms were present in most species. High CO2 acclimated cultures adapted rapidly to low CO2 condition during pH‐drifts. Ci uptake kinetics at different pH values showed that the affinity for Ci was largely influenced by external pH, being highest under conditions where CO2 dominated the Ci pool. In conclusion, Ci acquisition was highly variable among four species of green algae and linked to growth pH preference, suggesting that there is a connection between Ci acquisition and ecological distribution.  相似文献   

15.
Changes in the seawater carbonate chemistry (ocean acidification) from increasing atmospheric carbon dioxide (CO2) concentrations negatively affect many marine calcifying organisms, but may benefit primary producers under dissolved inorganic carbon (DIC) limitation. To improve predictions of the ecological effects of ocean acidification, the net gains and losses between the processes of photosynthesis and calcification need to be studied jointly on physiological and population levels. We studied productivity, respiration, and abundances of the symbiont‐bearing foraminifer species Marginopora vertebralis on natural CO2 seeps in Papua New Guinea and conducted additional studies on production and calcification on the Great Barrier Reef (GBR) using artificially enhanced pCO2. Net oxygen production increased up to 90% with increasing pCO2; temperature, light, and pH together explaining 61% of the variance in production. Production increased with increasing light and increasing pCO2 and declined at higher temperatures. Respiration was also significantly elevated (~25%), whereas calcification was reduced (16–39%) at low pH/high pCO2 compared to present‐day conditions. In the field, M. vertebralis was absent at three CO2 seep sites at pHTotal levels below ~7.9 (pCO2 ~700 μatm), but it was found in densities of over 1000 m?2 at all three control sites. The study showed that endosymbiotic algae in foraminifera benefit from increased DIC availability and may be naturally carbon limited. The observed reduction in calcification may have been caused either by increased energy demands for proton pumping (measured as elevated rates of respiration) or by stronger competition for DIC from the more productive symbionts. The net outcome of these two competing processes is that M. vertebralis cannot maintain populations under pCO2 exceeding 700 μatm, thus are likely to be extinct in the next century.  相似文献   

16.
Previous studies have shown that increasing atmospheric CO2 concentrations affect calcification in some planktonic and macroalgal calcifiers due to the changed carbonate chemistry of seawater. However, little is known regarding how calcifying algae respond to solar UV radiation (UVR, UVA+UVB, 280–400 nm). UVR may act synergistically, antagonistically or independently with ocean acidification (high CO2/low pH of seawater) to affect their calcification processes. We cultured the articulated coralline alga Corallina sessilis Yendo at 380 ppmv (low) and 1000 ppmv (high) CO2 levels while exposing the alga to solar radiation treatments with or without UVR. The presence of UVR inhibited the growth, photosynthetic O2 evolution and calcification rates by13%, 6% and 3% in the low and by 47%, 20% and 8% in the high CO2 concentrations, respectively, reflecting a synergistic effect of CO2 enrichment with UVR. UVR induced significant decline of pH in the CO2‐enriched cultures. The contents of key photosynthetic pigments, chlorophyll a and phycobiliproteins decreased, while UV‐absorptivity increased under the high pCO2/low pH condition. Nevertheless, UV‐induced inhibition of photosynthesis increased when the ratio of particulate inorganic carbon/particulate organic carbon decreased under the influence of CO2‐acidified seawater, suggesting that the calcified layer played a UV‐protective role. Both UVA and UVB negatively impacted photosynthesis and calcification, but the inhibition caused by UVB was about 2.5–2.6 times that caused by UVA. The results imply that coralline algae suffer from more damage caused by UVB as they calcify less and less with progressing ocean acidification.  相似文献   

17.
18.
As the process of ocean acidification alters seawater carbon chemistry, physiological processes such as skeletal accretion are expected to become more difficult for calcifying organisms. The crustose coralline red algae (Corallinales, Rhodophyta) form an important guild of calcifying primary producers in the temperate Northeast Pacific. The morphology of important ecological traits, namely, skeletal density and thallus thickness near the growing edge, was evaluated in Pseudolithophyllum muricatum (Foslie) Steneck & R.T. Paine, the competitively dominant alga within this guild. P. muricatum shows a morphological response to increased ocean acidification in the temperate Northeast Pacific. Comparing historical (1981–1997) and modern (2012) samples from the field, crust thickness near the growing edge was approximately half as thick in modern samples compared with historical samples, while crust calcite density showed no significant change between the two sample groups. Morphological changes at the growing edge have important consequences for mediating competitive interactions within this guild of algae, and may affect the role of crustose coralline algal beds as hosts to infaunal communities and facilitators of recruitment in many invertebrate and macroalgal species.  相似文献   

19.
Increased seawater pCO2, and in turn ‘ocean acidification’ (OA), is predicted to profoundly impact marine ecosystem diversity and function this century. Much research has already focussed on calcifying reef‐forming corals (Class: Anthozoa) that appear particularly susceptible to OA via reduced net calcification. However, here we show that OA‐like conditions can simultaneously enhance the ecological success of non‐calcifying anthozoans, which not only play key ecological and biogeochemical roles in present day benthic ecosystems but also represent a model organism should calcifying anthozoans exist as less calcified (soft‐bodied) forms in future oceans. Increased growth (abundance and size) of the sea anemone (Anemonia viridis) population was observed along a natural CO2 gradient at Vulcano, Italy. Both gross photosynthesis (PG) and respiration (R) increased with pCO2 indicating that the increased growth was, at least in part, fuelled by bottom up (CO2 stimulation) of metabolism. The increase of PG outweighed that of R and the genetic identity of the symbiotic microalgae (Symbiodinium spp.) remained unchanged (type A19) suggesting proximity to the vent site relieved CO2 limitation of the anemones' symbiotic microalgal population. Our observations of enhanced productivity with pCO2, which are consistent with previous reports for some calcifying corals, convey an increase in fitness that may enable non‐calcifying anthozoans to thrive in future environments, i.e. higher seawater pCO2. Understanding how CO2‐enhanced productivity of non‐ (and less‐) calcifying anthozoans applies more widely to tropical ecosystems is a priority where such organisms can dominate benthic ecosystems, in particular following localized anthropogenic stress.  相似文献   

20.
Summary Isolated early distal tubule cells (EDC) of frog kidney were incubated for 20–28 hr in the presence of aldosterone and then whole-cell K+ currents were measured at constant intracellular pH by the whole-cell voltage-clamp technique. Aldosterone increased barium-inhibitable whole-cell K+ conductance (gK+) threefold. This effect was reduced by amiloride and totally abolished by ouabain. However, aldosterone could still raisegK+ in ouabain-treated cells in the presence of furosemide.We tested whether changes in intracellular pH (pH i ) could be a signal for cells to regulategK+. After removal of aldosterone, the increase ingK+ was preserved by subsequent incubation for 8 hr at pH 7.6 but abolished at pH 6.6. In the complete absence of aldosterone, incubation of cells at pH 8.0 for 20–28 hr raised pH i and doubledgK+.Using the patch-clamp technique, three types of K+-selective channels were identified, which had conductances of 24, 45 and 59 pS.Aldosterone had no effect on the conductance or open probability (P o) of any of the three types of channels. However, the incidence of observing type II channels was increased from 4 to 22%. Type II channels were also found to be pH sensitive,P o was increased by raising pH.These results indicate that prolonged aldosterone treatment raises pH i and increasesgK+ by promoting insertion of K+ channels into the cell membrane. Channel insertion is itself triggered by raising both pH i and increasing the activity of the Na+/K+ pump in early distal cells of frog kidney. Present address: Department of Physiology, The University of Leeds, Leeds, LS2 9NQ, England  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号