首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Flora》2014,209(3-4):172-178
In this study, flower color, nectar properties, and inflorescence scent composition of eight natural and one introduced Buddleja davidii populations were investigated. Flower color of B. davidii was determined using the Royal Horticultural Society Color Chart and ranged from purple to white. Volume of nectar produced by a single flower ranged from 0.36 μl to 0.64 μl and total sugar concentration produced by inflorescence ranged from 17.0% to 33.5% in all populations. Floral nectar volume and sugar concentration were not significantly different between two flower color morphs in the B. davidii populations. Floral scents of B. davidii were collected using dynamic headspace adsorption and identified with coupled gas chromatography and mass spectrometry. In total, 33 compounds were identified from the inflorescences of B. davidii. The identified scents were divided into five chemical classes based on their biosynthetic origin: irregular terpenes, monoterpenoids, sesquiterpenoids, fatty acid derivatives, and benzenoids. The scent profiles in all populations were dominated by few components, such as: 4-oxoisophorone, E,E-α-farnesene, and 1-octen-3-ol. Given that inflorescence scents from natural and introduced individuals coming from the same population have discrepant chemical composition, we infer that phenotype plasticity may mediate floral scent composition. Based on the comparison of present and other data available on floral scent in B. davidii, we conclude that inflorescence scent may serve as a specific signal helping to attract pollinating butterflies to locate flowers as nectar sources, and may have evolved in conjunction with the sensory capabilities of butterflies and moths as a specific group of pollinators.  相似文献   

2.
Floral scent emission rate and composition of purple and white flower color morphs of Hesperis matronalis (Brassicaceae) were determined for two populations and, for each, at two times of day using dynamic headspace collection and GC-MS. The floral volatile compounds identified for this species fell into two main categories, terpenoids and aromatics. Principal component analysis of 30 compounds demonstrated that both color morphs emitted more scent at dusk than at dawn. Color morphs varied in chemical composition of scent, but this differed between populations. The white morphs exhibited significant differences between populations, while the purple morphs did not. In the white morphs, one population contains color-scent associations that match expectations from classical pollination syndrome theory, where the flowers have aromatic scents, which are expected to maximize night-flying moth pollinator attraction; in the second population, white morphs were strongly associated with terpenoid compounds. The potential impact that pollinators, conserved biosynthetic pathways, and the genetics of small colonizing populations may have in determining population-specific associations between floral color and floral scent are discussed.  相似文献   

3.
4.
In many flowering plants, floral scents are a significant trait for visitors, playing an important role in attracting pollinators and/or detracting herbivores. The evolution of flowering plants from hermaphroditism to dioecy is often accompanied by sexual dimorphism in floral scent. In this study, floral scents emitted by different sexual morphs of the subdioecious shrub Eurya japonica Thunb. were collected using a dynamic headspace method, and sexual and temporal variations were evaluated by gas chromatography–mass spectrometry (GC–MS). Two volatiles, α‐pinene and linalool, were identified as the major components of floral scents in females, hermaphrodites, and males. The males emit higher amounts of floral scents, particularly α‐pinene, compared to females or hermaphrodites. Floral scents emitted by males generally decrease as flowers enter senescence, whereas those from females or hermaphrodites do not significantly differ. Intraspecific variations in floral scents of subdioecious species provided by this study would contribute to better understanding of sexual dimorphism in floral scent.  相似文献   

5.
Floral scent was collected by headspace methods from intact flowers, petals, and stamens of four species ofPyrolaceae. The scent samples were analyzed by coupled gas chromatography-mass spectrometry (GC-MS). The floral scent inPyrola spp. is differentiated into a characteristic petal scent—phenyl propanoids and a characteristic stamen scent—methoxy benzenes. InMoneses the scent is characterized by isoprenoids and benzenoids, with a larger proportion of benzenoids in the stamens compared to the petals. Specific anther scents may promote foraging efficiency in buzz-pollinated species and enhance flower fidelity. Variation in floral scent composition is consistent with the taxonomic relationships among the genera and species examined.  相似文献   

6.
Omura H  Honda K 《Oecologia》2005,142(4):588-596
Most flower visitors innately prefer a particular color and scent, and use them as cues for flower recognition and selection. However, in most cases, since color and scent serve as a combined signal, not only does the preference for an individual cue, but also the preference hierarchy among different cues, influence their flower visitation. In the present study, we attempted to reveal (1) the chromatic and (2) the olfactory cues that stimulate flower visiting, and (3) the preference hierarchy between these cues, using the naïve adult butterfly Vanessa indica. When we offered 12 different-colored (six chromatic and six achromatic) paper flower models, V. indica showed a color preference for yellow and blue. When we examined the proboscis extension reflex (PER) of V. indica towards 16 individual compounds identified in the floral scents from two nectar plants belonging to the family Compositae, Taraxacum officinale and Cirsium japonicum, six compounds were found to have relatively high PER-eliciting activities, including benzaldehyde, acetophenone, and (E+Z)-nerolidol. When we combined color and scent cues in two-choice bioassays, where butterflies were offered flower models that were purple (a relatively unattractive color), the models scented with these active compounds were significantly more attractive than the odorless controls. In addition, synthetic blends mimicking the floral scents of T. officinale and C. japonicum (at doses equivalent to that of ten flowers) enhanced the number of visits to the scented models. However, the effect of odorizing was not conspicuous in parallel bioassays when yellow flower models were used, and the butterflies also significantly preferred odorless yellow models to scented purple models. These results demonstrate that V. indica depends primarily on color and secondarily on scent during flower visitation.  相似文献   

7.
Floral scent is a key mediator in many plant–pollinator interactions. It is known to vary not only among plant species, but also within species among populations. However, there is a big gap in our knowledge of whether such variability is the result of divergent selective pressures exerted by a variable pollinator climate or alternative scenarios (e.g., genetic drift). Cypripedium calceolus is a Eurasian deceptive lady’s-slipper orchid pollinated by bees. It is found from near sea level to altitudes of 2500 m. We asked whether pollinator climate and floral scents vary in a concerted manner among different altitudes. Floral scents of four populations in the Limestone Alps were collected by dynamic headspace and analyzed by gas chromatography coupled to mass spectrometry (GC/MS). Flower visitors and pollinators (the subset of visitors with pollen loads) were collected and identified. Preliminary coupled gas chromatographic and electroantennographic measurements with floral scents and pollinators revealed biologically active components. More than 70 compounds were detected in the scent samples, mainly aliphatics, terpenoids, and aromatics. Although several compounds were found in all samples, and all samples were dominated by linalool and octyl acetate, scents differed among populations. Similarly, there were strong differences in flower visitor spectra among populations with most abundant flower visitors being bees and syrphid flies at low and high altitudes, respectively. Pollinator climate differed also among populations; however, independent of altitude, most pollinators were bees of Lasioglossum, Andrena, and Nomada. Only few syrphids acted as pollinators and this is the first record of flies as pollinators in C. calceolus. The electrophysiological tests showed that bees and syrphid flies sensed many of the compounds released by the flowers, among them linalool and octyl acetate. Overall, we found that both floral scent and visitor/pollinator climate differ among populations. We discuss whether interpopulation variation in scent is a result of pollinator-mediated selection.  相似文献   

8.
We studied a population of the distylousPalicourea padifolia (Rubiaceae) in a cloud forest remnant near Xalapa City, Veracruz, México to explore possible asymmetries between floral morphs in the attractiveness to pollinators, seed dispersers, nectar robbers, floral parasites, and herbivores. We first assessed heterostyly and reciprocal herkogamy by measuring floral attributes such as corolla length (buds and open flowers), style and anther heights, stigma and stamen lengths and the distance between the anther tip to the stigma lobe. We then estimated floral and fruit attributes such as flower size, anther height, number and size of pollen grains, fruit size, seed size, nectar production, and flower and fruit standing crops to assess differences between floral morphs in attracting and effectively using mutualistic pollinators and seed dispersers. Also, floral parasitism and nectar robbing were assessed in this study as a measure of flower attractiveness to antagonists. The system seems to conform well to classical heterostyly (e.g. reciprocal stamen/style lengths, pollen and anther dimorphism, intramorph incompatibility) yet, there were several tantalizing differences observed between pin and thrum morphs. Thrum flowers have longer corollas and larger but fewer pollen grains than pin flowers. Both morphs produced the same total number of inflorescences, developed the same number of buds, and opened the same number of flowers per inflorescence during the flowering season. Nectar production and sugar concentration were similar between floral morphs but the reward was not offered symmetrically to floral visitors throughout the day. Nectar concentration was higher in pin flowers in the afternoon. The numbers of developing, fully developed, and ripe fruits were the same between floral morphs, however, fruits and seeds were larger than those of thrums. The incidence of fly larvae was higher among thrum flowers and damage by nectar robbing was the same between floral morphs. Fruit abortion patterns of flowers manually pollinated suggest intra-morph sterility (self and intramorph incompatibility). There were no differences between morphs in fruit and seed set per flower following legitimate pollination although thrums were more leaky than the pins (intramorph compatibility).  相似文献   

9.
By definition, the floral morphs of distylous plants differ in floral architecture. Yet, because cross-pollination is necessary for reproductive success in both morphs, they should not differ in attributes that contribute to attracting and rewarding floral visitors. Floral and vegetative attributes that function in distylous polymorphism in hummingbird-pollinated Palicourea padifolia (Rubiaceae) and the responses of pollinators and insect herbivores to the resources offered by both morphs were investigated. The performance of each morph along multiple stages of the reproductive cycle, from inflorescence and nectar production to fruit production, was surveyed, and pollinator behavior and nectar standing crops were then observed. Costs associated with such attractiveness were also evaluated in terms of herbivore attack and of plant reproductive fitness (female function) as a function of leaf herbivory. The number of inflorescences, floral buds, open flowers, and ripe fruits offered by either floral morph were similar, but short-styled plants almost doubled the number of developing fruits of long-styled plants. Long-styled flowers produced higher nectar volumes and accumulated more nectar over time than short-styled flowers. Measures of nectar standing crop and data on pollinator behavior suggest that hummingbirds respond to this morph-specific scheduling of nectar production. Lastly, long-styled plants suffered a higher herbivore attack and lost more leaf area over time than those with short-styled flowers. Herbivory was negatively correlated with fruit number and fruit mass, and long-styled plants set significantly less fruit mass than short-styled plants. The results suggest that pollinators and herbivores may exert selective pressures on floral and vegetative traits that could also influence gender function.  相似文献   

10.
The aim of this study was to analyse the reproductive biology of Echinopsis terscheckii, a species endemic to northwest Argentina that has nocturnal flowers. We expected that this species had a generalised pollination system, with moths and diurnal visitors as the primary pollinators. To test this, we studied the floral biology, breeding system and floral visitors of this species and the effectiveness of nocturnal and diurnal visitors. Floral biology was defined based on floral morphology, floral cycle and nectar production of the flowers. The breeding system and relative contributions of diurnal and nocturnal visitors to fruit and seed set were analysed through field experiments. E.?terscheckii flowers opened at sunset and closed the following day. The peak of nectar production occurred at midnight. Flowers were determined to be self-incompatible. Moths, bees and birds were identified as floral visitors. Moths were the most frequent visitors at night, whereas bees were the most frequent visitors during the day. Fruit production by diurnal pollinators was less than that by nocturnal pollinators; among all floral visitors, moths were the most effective pollinators. We have demonstrated for the first time that moths are the primary pollinators of columnar cacti of the genus Echinopsis. Our results suggest that moths might be important pollinators of columnar cactus species with nocturnal flowers in the extra-tropical deserts of South America.  相似文献   

11.

Background and Aims

Spatial variation in pollinator composition and abundance is a well-recognized phenomenon. However, a weakness of many studies claiming specificity of plant–pollinator interactions is that they are often restricted to a single locality. The aim of the present study was to investigate pollinator effectiveness of the different flower visitors to the terrestrial orchid Eulophia alta at three different localities and to analyse whether differences in pollinator abundance and composition effect this plant''s reproductive success.

Methods

Natural pollination was observed in vivo, and manipulative experiments were used to study the pollination biology and breeding system of E. alta at three sites near Manaus, Brazil. To gain a better understanding of the underlying mechanisms of pollinator attraction, nectar composition and secretion patterns were also studied, floral scent composition was analysed and a bioassay was conducted.

Key Results

Flower visitors, pollinator composition, pollinia transfer efficiency of particular pollinator species and natural fruit set differed among the investigated populations of E. alta. Flowers were self-compatible, partially autogamous and effectively pollinated by five bee species (four Centris species and Xylocopa muscaria). Visiting insects appeared to imbibe small amounts of hexose-rich nectar. Nectar sugar content was highest on the third day after flower opening. Floral fragrance analyses revealed 42 compounds, of which monoterpenes and benzenoids predominated. A bioassay using floral parts revealed that only floral tissue from the labellum chamber and labellum tip was attractive to flower visitors.

Conclusions

The data suggest that observed differences in reproductive success in the three populations cannot be explained by absolute abundance of pollinators alone. Due to behavioural patterns such as disturbance of effective pollinators on flowers by male Centris varia bees defending territory, pollinia transfer efficiencies of particular pollinator species also vary between study sites and result in differing reproductive success.  相似文献   

12.
Flowers or inflorescences often deploy various signals, including visual, olfactory, and gustatory cues, that can be detected by their pollinators. In many plants, these cues and their functions are poorly understood. Deciphering the interactions between floral cues and pollinators is crucial for analyzing the reproductive success of flowering plants. In this study, we examined the composition of the fetid floral scents produced by several Stemona species, including nine S. tuberosa populations from across China, using dynamic headspace adsorption, gas chromatography, and mass spectrometry techniques. We compared variations in floral phenotype, including floral longevity, nectar rewards, pollinator behavior, and flower length and color among the Stemona species. Of the 54 scent compounds identified, the major compounds include fetid dimethyl disulfide, dimethyl trisulfide, 1‐pyrroline, butyric acid, p‐cresol, isoamyl alcohol, and indole. We detected striking differentiation in floral scent at both the species and population level, and even within a population of plants with different colored flowers. Floral characteristics related to sapromyophily and deceptive pollination, including flower color mimicking livor mortis and a lack of nectar, were found in five Stemona species, indicating that Stemona is a typical sapromyophilous taxon. Species of this monocot genus might employ evolutionary tactics to exploit saprophilous flies for pollination.  相似文献   

13.
14.
Flowers that are pollinated both during the day and at night could exhibit two different groups of pollinators and produce two different sets of attractants and rewards. We explored the patterns of emission of flower scents and production of nectar in the cactus Echinopsis chiloensis ssp. chiloensis, in relation to the patterns of activity of its diurnal and nocturnal pollinators. We measured frequency of flower visitors, analyzed floral scents, measured nectar production and sugar concentration, and performed pollination exclusion experiments. Bees were the main visitors at daytime and hawkmoths at nighttime. Diurnal scents were dominated by several compounds that can attract a wide range of pollinators, whereas nocturnal scents were less diverse and were dominated by (E)-nerolidol, a compound eliciting antennal responses in hawkmoths. Nectar volume and sugar concentration at night were similar to those recorded in hawkmoth-pollinated flowers. Daytime nectar volume was higher than those commonly found in bee-pollinated flowers, but similar to those found in flowers pollinated by several pollinators. Daytime sugar concentration was similar to those recorded in bee-pollinated flowers. Flowers of E. chiloensis ssp. chiloensis seem morphologically adapted to hawkmoth pollination, but diurnal and nocturnal pollinators contribute to similar extents to reproductive success. Additionally, diurnal and nocturnal pollinators showed a synergic effect on the product of fruit set and seed set. The results are discussed in terms of the linkage between floral traits and perception abilities and requirements of pollinators.  相似文献   

15.
16.
Floral color change in diverse plants has been thought to be a visual signal reflecting changes in floral rewards, promoting pollinator foraging efficiency as well as plant reproductive success. It remains unclear whether olfactory signals co-vary with floral color change. We investigated the production rhythms of floral scent and nectar associated with floral color change in Lonicera japonica. The flowers generally last 2–3 days. They are white on opening at night (N1) and become light yellow the following day (D1), yellow on the second night (N2), and golden on the second day of flowering (D2). Our measurements in the four stages indicated that nectar production decreased significantly from N1 and D1 to N2 and D2, tracking the floral color change. A total of 34 compounds were detected in floral scent and total scent emission was significantly higher in N2 than in the other three stages. The scent emission of three major compounds, Linalool, cis-3-Hexenyl tiglate, and Germacrene D was also significantly higher in N2, but the relative content of Linalool decreased gradually, cis-3-Hexenyl tiglate increased gradually, and the relative content of Germacrene D did not differ among the four measured stages. Greater scent emission by night than by day suggested a strong olfactory signal to attract nocturnal hawkmoths, the effective pollinators. However, floral scent rhythms in the four stages did not match the color change and nectar secretion, suggesting that floral color (visual) and scent (olfactory) in this species may play different roles in attracting or filtering various visitors.  相似文献   

17.
The quantitative and qualitative variability in floral scent of 98 specimens of the dioecious species Silene latifolia belonging to 15 European and 19 North American populations was determined. Floral scent was collected from single flowers using dynamic headspace methods, and analysed by Micro-SPE and GC-MS methods. The flowers showed a nocturnal rhythm, and scent was emitted only at night. The amount of emitted volatiles varied greatly during the season, from 400 ng/flower/2 min in June to 50 ng/flower/2 min in August and September. The qualitative variability in the floral scent was high and different chemotypes, characterised by specific scent compounds, were found. Female and male flowers emitted the same type and amount of volatiles. The differences in floral scent composition between European and North American populations were small. Typical compounds were isoprenoids like lilac aldehyde isomers, or trans-beta-ocimene, and benzenoids like benzaldehyde, phenyl acetaldehyde, or veratrole. Some of these compounds are known to attract nocturnal Lepidoptera species. The high qualitative variability is discussed in relation to the pollination biology of S. latifolia, and the results are compared with other studies investigating intraspecific variability of flower scent.  相似文献   

18.
KNUDSEN, J. T. & TOLLSTEN, L., Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa. Floral scent from 15 moth-pollinated species in nine families was collected by head-space adsorption. The chemical composition was determined by coupled gas chromatography-mass spectrometry (GC-MS). The typical floral scent of moth-pollinated flowers contains some acyclic terpene alcohols, their corresponding hydrocarbons, benzenoid alcohols and esters and small amounts of some nitrogen compounds. The floral scent composition of sphingophilous flowers can be distinguished from that of phalaenophilous flowers by the presence of oxygenated sesquiterpenes. The flowers of three of the studied species had the general appearance and floral scent composition of moth-pollinated flowers, but contained no nectar reward. These species probably rely on deceptive pollination by naive visitors, which are deceived by the similarity of the flowers' morphological and scent chemistry to that of rewarding moth flowers. The finding of similar or structurally closely related floral scent compounds in both temperate and tropical species from both the Old and New worlds suggests that floral scent composition has been selected by a specific group of pollinators, moths that have similar sensory preferences. The functions of floral scent in moth-pollinated flowers are discussed in relation to an often observed over-representation of male moth visitors.  相似文献   

19.
Floral color changes are common among Melastomataceae and have been interpreted as a warning mechanism for bees to avoid old flowers, albeit increasing long-distance flower display. Here the reproductive systems of Tibouchina pulchra and T. sellowiana were investigated by controlled pollinations. Their pollinators were identified, and experiments on floral color and fragrance changes were conduced to verify if those changes affect the floral visitation. Both Tibouchina species are self compatible. The flowers lasted three days or more, and the floral color changed from white in the 1st day to pink in the following days. Pollen deposition on stigma induced floral color change. The effectiveness of the pollination is dependent on bees’ size; only large bees were regarded as effective pollinators. In experimental tests, the bees in T. pulchra preferred the natural white flowers while the visitors of T. sellowiana were attracted by both natural and mimetic 1st-day flowers (2nd-day flowers with experimentally attached 1st-day flower petals). During the experiments on floral fragrance, the bees visited both natural and mimetic 1st-day flowers (2nd-day flowers with 1st-day flower scents). In both experiments, the bees avoided natural 2nd-day flowers, but seldom visited modified 2nd-day flowers. The attractiveness of T. pulchra and T. sellowiana flowers cannot be attributed exclusively to the color or the fragrance separately, both factors seemingly act together.  相似文献   

20.
  • In sexually dimorphic species, hermaphrodite flowers in gynodioecious species or male flowers in dioecious species are often larger and produce more nectar than their conspecific female flowers. As a consequence, hermaphrodite or male flowers frequently receive more pollinator visits.
  • Sex ratio, flower size, floral display, nectar production and floral visits were evaluated in two natural populations of Fuchsia thymifolia, a morphologically gynodioecious but functionally subdioecious insect‐pollinated shrub.
  • Sex ratio did not differ from the expected 1:1 in the two studied populations. As expected, hermaphrodite flowers were larger than female flowers, but in contrast to the general pattern, hermaphrodite flowers did not produce nectar or produced much less than female flowers. Flower visitors were flies (68%) and bumblebees (24%), both of which showed a preference for female flowers. No sex difference was detected in either flower longevity or floral display across the flowering season.
  • Higher nectar production by females may attract more pollinators, and may be a strategy to enhance female reproductive success in this species. Finally, floral dimorphism and insect preferences did not seem to hamper the maintenance of sub‐dioecy or prevent the evolution of dioecy in F. thymifolia.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号