首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrate is one of the most important stimuli in nitrate reductase (NR) induction, while ammonium is usually an inhibitor. We evaluated the influence of nitrate, ammonium or urea as nitrogen sources on NR activity of the agarophyte Gracilaria chilensis. The addition of nitrate rapidly (2 min) induced NR activity, suggesting a fast post-translational regulation. In contrast, nitrate addition to starved algae stimulated rapid nitrate uptake without a concomitant induction of NR activity. These results show that in the absence of nitrate, NR activity is negatively affected, while the nitrate uptake system is active and ready to operate as soon as nitrate is available in the external medium, indicating that nitrate uptake and assimilation are differentially regulated. The addition of ammonium or urea as nitrogen sources stimulated NR activity after 24 h, different from that observed for other algae. However, a decrease in NR activity was observed after the third day under ammonium or urea. During the dark phase, G. chilensis NR activity was low when compared to the light phase. A light pulse of 15 min during the dark phase induced NR activity 1.5-fold suggesting also fast post-translational regulation. Nitrate reductase regulation by phosphorylation and dephosphorylation, and by protein synthesis and degradation, were evaluated using inhibitors. The results obtained for G. chilensis show a post-translational regulation as a rapid response mechanism by phosphorylation and dephosphorylation, and a slower mechanism by regulation of RNA synthesis coupled to de novo NR protein synthesis.  相似文献   

2.
Reduced light availability for benthic primary producers as a result of anthropogenic activities may be an important driver of change in coastal seas. However, our knowledge of the minimum light requirements for benthic macroalgae limits our understanding of how these changes may affect primary productivity and the functioning of coastal ecosystems. This knowledge gap is particularly acute in deeper water, where the impacts of increased light attenuation will be most severe. We examined the minimum light requirements of Anotrichium crinitum, which dominates near the maximum depth limit for macroalgae throughout New Zealand and Southern Australia, and is a functional analog of rhodophyte macroalgae in temperate low‐light (deep‐water) habitats throughout the world. These data show that A. crinitum is a shade‐adapted seaweed with modest light requirements for the initiation of net photosynthesis (1.49–2.25 μmol photons · m?2 · s?1) and growth (0.12–0.19 mol photons · m?2 · d?1). A. crinitum maintains high photosynthetic efficiency and pigment content and a low C:N ratio throughout the year and can maintain biomass under sub‐compensation (critical) light levels for at least 5 d. Nevertheless, in situ photon flux is less than the minimum light requirement for A. crinitum on at least 103 d per annum and is rarely sufficient to saturate growth. These findings reinforce the importance of understanding the physiological response of macroalgae at the extremes of environmental gradients and highlight the need to establish minimum thresholds that modification of the subtidal light environment should not cross.  相似文献   

3.
4.
1. The relative contribution of dissolved and atmospheric nitrogen to promoting dominance of the toxic nitrogen‐fixing cyanobacterium, Cylindrospermopsis raciborskii was examined in a subtropical water reservoir, North Pine Reservoir. 2. A combination of process studies in situ and analysis of historical water quality data suggests that nitrogen fixation was not the principal mechanism for acquiring nitrogen and unlikely to be the mechanism whereby C. raciborskii gains a competitive advantage. Ammonium was the preferred nitrogen source, followed by nitrate then nitrogen fixation. 3. Ammonium uptake rates in the euphotic zone were higher in the summer and autumn months compared with winter and spring coinciding with lower ammonium concentrations. Nitrate uptake rates did not appear to vary seasonally and were lower than those for ammonium in the summer, but similar in winter. Nitrate concentrations were higher in winter than summer and generally higher than ammonium concentrations. 4. Ammonium and nitrate uptake rates were similar at light intensities between 10% and 100% of surface light, contrasting with primary productivity which peaked between about 10 to 20% of surface light. Thus the phytoplankton population was adapted to low light conditions but remained able to utilise dissolved inorganic nitrogen over a wide range of light conditions. 5. The ammonium pool in the surface waters was relatively small compared with the phytoplankton uptake rates, and ammonium must therefore be rapidly recycled through the food web over periods of less than 1 h. Short‐term depletion may result, during which time the higher concentrations of nitrate are likely to provide a supplementary supply of nitrogen. 6. The dominance of C. raciborskii in this reservoir is more likely to be due to a superior ability to scavenge and store the low concentrations of phosphate, and a superior adaptation to the low light conditions exacerbated by artificial mixing.  相似文献   

5.
6.
Nitrate uptake and the medium alkalinization related to it were studied with nets of the coenocytic, giant cell, green alga Hydrodictyon reticulatum. A comparison of red, blue and white light irradiation showed no special control of nitrate uptake and of the corresponding alkalinization of the external medium by light quality, but rather a response as expected for the photosynthetic apparatus. In the dark, nitrate uptake rates amounted to one-fifth of those in saturating white light. This is in contrast to the chlorococcal microalga Monoraphidium braunii, where blue light specifically switched on nitrate uptake-dependent alkalinization and where uptake and reduction of nitrate strongly depended on blue light; the rates in pure red light and in the dark being very low. The stoichiometric ratio between nitrate taken up and extracellular alkalinization was close to 1 (0.86) in air with CO2 but close to 2 (1.84) in N2 for nitrate pre-loaded cells. In the absence of any carbon source, a high proportion of the absorbed and reduced nitrogen is released, most of it as ammonium which causes the excess alkalinization and some as nitrite, which lowers the ratio. Nitrite and ammonium release rates under anaerobic, CO2-free conditions were also independent of red or blue light and continued for several hours when the medium was buffered at pH 6. The data indicate that nitrate uptake, but less its reduction, is regulated differently in vacuolate, coenocytic algae from microalgae. In Hydrodictyon, nitrate uptake and reduction seems to be controlled by energy supply; in various microalgae, in addition, it is controlled specifically by blue light.  相似文献   

7.
Seagrass ecosystems are expected to benefit from the global increase in CO 2 in the ocean because the photosynthetic rate of these plants may be Ci‐limited at the current CO 2 level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H+ across the membrane as in terrestrial plants. Here, we investigate the effects of CO 2 enrichment on both carbon and nitrogen metabolism of the seagrass Zostera noltii in a mesocosm experiment where plants were exposed for 5 months to two experimental CO 2 concentrations (360 and 700 ppm). Both the maximum photosynthetic rate (Pm) and photosynthetic efficiency (α) were higher (1.3‐ and 4.1‐fold, respectively) in plants exposed to CO 2‐enriched conditions. On the other hand, no significant effects of CO 2 enrichment on leaf growth rates were observed, probably due to nitrogen limitation as revealed by the low nitrogen content of leaves. The leaf ammonium uptake rate and glutamine synthetase activity were not significantly affected by increased CO 2 concentrations. On the other hand, the leaf nitrate uptake rate of plants exposed to CO 2‐enriched conditions was fourfold lower than the uptake of plants exposed to current CO 2 level, suggesting that in the seagrass Z. noltii nitrate is not cotransported with H+ as in terrestrial plants. In contrast, the activity of nitrate reductase was threefold higher in plant leaves grown at high‐CO 2 concentrations. Our results suggest that the global effects of CO 2 on seagrass production may be spatially heterogeneous and depend on the specific nitrogen availability of each system. Under a CO 2 increase scenario, the natural levels of nutrients will probably become limiting for Z. noltii. This potential limitation becomes more relevant because the expected positive effect of CO 2 increase on nitrate uptake rate was not confirmed.  相似文献   

8.
The uptake of nitrate, ammonium and phosphate was examined in vitro in seedlings of the seagrass Amphibolis antarctica ((Labill.) Sonder ex Aschers.). Uptake of all three nutrients was significantly correlated with external concentration up to 800 µ g l–1. The uptake of nitrate (0–200 µ g NO3-N g dry wt–1 h–1) was significantly lower than the uptake of ammonium (0–500 µ g NH4-N g dry wt–1 h–1), suggesting that the seedlings have a higher affinity for this form of nitrogen in the water column.Data were in general agreement with uptake rates recorded for other seagrasses, notably Zostera marina. In comparison to the dominant macroalgae for the same region, seedlings had either similar or higher uptake rates in relation to external concentration, lending support to the hypothesis that seedlings, which do not possess roots, behave like macroalgae in terms of nutrient acquisition from the water column.A comparison with literature data on adult seagrass suggests, however, that seagrasses show lower uptake rates than macroalgae suggesting that the macroalgae, which are totally reliant on the water column for nutrients, are more efficient at uptake than seagrasses which may potentially use the sediment for a nutrient source.  相似文献   

9.
Nitrogen‐fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen‐13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen‐limiting conditions when inoculated with an ammonium‐excreting strain of Azospirillum brasilense. 11C‐labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen‐starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen‐sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production.  相似文献   

10.
1. The sources of nitrogen for phytoplankton were determined for a bloom‐prone lake as a means of assessing the hypothesis that cyanobacteria dominate in eutrophic lakes because of their ability to fix nitrogen when the nitrogen : phosphorous (N : P) supply ratio is low and nitrogen a limiting resource. 2. Nitrogen fixation rates, estimated through acetylene reduction with 15N calibration, were compared with 15N‐tracer estimates of ammonium and nitrate uptake monthly during the ice‐free season of 1999. In addition, the natural N stable isotope composition of phytoplankton, nitrate and ammonium were measured biweekly and the contribution of N2 to the phytoplankton signature estimated with a mixing model. 3. Although cyanobacteria made up 81–98% of phytoplankton biomass during summer and autumn, both assays suggested minimal N acquisition through fixation (<9% for the in‐situ incubations; <2% for stable isotope analysis). Phytoplankton acquired N primarily as ammonium (82–98%), and secondarily as nitrate (15–18% in spring and autumn, but <5% in summer). Heterocyst densities of <3 per 100 fixer cells confirmed low reliance on fixation. 4. The lake showed symptoms of both light and nitrogen limitation. Cyanobacteria may have dominated by monopolizing benthic sources of ammonium, or by forming surface scums that shaded other algae.  相似文献   

11.
12.
Alexandrium catenella (Whedon et Kofoid) Balech was isolated from Thau lagoon (northern Mediterranean) and its growth and uptake characteristics measured for nitrate, ammonium, and urea. Although affinity constants did not indicate a preference for ammonium over nitrate, there was a strong inhibition of nitrate uptake by ammonium when both nitrogen (N) sources were present. Nitrogen budgets during growth in cultures revealed major imbalances between decreases in dissolved N and increases in particulate N, indicating excretion of dissolved organic N during the early part of the growth phase and uptake during the later part. A quasi‐unialgal bloom in November 2001 (4×106 cells·L?1) allowed measurements of uptake of nitrate, nitrite, ammonium, and urea; net and gross growth rate of A. catenella; and grazing rates on this organism. The affinity constants indicate that it is not a strong competitor for the N nutrients tested when these are in low concentrations (<10 μgat N·L?1), compared with other members of the phytoplankton community. Indirect evidence from cultures indicate that dissolved organic N compounds could be important in triggering those blooms. Finally, the strongly unbalanced growth observed in the field indicates that A. catenella exhibits a storage rather than a growth response to a nutrient pulse and is adapted to low frequency events such as the passage of frontal disturbances. The disappearance of A. catenella was due to grazing that balanced growth at the peak of the bloom.  相似文献   

13.
Even in nitrogen‐replete ecosystems, microhabitats exist where local‐scale nutrient limitation occurs. For example, coastal waters of the northeastern Pacific Ocean are characterized by high nitrate concentrations associated with upwelling. However, macroalgae living in high‐zone tide pools on adjacent rocky shores are isolated from this upwelled nitrate for extended periods of time, leading to nutrient limitation. When high‐intertidal pools are isolated during low tide, invertebrate‐excreted ammonium accumulates, providing a potential nitrogen source for macroalgae. I quantified the influence of mussels (Mytilus californianus Conrad) on ammonium accumulation rates in tide pools. I then evaluated the effects of ammonium loading by mussels on nitrogen assimilation and growth rates of Odonthalia floccosa (Esp.) Falkenb., a common red algal inhabitant of pools on northeastern Pacific rocky shores. Odonthalia was grown in artificial tide pool mesocosms in the presence and absence of mussels. Mesocosms were subjected to a simulated tidal cycle mimicking emersion and immersion patterns of high‐intertidal pools on the central Oregon coast. In the presence of mussels, ammonium accumulated more quickly in the mesocosms, resulting in increased rates of nitrogen assimilation into algal tissues. These increased nitrogen assimilation rates were primarily associated with higher growth rates. In mesocosms containing mussels, Odonthalia individuals added 41% more biomass than in mesocosms without mussels. This direct positive effect of mussels on macroalgal biomass represents an often overlooked interaction between macroalgae and invertebrates. In nutrient‐limited microhabitats, such as high‐intertidal pools, invertebrate‐excreted ammonium is likely an important local‐scale contributor to macroalgal productivity.  相似文献   

14.
The influence of different concentration ranges (0–500 mg/L) of ammonium, nitrate and nitrite presence in the wastewater, on the performance of the pure culture of phosphate-accumulating bacterium Acinetobacter junii in the anaerobic and aerobic conditions, was investigated. A. junii was able to use ammonium and nitrate salts as the source of nitrogen, unlike in the case of nitrite salt. Comparing to the control reactors with the peptone and yeast extract as the sources of nitrogen, at the lowest tested concentration of ammonium and nitrate the performance of the system was inhibited due to the nitrogen deficit in the wastewater, while at the highest concentration it was positively influenced. Nitrite in all concentrations detrimentally affected the phosphate release and uptake rates, chemical oxygen demand uptake rates, nitrogen uptake rates, as well as multiplication of A. junii. The higher the nitrite concentration, the more pronounced was the effect. At the highest nitrite concentration tested a complete failure of the system was observed.  相似文献   

15.
16.
  • Pogonatherum crinitum is a promising lead (Pb) hyperaccumulator due to its high Pb tolerance and accumulation ability. However, the mechanisms that support Pb accumulation and tolerance in P. crinitum are not yet clearly understood.
  • An indoor hydroponic experiment was conducted by cultivating P. crinitum seedlings exposed to intermittent Pb stress for 60 days, divided into four stages (T1, T2, T3 and T4), with a 15‐day duration per stage. The following concentrations of Pb were used: 0, 500, 0, 500 mg·l?1 and 0, 1000, 0, 1000 mg·l?1). Antioxidant enzyme activity, Pb concentration and subcellular distribution of Pb were measured at each of the above stages.
  • The results showed that superoxide dismutase (SOD) activity in shoots, and SOD, peroxidase (POD) and malondialdehyde (MDA) activity in shoots and roots significantly increased from T1 (no Pb stress) to T2 (Pb stress) in both 500 mg·l?1 and 1000 mg·l?1 treatments; however, no significant difference was noted between stages T3 (no Pb stress) and T4 (Pb stress). There was no obvious effect of Pb stress on catalase (CAT) activity in shoots and roots among different stages. The Pb concentration in shoots was up to 5090.90 mg·kg?1 and 7573.57 mg·kg?1, and the bioconcentration factor (BFC) was 10.18 and 7.57 for the 500 mg·l?1 and 1000 mg·l?1 treatments, respectively, which confirmed the Pb hyperaccumulator characteristics of P. crinitum. For plants under Pb stress, most of the Pb was fixed in the cell walls, with a smaller amount in leaves and root vacuoles.
  • Both SOD and POD scavenging of reactive oxygen radicals and fixing and compartmentalisation of Pb in the cell wall might play important roles in detoxification of P. crinitum seedlings in response to Pb stress. There was no phased response of P. crinitum to intermittent Pb stress and the physiological response to Pb stress may be contiguous.
  相似文献   

17.
Despite worldwide proliferation of the genus Caulerpa and subsequent effects on benthic communities, little is known about the nutritional physiology of the Caulerpales. Here, we investigated the uptake rates of ammonium, nitrate, amino acids, and phosphate through the fronds and rhizoids + stolon, the internal translocation of nitrogen, and developed a nitrogen budget for the rapidly spreading Caulerpa prolifera in Ria Formosa lagoon, southern Portugal. Caulerpa prolifera acquired nutrients by both aboveground and belowground parts at similar rates, except nitrate, for which fronds showed 2-fold higher uptake rates. Ammonium was the preferential nitrogen source (81% of the total nitrogen acquisition), and amino acids, which accounted for a significant fraction of total N acquisition (19%), were taken up at faster rates than nitrate. Basipetal translocation of 15N incorporated as ammonium was nearly 3-fold higher than acropetal translocation, whereas 15N translocation as nitrate and amino acids was smaller but equal in either direction. The estimated total nitrogen acquisition by C. prolifera was 689 μmol · m−2 · h−1, whereas the total nitrogen requirement for growth was 672 μmol · m−2 · h−1. The uptake of ammonium and amino acids by belowground parts accounted for the larger fraction of the total nitrogen acquisition of C. prolifera and is sufficient to satisfy the species nitrogen requirements for growth. This may be one reason explaining the fast spreading of the seaweed in the bare sediments of Ria Formosa where it does not have any macrophyte competitors and the concentration of nutrients is high.  相似文献   

18.
19.
The uptake of amino acids and inorganic nitrogen by roots of Puccinellia phryganodes was examined to assess the potential contribution of soluble organic nitrogen to plant nitrogen uptake in Arctic coastal marshes, where free amino acids constitute a substantial fraction of the soil‐soluble N pool. Short‐term excised root uptake experiments were performed using tillers grown hydroponically under controlled conditions in the field. The percentage reductions in ammonium uptake at moderate salinity (150 mm NaCl) compared with uptake at low salinity (50 mm NaCl) were double those of glycine, but glycine uptake was more adversely affected than ammonium uptake by low temperatures. Glycine uptake was higher at pH 5·7 than at pH 7·0 or 8·2. The glycine uptake was up‐regulated in response to glycine, whereas ammonium uptake was up‐regulated in response to ammonium starvation. Nitrate uptake was strongly down‐regulated when tillers were grown on either ammonium or glycine. In contrast to N‐starved roots, which absorbed ammonium ions more rapidly than glycine, the roots grown on glycine, ammonium and nitrate and not N‐starved prior to uptake absorbed glycine as rapidly as ammonium and nitrate ions combined. Overall, the results indicate that amino acids are probably an important source of nitrogen for P. phryganodes in Arctic coastal marshes.  相似文献   

20.
Marine phytoplankton and macroalgae acquire important resources, such as inorganic nitrogen, from the surrounding seawater by uptake across their entire surface area. Rates of ammonium and nitrate uptake per unit surface area were remarkably similar for both marine phytoplankton and macroalgae at low external concentrations. At an external concentration of 1 μM, the mean rate of nitrogen uptake was 10±2 nmol·cm?2·h?1 (n=36). There was a strong negative relationship between log surface area:volume (SA:V) quotient and log nitrogen content per cm2 of surface (slope=?0.77), but a positive relationship between log SA:V and log maximum specific growth rate (μmax; slope=0.46). There was a strong negative relationship between log SA:V and log measured rate of ammonium assimilation per cm2 of surface, but the slope (?0.49) was steeper than that required to sustain μmax (?0.31). Calculated rates of ammonium assimilation required to sustain growth rates measured in natural populations were similar for both marine phytoplankton and macroalgae with an overall mean of 6.2±1.4 nmol·cm?2·h?1 (n=15). These values were similar to maximum rates of ammonium assimilation in phytoplankton with high SA:V, but the values for algae with low SA:V were substantially less than the maximum rate of ammonium assimilation. This suggests that the growth rates of both marine phytoplankton and macroalgae in nature are often constrained by rates of uptake and assimilation of nutrients per cm2 surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号