首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutathione S-transferases (GSTs) comprise a large family of key defence enzymes against xenobiotic toxicity. Here we describe the comprehensive characterisation of this important multigene family in the model monocot species rice [Oryza sativa (L.)]. Furthermore, we investigate the molecular evolution of the family based on the analysis of (1) the patterns of within-genome duplication, and (2) the phylogenetic relationships and evolutionary divergence among rice, Arabidopsis, maize and soybean GSTs. By in-silico screening of the EST and genome divisions of the Genbank/EMBL/DDBJ database we have isolated 59 putative genes and two pseudogenes, making this the largest plant GST family characterised to date. Of these, 38 (62%) are represented by genomic and EST sequences and 23 (38%) are known only from their genomic sequences. A preliminary survey of EST collections shows a large degree of variability in gene expression between different tissues and environmental conditions, with a small number of genes (13) accounting for 80% of all ESTs. Rice GSTs are organised in four main phylogenetic classes, with 91% of all rice genes belonging to the two plant-specific classes Tau (40 genes) and Phi (16 genes). Pairwise identity scores range between 17 and 98% for proteins of the same class, and 7 and 21% for interclass comparisons. Rapid evolution by gene duplication is suggested by the discovery of two large clusters of 7 and 23 closely related genes on chromosomes 1 and 10, respectively. A comparison of the complete GST families in two monocot and two dicot species suggests a monophyletic origin for all Theta and Zeta GSTs, and no more than three common ancestors for all Phi and Tau genes.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by M.-A. Grandbastien  相似文献   

2.
Light GG  Mahan JR  Roxas VP  Allen RD 《Planta》2005,222(2):346-354
Transgenic cotton (Gossypium hirsutum L.) lines expressing the tobacco glutathione S-transferase (GST) Nt107 were evaluated for tolerance to chilling, salinity, and herbicides, antioxidant enzyme activity, antioxidant compound levels, and lipid peroxidation. Although transgenic seedlings exhibited ten-fold and five-fold higher GST activity under normal and salt-stress conditions, respectively, germinating seedlings did not show improved tolerance to salinity, chilling conditions, or herbicides. Glutathione peroxidase (GPX) activity in transgenic seedlings was 30% to 60% higher under normal conditions, but was not different than GPX activity in wild-type seedlings under salt-stress conditions. Glutathione reductase, superoxide dismutase, ascorbate peroxidase, and monodehydroascorbate reductase activities were not increased in transgenic seedlings under salt-stress conditions, while dehydroascorbate reductase activity was decreased in transgenic seedlings under salt-stress conditions. Transgenic seedlings had 50% more oxidized glutathione when exposed to salt stress. Ascorbate levels were not increased in transgenic seedlings under salt-stress conditions. Malondialdehyde content in transgenic seedlings was nearly double that of wild-type seedlings under normal conditions and did not increase under salt-stress conditions. These results show that expression of Nt107 in cotton does not provide adequate protection against oxidative stress and suggests that the endogenous antioxidant system in cotton may be disrupted by the expression of the tobacco GST.  相似文献   

3.
4.
Glutathione S-transferases (GSTs) are believed to play a role in the detoxification of xenobiotics, resistance to insect viruses and pesticides, intracellular transport, biosynthesis of hormones and protection against oxidative stress. In this study, we used quantitative real time RT-PCR to examine expression profiles of the silkworm Bombyx mori GST-Sigma (BmGSTS2) and GST-Delta (BmGSTD2) genes in the larval midgut of the silkworm after exposure to 2-hydroxyecdysone (20E) and juvenile hormone analog (JHA). In concentration-course study, 20E at higher concentrations (1.0 and 2.0 μg/μl) caused significant upregulation of BmGSTD2, and all concentrations (0.5–2.0 μg/μl) of 20E caused significant upregulation of BmGSTS2. However, JHA in all concentrations downregulated the expression of BmGSTD2 and BmGSTS2. When exposed to either 20E (2.0 μg/μl) or JHA (2.0 μg/μl) on the third day of the fifth instar, the silkworm had higher BmGSTD2 at later time points: 15, 18, and 24 h for 20E and 24 h for JHA. BmGSTS2 expression was downregulated within 24 h after exposure to JHA and showed a time-dependent response after exposure to 20E. We also did a stage-dependent study, in which JHA downregulated BmGSTD2 expression and upregulated BmGSTS2 expression significantly at both day 1 and day 3 of the fifth instar. 20E upregulated the expression of BmGSTD2 and BmGSTS2 at the two stages. These findings imply that hormones have an important role in the regulation of basal GST expression. However, further validation and field trials should be carried out on the regulatory elements relevant to BmGSTD2 and BmGSTS2 gene expression.  相似文献   

5.
Using an Agrobacterium-mediated transformation method based on wounding cultured immature seeds with carborundum (600 mesh) in liquid, auxin-regulated tobacco glutathione S -transferase (GST) (NT107) constructs were used to transform Dianthus superbusL. A 663 bp DNA band was found in the transgenic plant genome by PCR analysis using NT107-1 and NT107-2 primers, and a Southern blot analysis showed that the DIG-labelled GST gene was hybridized to the expected amplified genomic DNA fragment from transgenic D. superbus. An overexpression of NT107 led to a twofold increase in GST-specific activity compared to the non-transgenic control plants, and the GST overexpression plants showed an enhanced acclimatization in the soil. To investigate whether an increased expression of GST could affect the resistance of photosynthesis to environmental stress, these plants were subjected to drought and various light intensities from 100 to 3000 mol m–2s–1. Copper accumulation and the translocation rate were also analysed in the transgenic lines, and the GST overexpression plants were found to synthesize phytochelatin (PC), which functions by sequestering and detoxifying excess copper ions.These two authors contributed equally to this work  相似文献   

6.
Glutatione S-transferases (GSTs) are a family of enzymes involved in detoxification of xenobiotics. Placental GST, known as GST-P, has been detected in tissues following exposure to carcinogenic agents being regarded a reliable biomarker of exposure and susceptibility in early phases of carcinogenesis. The aim of this study was to investigate the expressivity of GST-P positive foci in the rat tongue mucosa exposed to cigarette smoke by means of immunohistochemistry. A total of twelve male Wistar rats were distributed into two groups: negative control and experimental group exposed to cigarette smoke during 75 days. After experimental period, no histopathological changes in the tongue mucosa were evidenced in the negative control and the experimental group. However, a total of five GST-P positive foci were detected in two out of six animals exposed to cigarrette smoke. None control animals were noticed GST-P positive foci. These data indicate that expression of GST-P may reflect the carcinogenic effect of cigarette smoke as well as the genetic susceptibility of animals in relation to continuous carcinogens exposure.  相似文献   

7.
In the present study we show that repeated exposure of the rat intestinal epithelial cell line IEC-18 to 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP), from a toxicological point of view the most relevant phase-1 metabolite of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP, the main heterocyclic aromatic amine present in processed meat), led to the selection of N-OH-PhIP-resistant IEC-18 cells. This phenomenon was accompanied by a fivefold increase in total glutathione S-transferase (GST) activity, measured with the broad-spectrum substrate 1-chloro-2,4-dinitrobenzene, in the N-OH-PhIP-resistant IEC-18 cells. Furthermore, a Western blotting analysis revealed that the expression of GST subunits A1, A3, A4, M1 and P1 was enhanced in the N-OH-PhIP-resistant IEC-18 cells.  相似文献   

8.
Members of the glutathione S-transferase superfamily can protect organisms against oxidative stress. In this study, we characterized an omega glutathione S-transferase from Spodoptera exigua (SeGSTo). The SeGSTo gene contains an open reading frame (ORF) of 744 nucleotides encoding a 248-amino acid polypeptide. The predicted molecular mass and isoelectric point of SeGSTo are 29007 Da and 7.74, respectively. Multiple amino acid sequence alignment analysis shows that the SeGSTo sequence is closely related to the class 4 GSTo of Bombyx mori BmGSTo4 (77 % protein sequence similarity). Homologous modeling and molecular docking reveal that Cys35 may play an essential role in the catalytic process. Additionally, the phylogenetic tree indicates that SeGSTo belongs to the omega group of the GST superfamily. During S. exigua development, SeGSTo is expressed in the midgut of the fifth instar larval stage, but not in the epidermis or fat body. Identification of recombinant SeGSTo via SDS-PAGE and Western blot shows that its molecular mass is 30 kDa. The recombinant SeGSTo was able to protect super-coiled DNA from damage in a metal-catalyzed oxidation (MCO) system and catalyze the 1-chloro-2,4-dinitrobenzene (CDNB), but not 1,2-dichloro-4-nitrobenzene (DCNB), 4-nitrophenethyl bromide (4-NPB), or 4-nitrobenzyl chloride (4-NBC). The optimal reaction pH and temperature were 8 and 50 °C, respectively, in the catalysis of CDNB by recombinant SeGSTo. The mRNA expression of SeGSTo was up-regulated by various oxidative stresses, such as CdCl2, CuSO4, and isoprocarb, and the catalytic activity of recombinant SeGSTo was noticeably inhibited by heavy metals (Cu2+ and Cd2+) and various pesticides. Taken together, these results indicate that SeGSTo plays an important role in the antioxidation and detoxification of pesticides.  相似文献   

9.
Apple (Malus domestica Borkh.) possesses gametophytic self-incompatibility (GSI) which is controlled by S-RNase in the pistil as well as a pollen S-determinant that has not been well characterized. The identification of S-locus F-box brother (SFBB) genes, which are good candidates for the pollen S-determinant in apple and pear, indicated the presence of multiple S-allelic polymorphic F-box genes at the S-locus. In apple, two SFBB gene groups have been described, while there are at least three groups in pear. In this report, we identified five MdSLFB (S-RNase-linked F-box) genes from four different S-genotypes of apple. These genes showed pollen- and S-allele-specific expression with a high polymorphism among S-alleles. The phylogenetic tree suggested that some of them belong to SFBBα or β groups as described previously, while others appear to be different from SFBBs. In particular, the presence of MdSLFB3 and MdSLFB9 suggested that there are more S-allelic polymorphic F-box gene groups in the S-locus besides α and β. Based on the sequence polymorphism of MdSLFBs, we developed an S-genotyping system for apple cultivars. In addition, we isolated twelve MdSLFB-like genes, which showed pollen-specific expression without S-allelic polymorphism.  相似文献   

10.
Glutathione S-transferases (GSTs, EC 2.5.1.18) are a family of multi-functional enzymes involved in biodegradation of several herbicide classes. The ability of the maize isoenzyme GST I to detoxify from the acetanilide herbicide alachlor was investigated by steady-state kinetics and site-directed mutagenesis studies. Steady-state kinetics fit well to a rapid equilibrium random sequential bi-bi mechanism with intrasubunit modulation between GSH binding site (G-site) and electrophile binding site (H-site). The rate-limiting step of the reaction is viscosity-dependent and thermodynamic data suggest that product release is rate-limiting. Three residues of GST I (Trp12, Phe35 and Ile118), which build up the xenobiotic binding site, were mutated and their functional and structural roles during alachlor conjugation were investigated. These residues are not conserved, hence may affect substrate specificity and/or product dissociation. The work showed that the key amino acid residue Phe35 modulates xenobiotic substrate binding and specificity, and participates in kcat regulation by affecting the rate-limiting step of the catalytic reaction. Trp12 and Ile118 do not seem to carry out such functions but instead, regulate the Km for alachlor by contributing to its productive orientation in the H-site. The results of the present work have practical significance since this may provide the basis for the rational design of new engineered GSTs with altered substrate specificity towards herbicides and may facilitate the design of new, more selective herbicides.  相似文献   

11.
In F1 hybrid breeding of Brassica vegetables utilizing the self-incompatibility system, identification of S genotypes in breeding lines is required. In the present study, we developed S-tester lines of 87 S haplotypes, i.e., 42 S haplotypes in B. rapa and 45 S haplotypes in B. oleracea. With these materials, we established a simple, efficient, and reliable dot-blot technique for S genotyping for 40 S haplotypes of B. rapa and and 33 of B. oleracea using allele-specific oligonucleotide probes and allele-specific primer pairs designed from sequences of each SP11 allele. In this method, DNA fragments amplified using multiplex primer pairs with digoxigenin-dUTP were hybridized with dot-blotted allele-specific oligonucleotide probes with distinct signals. In addition, we developed a screening method for identification of plants harboring a particular S haplotype using a labeled allele-specific oligonucleotide probe. This method is considered to be useful for purity testing of F1 hybrid seeds.  相似文献   

12.

Background  

Salmonella enterica serovar Typhi and Typhimurium are closely related serovars as indicated by >96% DNA sequence identity between shared genes. Nevertheless, S. Typhi is a strictly human-specific pathogen causing a systemic disease, typhoid fever. In contrast, S. Typhimurium is a broad host range pathogen causing only a self-limited gastroenteritis in immunocompetent humans. We hypothesize that these differences have arisen because some genes are unique to each serovar either gained by horizontal gene transfer or by the loss of gene activity due to mutation, such as pseudogenes. S. Typhi has 5% of genes as pseudogenes, much more than S. Typhimurium which contains 1%. As a consequence, S. Typhi lacks several protein effectors implicated in invasion, proliferation and/or translocation by the type III secretion system that are fully functional proteins in S. Typhimurium. SseJ, one of these effectors, corresponds to an acyltransferase/lipase that participates in SCV biogenesis in human epithelial cell lines and is needed for full virulence of S. Typhimurium. In S. Typhi, sseJ is a pseudogene. Therefore, we suggest that sseJ inactivation in S. Typhi has an important role in the development of the systemic infection.  相似文献   

13.
A self-incompatibility system is used for F(1) hybrid breeding in Brassicaceae vegetables. The determinants of recognition specificity of self-incompatibility in Brassica are SRK in the stigma and SP11/SCR in the pollen. Nucleotide sequences of SP11 alleles are more highly variable than those of SRK. We analyzed the S haplotype specificity of SP11 DNA by Southern-blot analysis and dot-blot analysis using 16 S haplotypes in Brassica oleracea, and found that DNA fragments of a mature protein region of SP11 cDNA, SP11(m), of eight S haplotypes can detect only the SP11 alleles of the same S haplotypes. This specificity makes these methods useful for S haplotype identification. Therefore, we developed two methods of dot-blot analysis for SP11. One is dot blotting of DNA samples, i.e. plant genomic DNA probed with labeled SP11(m), and the other is dot blotting of SP11(m) DNA fragments probed with labeled DNA samples, i.e. the SP11 coding region labeled by PCR using a template of plant genomic DNA. The former is useful for testing many plant materials. The latter is suitable, if there is no previous information on the S haplotypes of plant materials.  相似文献   

14.
15.
16.
Bamboos, very relevant plants in many countries around the world, are propagated at large scale with extreme difficulties. Use of seeds is challenging because of plant’s sporadic flowering and long flowering cycles, together with seed recalcitrance and consumption by wild animals. Vegetative propagation of bamboo is mainly conducted by cuttings and by air layering. However, these methods are only useful at small-scale because they damage the mother plants, propagation material is bulky and difficult to be transported and is only available during few months of the year. Therefore, in vitro propagation offers the opportunity to obtain large progenies from elite genotypes. In most cases, when developing protocols for in vitro propagation of plants, specific conditions for individual species, genotypes and even development stages of the donor plants must be identified by trial-and-error experiments. Because of the size of and the large diversity observed in this plant family, it usually takes several months to define most adequate culture medium, combination of plant growth regulators and of other compounds for fostering the desired development in the explants. Therefore, in this detailed review, that also puts together results from hard-to-find literature, we list all identified cases, in which development of axillary shoots was used to propagate bamboo plants, by presenting successful ways for disinfection, in vitro bud sprouting, multiplication, rooting and acclimatization.  相似文献   

17.
Polyamines are known to play important roles in plant stress tolerance but it has been difficult to determine precise functions for each type of polyamine and their interrelationships. To dissect the roles of putrescine from the higher polyamines spermidine and spermine, we generated transgenic rice plants constitutively expressing a heterologous S-adenosylmethionine decarboxylase (SAMDC) gene from Datura stramonium so that spermidine and spermine levels could be investigated while maintaining a constant putrescine pool. Whereas transgenic plants expressing arginine decarboxylase (ADC) produced higher levels of putrescine, spermidine and spermine, and were protected from drought stress, transgenic plants expressing SAMDC produced normal levels of putrescine and showed drought symptoms typical of wild type plants under stress, but the transgenic plants showed a much more robust recovery on return to normal conditions (90% full recovery compared to 25% partial recovery for wild type plants). At the molecular level, both wild type and transgenic plants showed transient reductions in the levels of endogenous ADC1 and SAMDC mRNA, but only wild type plants showed a spike in putrescine levels under stress. In transgenic plants, there was no spike in putrescine but a smooth increase in spermine levels at the expense of spermidine. These results confirm and extend the threshold model for polyamine activity in drought stress, and attribute individual roles to putrescine, spermidine and spermine.  相似文献   

18.
Most Rosaceae fruit trees such as Japanese plum and sweet cherry have a gametophytic self-incompatibility (GSI) system controlled by a single S locus containing at least two linked genes with multiple alleles, i.e., S-RNase as a pistil determinant and SFB (S-haplotype-specific F-box gene) as a candidate for the pollen S determinant. For identification of S genotypes, many methods based on polymerase chain reaction (PCR) utilizing polymorphism in length of the S-RNase and SFB gene have been developed. In this study, we developed two dot-blot analysis methods for S-haplotype identification utilizing allele-specific oligonucleotides based on the SFB-HVa region, which has high sequence polymorphism. Dot-blotting of allele-specific oligonucleotides hybridized with digoxigenin-labeled PCR products allowed S genotyping of plants with nine S haplotypes (S-a, S-b, S-c, S-e, S-f, S-h, S-k, S-7 and S-10) in Japanese plum and ten S haplotypes (S-1, S-2, S-3, S-4, S-4, S-5, S-6, S-7, S-9 and S-16) in sweet cherry (dot-blot-S-genotyping). In addition, dot-blotting of PCR products of SFB probed with the allele-specific oligonucleotides, occasionally utilizing competitive hybridization, was successful in screening for a desirable S haplotype in sweet cherry (dot-blot-S-screening).  相似文献   

19.
Rice yield is severely affected by high-salt concentration in the vicinity of the plant. In an effort to engineer rice for improved salt tolerance Agrobacterium-mediated transformation of rice cv. Binnatoa was accomplished with the Pennisetum glaucum vacuolar Na+/H+ antiporter gene (PgNHX1) under the constitutive CaMV35S promoter. For the molecular analysis of putative transgenic plants, PCR and RT-PCR were performed. Transgenic rice plants expressing PgNHX1 showed better physiological status and completed their life cycle by setting flowers and seeds in salt stress, while wild-type plants exhibited rapid chlorosis and growth inhibition. Moreover, transgenic rice plants produced higher grain yields than wild-type plants under salt stress. Assessment of the salinity tolerance of the transgenic plants at seedling and reproductive stages demonstrated the potential of PgNHX1 for imparting enhanced salt tolerance capabilities and improved yield.  相似文献   

20.
Radish, belonging to the family Brassicaceae, has a self-incompatibility which is controlled by multiple alleles on the S locus. To employ the self-incompatibility in an F1 breeding system, identification of S haplotypes is necessary. Since collection of S haplotypes and determination of nucleotide sequences of SLG, SRK, and SCR alleles in cultivated radish have been conducted by different groups independently, the same or similar sequences with different S haplotype names and different sequences with the same S haplotype names have been registered in public databases, resulting in confusion of S haplotype names for researchers and breeders. In the present study, we developed S homozygous lines from radish F1 hybrid cultivars in Japan and determined the nucleotide sequences of SCR, the S domain and the kinase domain of SRK, and the SLG of a large number of S haplotypes. Comparing these sequences with our previously published sequences, the haplotypes were ordered into 23 different S haplotypes. The sequences of the 23 S haplotypes were compared with S haplotype sequences registered by different groups, and we suggested a unification of these S haplotypes. Furthermore, dot-blot hybridization using SRK allele-specific probes was examined for developing a standard method for S haplotype identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号