首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation of exogenous NADH by mitochondria from potato ( Solanum tuberosum L., cv. Bintje) tubers, measured with different electron acceptors, oxygen, cytochrome c , duroquinone and ubiquinone 1, was greatly enhanced under high salt conditions compared to low salt conditions, confirming the stimulatory effect of electrostatic screeening of negative membrane charges by cations. In addition to this nonspecific stimulation, the oxidation of exogenous NADH showed a specific dependence on Ca2+. Results presented here suggest that calmodulin was not directly involved in the regulation of exogenous NADH oxidation by potato mitochondria: (1) Calmodulin antagonists were found to inhibit electron flow at several sites in a nonspecific manner. (2) Using a phenothiazine-Affi Gel column, it was not possible to demonstrate the presence of calmodulin in Triton X-100 solubilized mitochondria. (3) Fractions eluted from a calmodulin-Sepharose column with EGTA [ethyleneglycolbis (β-aminoethylether)-N, N, N', N'-tetraacetic acid] did not display any activity related to mitochondrial electron transport, suggesting that NADH dehydrogenase had no specific affinity for calmodulin. The possible indirect involvement of calmodulin in the regulation of exogenous NADH oxidation by Ca2+ is discussed.  相似文献   

2.
External NADH and succinate were oxidized at similar rates by soybean (Glycine max) cotyledon and leaf mitochondria when the cytochrome chain was operating, but the rate of NADH oxidation via the alternative oxidase was only half that of succinate. However, measurements of the redox poise of the endogenous quinone pool and reduction of added quinones revealed that external NADH reduced them to the same, or greater, extent than did succinate. A kinetic analysis of the relationship between alternative oxidase activity and the redox state of ubiquinone indicated that the degree of ubiquinone reduction during external NADH oxidation was sufficient to fully engage the alternative oxidase. Measurements of NADH oxidation in the presence of succinate showed that the two substrates competed for cytochrome chain activity but not for alternative oxidase activity. Both reduced Q-1 and duroquinone were readily oxidized by the cytochrome oxidase pathway but only slowly by the alternative oxidase pathway in soybean mitochondria. In mitochondria isolated from the thermogenic spadix of Philodendron selloum, on the other hand, quinol oxidation via the alternative oxidase was relatively rapid; in these mitochondria, external NADH was also oxidized readily by the alternative oxidase. Antibodies raised against alternative oxidase proteins from Sauromatum guttatum cross-reacted with proteins of similar molecular size from soybean mitochondria, indicating similarities between the two alternative oxidases. However, it appears that the organization of the respiratory chain in soybean is different, and we suggest that some segregation of electron transport chain components may exist in mitochondria from nonthermogenic plant tissues.  相似文献   

3.
Mitochondria isolated from mesophyll protoplasts differed from mitochondria isolated directly from leaves of Avena sativa in that protoplast mitochondria (a) had a lower overall respiratory capacity, (b) were less able to use low concentrations of exogenous NADH, (c) did not respond rapidly or strongly to added NAD, (d) appeared to accumulate more oxaloacetate, and (e) oxidized both succinate and tetramethyl-p-phenylene-diamine (an electron donor for cytochrome oxidase) more slowly than did leaf mitochondria. It is concluded that cytochrome oxidase activity was inhibited, the external NADH dehydrogenase had a reduced affinity for NADH, succinate oxidation was inhibited, NAD and oxaloacetate porters were probably inhibited, and accessibility to respiratory paths may have been reduced in protoplast mitochondria. The results also suggest that there was a reduced affinity of a succinate porter for this substrate in oat mitochondria. In addition, all oat mitochondria required salicylhydroxamic acid (SHAM) as well as cyanide to block malate and succinate oxidation. Malate oxidation that did not appear to saturate the cytochrome pathway was sensitive to SHAM in the absence of cyanide, suggesting that the oat mitochondria studied had concomitant alternative and subsaturating cytochrome oxidase pathway activity.  相似文献   

4.
Cells of the E3-24 mutant of the strain D273-10B of Saccharomyces cerevisiae, grown in a fermentable substrate not showing catabolite repression of respiration (2% galactose), are able to respire, in spite of their ubiquinone deficiency in mitochondrial membranes. Mitochondria isolated from these mutant cells oxidize exogenous NADH through a pathway insensitive to antimycin A but inhibited by cyanide. Addition of methanolic solutions of ubiquinone homologs stimulates the oxidation rate and restores antimycin A sensitivity in both isolated mitochondria and whole cells. Mersalyl preincubation of isolated mitochondria inhibits both NADH oxidation and NADH-cytochrome c oxido-reductase activity (assayed in the presence of cyanide) with the same pattern. Electrons resulting from the oxidation of exogenous NADH reduce both cytochrome b5 and endogenous cytochrome c. The increase in ionic strength stimulates NADH oxidation, which is also coupled to the ATP synthesis with an ATP/O ratio similar to that obtained with ascorbate plus N,N,N',N'-tetramethyl-p-phenylendiamine (TMPD) as substrate. The effect of cyanide on these activities and on NADH-induced endogenous cytochrome c reduction is also comparable. These results support the existence in vivo and in isolated mitochondria of a energy-conserving pathway for the oxidation of cytoplasmatic NADH not related to the dehydrogenases of the inner membrane, the ubiquinone, and the b-c1 complex, but involving a cytochrome c shuttle between the NADH-cytochrome c reductase of the outer membrane and cytochrome oxidase in the inner membrane.  相似文献   

5.
Cyanide-insensitive mitochondria from Saccharomycopsis lipolytica possess an exogenous NADH dehydrogenase, located outside the inner mitochondrial membrane, and linked to coupling site II. These mitochondria are able to oxidize exogenous NADH via two pathways: (1) a cyanide- and antimycin-sensitive pathway, or cytochrome pathway, and (2) a cyanide- and antimycin-insensitive pathway, or alternative pathway. Although the oxidation of exogenous NADH through the cytochrome pathway occurs with an ATP/0 ratio tending to 2, it proceeds, per molecule of NADH oxidized, with the apparent ejection in the outer medium of only 3 protons instead of 4 protons, as is the case with glycerol 3-phosphate as control substrate, but leaves 1 hydroxyl ion in the outer medium after decay of the protonmotive force. These properties were used to demonstrate the non electrogenic function of the alternative pathway. Indeed, the oxidation of exogenous NADH via the alternative pathway proceeds without apparent ejection of protons, although this oxidation generates an electron flux in the alternative pathway as demonstrated by the net appearance in the outer medium of 1 hydroxyl ion per atom of oxygen reduced, appearance which proves sensitive to benhydroxamic acid, a specific inhibitor of the alternative pathway. The non electrogenicity of the alternative pathway is accompanied by the absence of ATP synthesis as expected from Mitchell's chemiosmotic model. The absence of energy conservation when the electron transfer proceeds via the alternative pathway is not the result of an uncoupling property of an active alternative pathway, as the oxidation of malate plus pyruvate via coupling site I and the alternative pathway occurs with an ATP/0 ratio tending to 1.  相似文献   

6.
The study of the effect of nucleoside phosphates on the activity of cyanide-resistant oxidase in the mitochondria and submitochondrial particles of Yarrowia lipolytica showed that adenosine monophosphate (5'-AMP, AMP) did not stimulate the respiration of intact mitochondria. The incubation of mitochondria at room temperature (25 degrees C) for 3-5 h or their treatment with ultrasound, phospholipase A, and the detergent Triton X-100 at a low temperature inactivated the cyanide-resistant alternative oxidase. The inactivated alternative oxidase could be reactivated with AMP. The reactivating effect of AMP was enhanced by azolectin. Some other nucleoside phosphates also showed reactivating ability in the following descending order: AMP = GMP > GDP > GTP > MP > IMP. The apparent K(m) values for AMP in reactivation of the alternative oxidase of submitochondrial particles or mitochondria treated with Triton X-100 and incubated at 25 degrees C were calculated. Physiological aspects of activation of the alternative oxidase are discussed in connection with the impairment of electron transfer through the cytochrome pathway.  相似文献   

7.
ATP synthesis during exogenous NADH oxidation. A reappraisal   总被引:1,自引:0,他引:1  
This paper reports a reinvestigation on the pathway for mitochondrial oxidation of exogenous NADH and on the related ATP synthesis, first reported 30 years ago (Lehninger, A.L. (1951) J. Biol. Chem. 190, 345-359). NADH oxidation, both in intact and in water-treated mitochondria, is 90% inhibited by mersalyl, an inhibitor of the outer membrane NADH-cytochrome b5 reductase, and 10% inhibited by rotenone. The mersalyl-sensitive, but not the rotenone-sensitive, portion of NADH oxidation is stimulated by exogenous cytochrome c. Part of ATP synthesis is independent of exogenous NADH and cytochrome c, and is inhibited by rotenone and antimycin A, and is therefore due to oxidation of endogenous substrates. Another part of ATP synthesis is dependent on exogenous NADH and cytochrome c, is insensitive to rotenone and antimycin A, and is due to operation of cytochrome oxidase. It is concluded that (i) oxidation of exogenous NADH in the presence of cytochrome c proceeds mostly through NADH-cytochrome b5 reductase and cytochrome b5 on the outer membrane and then through cytochrome oxidase via the cytochrome c shuttle, and (ii) ATP synthesis during oxidation of exogenous NADH is partly due to oxidation of endogenous substrates and partly to operation of cytochrome oxidase receiving electrons from the outer membrane via cytochrome c.  相似文献   

8.
Potato tuber mitochondria oxidized exogenous NADH and exogenous NADPH at similar rates; the electron transfer inhibitor rotenone did not inhibit the oxidation of either substrate. Submitochondrial particles, prepared from potato tuber mitochondria, exhibited a greater capacity to oxidize NADH than NADPH; rotenone inhibited the oxidation of NADH by 29% and the oxidation of NADPH by 16%. The oxidation of both NADH and NADPH by potato mitochondria exhibited pH optima of 6.8, and although substantial NADH oxidase activity was observed at pH 8.0, little NADPH oxidase activity was detected at that pH. The oxidation of NADPH by the mitochondria was more sensitive to inhibition by EDTA than was the oxidation of NADH.  相似文献   

9.
Malate oxidation in plant mitochondria proceeds through the activities of two enzymes: a malate dehydrogenase and a NAD+-dependent malic enzyme. In cauliflower, mitochondria malate oxidation via malate dehydrogenase is rotenone- and cyanide-sensitive. Addition of exogenous NAD+ stimulates the oxidation of malate via malic enzyme and generates an electron flux that is both rotenone- and cyanide-insensitive. The same effects of exogenous NAD+ are also observed with highly cyanide-sensitive mitochondria from white potato tubers or with mitochondria from spinach leaves. Both enzymes are located in the matrix, but some experimental data also suggest that part of malate dehydrogenase activity is also present outside the matrix compartment (adsorbed cytosolic malate dehydrogenase?). It is concluded that malic enzyme and a specific pool of NAD+/NADH are connected to the cyanide-insensitive alternative pathway by a specific rotenone-insensitive NADH dehydrogenase located on the inner face of the inner membrane. Similarly, malate dehydrogenase and another specific pool of NAD+/NADH are connected to the cyanide- (and antimycin-) sensitive pathway by a rotenone-sensitive NADH dehydrogenase located on the inner face of the inner membrane. A general scheme of electron transport in plant mitochondria for the oxidation of malate and NADH can be given, assuming that different pools of ubiquinone act as a branch point between various dehydrogenases, the cyanide-sensitive cytochrome pathway and the cyanide-insensitive alternative pathway.  相似文献   

10.
Oxidation of exogenous NADH by isolated rat liver mitochondria is generally accepted to be mediated by endogenous cytochrome c which shuttles electrons from the outer to the inner mitochondrial membrane. More recently it has been suggested that, in the presence of added cytochrome c, NADH oxidation is carried out exclusively by the cytochrome oxidase of broken or damaged mitochondria. Here we show that electrons can be transferred in and out of intact mitochondria. It is proposed that at the contact sites between the inner and the outer membrane, a "bi-trans-membrane" electron transport chain is present. The pathway, consisting of Complex III, NADH-b5 reductase, exogenous cytochrome c and cytochrome oxidase, can channel electrons from the external face of the outer membrane to the matrix face of the inner membrane and viceversa. The activity of the pathway is strictly dependent on both the activity of the respiratory chain and mitochondrion integrity.  相似文献   

11.
Stimulation of the Alternative Pathway by Succinate and Malate   总被引:2,自引:2,他引:0       下载免费PDF全文
Stimulation of the cyanide-resistant oxidation of exogenous NADH in potato (Solanum tuberosum L. cv Bintje) tuber callus mitochondria was obtained with succinate, malate, and pyruvate. Half-maximal stimulation was observed at a succinate or malate concentration of 3 to 4 mM, which is considerably higher than that found for pyruvate (0.128 mM). No effect of succinate or malate addition was found when duroquinone was the electron acceptor. Duroquinol oxidation via the alternative pathway was poor and not stimulated by organic acids. Under stimulating conditions, no swelling or contraction of the mitochondria could be observed. Conversely, variation of the osmolarity did not affect the extent of stimulation. However, the assay temperature had a significant effect: no stimulation occurred at temperatures below 16 to 20[deg]C. Membrane fluidity measurements showed a phase transition at about 17[deg]C. Ubiquinone reduction levels were not significantly higher in the presence of succinate and malate, but the kinetics of the alternative oxidase were changed in a way comparable to that found for stimulation by pyruvate. At low temperatures the alternative oxidase displayed "activated" kinetics, and a role for membrane fluidity in the stimulation of the alternative pathway by carboxylic acids is suggested.  相似文献   

12.
Triton X-100 and exogenous dolichol monophosphate have been used to investigate the nature of enzymes responsible for the transfer of mannose, glucose and N-acetylglucosamine phosphate from nucleotide donors to dolichol monophosphate in vesicles derived from rough and smooth endoplasmic reticulum and mitochondria. Mitochondria were shown to contain the highest specific activities of these enzymes. The responses of the glycosyltransferases to increasing concentrations of Triton X-100 and the effect on these responses of exogenous dolichol monophosphate suggest that the enzymes for mannose and glucose transfer are less hydrophobic, and therefore less intrinsic, in the membrane than the enzyme for N-acetylglucosamine phosphate transfer. In smooth vesicles the results are consistent with mannosyl- and glucosyl-transferases being located at both inner and outer faces of the membrane. In rough vesicles and in mitochondria mannosyl- and glucosyl-transferases were confirmed at the outer face. There is, however, only one site of N-acetylglucosamine phosphate transfer, this being more hydrophobically located in the membrane than the other sites of glycosyl transfer. Mitochondrial enzyme activity closely resembled that of rough endoplasmic reticulum in response to Triton X-100 and exogenous dolichol monophosphate, and is probably associated with the outer membrane.  相似文献   

13.
The ability of cyanide-resistant mitochondria of yeast Candida lipolytica to perform reverse electron transfer from cytochrome c to alternative oxidase was studied. It was shown that the energy for such a transfer can be provided by high energy intermediates or membrane potential but not by ATP. Reverse electron transfer from cytochrome c is impossible due to energy of NADH and alpha-glycerophosphate oxidation via alternative pathway in the presence of cyanide. These results prove once again that electron transfer via alternative pathway is not connected with the energy accumulation.  相似文献   

14.
Oxidation of exogenous NADH in mitochondria isolated from wild type and mi-1 mutant of Neurospora crassa decreases rapidly in vitro. In mi-1 mutant mitochondria the inactivation concerns the alternate pathway of oxidation whereas in the wild type it involves an unknown component of the respiratory chain. The activity of the primary NADH dehydrogenase is constant within the time of the experiments (2-4 h). NADH oxidase is not inactivated if oxygen is removed from the incubation medium by nitrogen bubbling. Succinate oxidase does not show any remarkable changes in activity within 2-3 h. In fresh mitochondria of the mi-1 mutant reduced ubiquinone is completely reoxidized by cytochrome oxidase but only 80% reoxidized by the alternate oxidase. In aged mitochondria of the mi-1 mutant in the presence of cyanide, ubiquinone is reduced to the level characteristic for fresh mitochondria in which respiration is completely inhibited by cyanide plus salicylhydroxamic acid. In these mitochondria the reoxidation of the reduced ubiquinone proceeds only via the cytochrome pathway. It is supposed that a labile component(s) of the respiratory chain present in the mi-1 mutant and the wild type mitochondria may, in mi-1 mutant, act as an alternate oxidase.  相似文献   

15.
A yeast strain (SP1) resistant to glucose repression modified simultaneously in the fermentative and in the oxidative pathways (loss of alcohol dehydrogenase I and over production of cytochrome a + a3, being insensitive to the glucose effect) developed a secondary mitochondrial hydrogen pathway. Oxidative phosphorylation was measured with exogenous NADH as substrate on mitochondria derived from repressed or derepressed cells. In this strain, antimycin A promotes a partial inhibition of NADH oxidation but a complete inhibition of phosphorylation. Amytal partially inhibits oxidation of NADH but not phosphorylation. KCN inhibits NADH oxidation in a biphasic way (first level 0.1 mM, second level 5 mM) but phosphorylation was fully inhibited by 0.1 mM KCN. This alternative but non-phosphorylating pathway is insensitive to salicyl hydroxamate. The external NADH dehydrogenase, like cytochrome c oxidase is partially insensitive to catabolite repression. These results provide evidence for the presence in strain SP1 of an alternative mitochondrial pathway, going from the external NADH dehydrogenase to an oxidase, different from the normal NADH dehydrogenase ubiquinone pathway.  相似文献   

16.
Addition of exogenous NADH to rotenone- and antimycin A-treated mitochondria, in 125 mM KCl, results in rates of oxygen uptake of 0.5-1 and 10-12 nanoatoms of oxygen X mg protein-1 X min-1 in the absence and presence of cytochrome c, respectively. During oxidation of exogenous NADH there is a fast and complete reduction of cytochrome b5 while endogenous or added exogenous cytochrome c become 10-15% and 100% reduced, respectively. The reoxidation of cytochrome b5, after exhaustion of NADH, precedes that of cytochrome c. NADH oxidation is blocked by mersalyl, an inhibitor of NADH-cytochrome b5 reductase. These observations support the view of an electron transfer from the outer to the inner membrane of intact mitochondria. Both the rate of exogenous NADH oxidation and the steady state level of cytochrome c reduction increase with the increase of ionic strength, while the rate of succinate oxidation undergoes a parallel depression. These observations suggest that the functions of cytochrome c as an electron carrier in the inner membrane and as an electron shuttle in the intermembrane space are alternative. It is concluded that aerobic oxidation of exogenous NADH involves the following pathway: NADH leads to NADH-cytochrome b5 reductase leads to cytochrome b5 leads to intermembrane cytochrome c leads to cytochrome oxidase leads to oxygen. It is suggested that the communication between the outer and inner membranes mediated by cytochrome c may affect the oxidation-reduction level of cytosolic NADH and the related oxidation-reduction reactions.  相似文献   

17.
In Arum and soybean (Glycine max L.) mitochondria, the dependence of the alternative oxidase activity on the redox level of ubiquinone, with NADH and succinate as substrates, was studied, using a voltametric procedure to measure the ubiquinone redox poise in the mitochondrial membrane. The results showed that when the enzyme was activated by pyruvate the relationship between the alternative oxidase rate and the redox state of the ubiquinone pool was the same for both NADH and succinate oxidations. In the absence of pyruvate the alternative oxidase had an apparent lower affinity for ubiquinol. This was more marked with NADH than with succinate and was possibly due to pyruvate production during succinate oxidation or to an activation of the alternative oxidase by succinate itself. In Arum spadix (unlike soybean cotyledon) mitochondria, succinate oxidation via the alternative oxidase maintained the ubiquinone pool in a partially reduced state (60%), whereas NADH oxidation kept it almost completely reduced. Previous data comparing mitochondria from thermogenic and nonthermogenic tissues have not examined the full range of ubiquinone redox levels in both tissues, leading to the suggestion that the activity of alternative oxidase for Arum was different from nonthermogenic tissues. When the complete range of redox states of ubiquinone is used and the oxidase is fully activated, the alternative oxidase from thermogenic tissue (Arum) behaves similarly to that of nonthermogenic tissue (soybean).  相似文献   

18.
Reduction of the ascorbate free radical (AFR) at the plasma membrane provides an efficient mechanism to preserve the vitamin in a location where it can recycle alpha-tocopherol and thus prevent lipid peroxidation. Erythrocyte ghost membranes have been shown to oxidize NADH in the presence of the AFR. We report that this activity derives from an AFR reductase because it spares ascorbate from oxidation by ascorbate oxidase, and because ghost membranes decrease steady-state concentrations of the AFR in a protein- and NADH-dependent manner. The AFR reductase has a high apparent affinity for both NADH and the AFR (< 2 microM). When measured in open ghosts, the reductase is comprised of an inner membrane activity (both substrate sites on the cytosolic membrane face) and a trans-membrane activity that mediates extracellular AFR reduction using intracellular NADH. However, the trans-membrane activity constitutes only about 12% of the total measured in ghosts. Ghost AFR reductase activity can also be differentiated from NADH-dependent ferricyanide reductase(s) by its sensitivity to the detergent Triton X-100 and insensitivity to enzymatic digestion with cathepsin D. This NADH-dependent AFR reductase could serve to recycle ascorbic acid at a crucial site on the inner face of the plasma membrane.  相似文献   

19.
Mitochondria isolated from the heart of cod (Gadus morrhua callarias) oxidized malate as the only exogenous substrate very rapidly. Pyruvate only slightly increased malate oxidation by these mitochondria. This is in contrast with the mitochondria isolated from rat and rabbit heart which oxidized malate very slowly unless pyruvate was added. Arsenite and hydroxymalonate (an inhibitor of malic enzyme) inhibited the respiration rate of mitochondria isolated from cod heart, when malate was the only exogenous substrate. Inhibition caused by hydroxymalonate was reversed by the addition of pyruvate. In the presence of arsenite, malate was converted to pyruvate by cod heart mitochondria. Cod heart mitochondria incubated in the medium containing Triton X-100 catalyzed the reduction of NADP+ in the presence of L-malate and Mn2+ at relatively high rate (about 160 nmoles NADPH formed/min/mg mitochondrial protein). The oxidative decarboxylation of malate was also taking place when NADP+ was replaced by NAD+ (about 25 nmol NADH formed per min per mg mitochondrial protein). These results suggest that the mitochondria contain both NAD+- and NADP+-linked malic enzymes. These two activities were eluted from DEAE-Sephacel as two independent peaks. It is concluded that malic enzyme activity (presumably both NAD+- and NADP+-linked) is responsible for the rapid oxidation of malate (as the only external substrate) by cod heart mitochondria.  相似文献   

20.
The enzymatic properties of NADH:quinone oxidoreductase were examined in Triton X-100 extracts of Bacillus cereus membranes by using the artificial electron acceptors ubiquinone-1 and menadione. Membranes were prepared from B. cereus KCTC 3674 grown aerobically on a complex medium and oxidized with NADH exclusively, whereas deamino-NADH was determined to be poorly oxidized. The NADH oxidase activity was lost completely by solubilization of the membranes with Triton X-100. However, by using the artificial electron acceptors ubiquinone-1 and menadione, NADH oxidation could be observed. The activities of NADH:ubiquinone-1 and NADH:menadione oxidoreductase were enhanced approximately 8-fold and 4-fold, respectively, from the Triton X-100 extracted membranes. The maximum activity of FAD-dependent NADH:ubiquinone-1 oxidoreductase was obtained at about pH 6.0 in the presence of 0.1M NaCl, while the maximum activity of FAD-dependent NADH:menadione oxidoreductase was obtained at about pH 8.0 in the presence of 0.1 M NaCl. The activities of the NADH:ubiquinone-1 and NADH:menadione oxidoreductase were very resistant to such respiratory chain inhibitors as rotenone, capsaicin, and AgNO(3), whereas these activities were sensitive to 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Based on these results, we suggest that the aerobic respiratory chain-linked NADH oxidase system of B. cereus KCTC 3674 possesses an HQNO-sensitive NADH:quinone oxidoreductase that lacks an energy coupling site containing FAD as a cofactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号