首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chua YS  Boh BK  Ponyeam W  Hagen T 《PloS one》2011,6(1):e16071
Cullin RING ligases are multi-subunit complexes consisting of a cullin protein which forms a scaffold onto which the RING protein Rbx1/2 and substrate receptor subunits assemble. CAND1, which binds to cullins that are not conjugated with Nedd8 and not associated with substrate receptors, has been shown to function as a positive regulator of Cullin ligases in vivo. Two models have been proposed to explain this requirement: (i) CAND1 sequesters cullin proteins and thus prevents autoubiquitination of substrate receptors, and (ii) CAND1 is required to promote the exchange of bound substrate receptors. Using mammalian cells, we show that CAND1 is predominantly cytoplasmically localized and that cullins are the major CAND1 interacting proteins. However, only small amounts of CAND1 bind to Cul1 in cells, despite low basal levels of Cul1 neddylation and approximately equal cytoplasmic endogenous protein concentrations of CAND1 and Cul1. Compared to F-box protein substrate receptors, binding of CAND1 to Cul1 in vivo is weak. Furthermore, preventing binding of F-box substrate receptors to Cul1 does not increase CAND1 binding. In conclusion, our study suggests that CAND1 does not function by sequestering cullins in vivo to prevent substrate receptor autoubiquitination and is likely to regulate cullin RING ligase activity via alternative mechanisms.  相似文献   

2.
YY Choo  T Hagen 《PloS one》2012,7(7):e41350
Cullin E3 ligases are the largest family of ubiquitin ligases with diverse cellular functions. One of seven cullin proteins serves as a scaffold protein for the assembly of the multisubunit ubiquitin ligase complex. Cullin binds the RING domain protein Rbx1/Rbx2 via its C-terminus and a cullin-specific substrate adaptor protein via its N-terminus. In the Cul3 ubiquitin ligase complex, Cul3 substrate receptors contain a BTB/POZ domain. Several studies have established that Cul3-based E3 ubiquitin ligases exist in a dimeric state which is required for binding of a number of substrates and has been suggested to promote ubiquitin transfer. In two different models, Cul3 has been proposed to dimerize either via BTB/POZ domain dependent substrate receptor homodimerization or via direct interaction between two Cul3 proteins that is mediated by Nedd8 modification of one of the dimerization partners. In this study, we show that the majority of the Cul3 proteins in cells exist as dimers or multimers and that Cul3 self-association is mediated via the Cul3 N-terminus while the Cul3 C-terminus is not required. Furthermore, we show that Cul3 self-association is independent of its modification with Nedd8. Our results provide evidence for BTB substrate receptor dependent Cul3 dimerization which is likely to play an important role in promoting substrate ubiquitination.  相似文献   

3.
4.
The suppressor of cytokine signaling (SOCS) box consists of the BC box and the cullin 5 (Cul5) box, which interact with Elongin BC and Cul5, respectively. SOCS box-containing proteins have ubiquitin ligase activity mediated by the formation of a complex with the scaffold protein Cul5 and the RING domain protein Rbx2, and are thereby members of the cullin RING ligase superfamily. Cul5-type ubiquitin ligases have a variety of substrates that are targeted for polyubiquitination and proteasomal degradation. Here, we review the current knowledge on the identification of Cul5 and the regulation of its expression, as well as the signaling pathways regulated by Cul5 and how viruses highjack the Cul5 system to overcome antiviral responses.  相似文献   

5.
6.
Cullins (CULs) are subunits of a prominent class of RING ubiquitin ligases. Whereas the subunits and substrates of CUL1-associated SCF complexes and CUL2 ubiquitin ligases are well established, they are largely unknown for other cullin family members. We show here that S. pombe CUL3 (Pcu3p) forms a complex with the RING protein Pip1p and all three BTB/POZ domain proteins encoded in the fission yeast genome. The integrity of the BTB/POZ domain, which shows similarity to the cullin binding proteins SKP1 and elongin C, is required for this interaction. Whereas Btb1p and Btb2p are stable proteins, Btb3p is ubiquitylated and degraded in a Pcu3p-dependent manner. Btb3p degradation requires its binding to a conserved N-terminal region of Pcu3p that precisely maps to the equivalent SKP1/F box adaptor binding domain of CUL1. We propose that the BTB/POZ domain defines a recognition motif for the assembly of substrate-specific RING/cullin 3/BTB ubiquitin ligase complexes.  相似文献   

7.
Defects in the COP9 signalosome (CSN) impair multicellular development, including embryonic plant or animal death or a block in sexual development of the fungus Aspergillus nidulans. CSN deneddylates cullin-RING ligases (CRLs), which are activated by covalent linkage to ubiquitin-like NEDD8. Deneddylation allows CRL disassembly for subsequent reassembly. An attractive hypothesis is a consecutive order of CRLs for development, which demands repeated cycles of neddylation and deneddylation for reassembling CRLs. Interruption of these cycles could explain developmental blocks caused by csn mutations. This predicts an accumulation of neddylated CRLs exhibiting developmental functions when CSN is dysfunctional. We tested this hypothesis in A. nidulans, which tolerates reduced levels of neddylation for growth. We show that only genes for CRL subunits or neddylation are essential, whereas CSN is primarily required for development. We used functional tagged NEDD8, recruiting all three fungal cullins. Cullins are associated with the CSN1/CsnA subunit when deneddylation is defective. Two CRLs were identified which are specifically involved in differentiation and accumulate during the developmental block. This suggests that an active CSN complex is required to counteract the accumulation of specific CRLs during development.  相似文献   

8.
Cullin-containing E3 ubiquitin ligases in plant development   总被引:8,自引:0,他引:8  
In eukaryotes, the ubiquitin-proteasome system participates in the control of signal transduction events by selectively eliminating regulatory proteins. E3 ubiquitin ligases specifically bind degradation substrates and mediate their poly-ubiquitylation, a prerequisite for their degradation by the 26S proteasome. On the basis of the analysis of the Arabidopsis genome sequence, it is predicted that there are more than 1000 E3 ubiquitin ligases in plants. Several types of E3 ubiquitin ligases have already been characterized in eukaryotes. Recently, some of these E3 enzymes have been implicated in specific plant signaling pathways.  相似文献   

9.
Cul1 and Cul7 are cullin E3 ubiquitin ligase scaffold proteins. Cul1 is known to form a complex with the RING domain protein Rbx1 and one of approximately 70 different F-box proteins. F-box proteins function as substrate receptor subunits and recruit numerous substrates for poly-ubiquitination. Similarly to Cul1, Cul7 interacts with Rbx1, however, only one F-box protein, Fbxw8, has been shown to bind to Cul7. To date only few Cul7 E3 ubiquitin ligase substrates, including cyclin D1, IRS-1 and GRASP65, have been reported, and using Fbxw8 affinity purification, we were unable to identify additional substrate proteins. Here we provide evidence for a model in which Cul7-Rbx1 can promote the ubiquitination of Cul1 substrates by forming high order complexes with Cul1-Rbx1. Binding of Cul1-Rbx1 to Cul7-Rbx1 is mediated via heterodimerization of Fbxw8 with other F-box proteins which function to recruit substrates into the E3 ligase complex. The formation of this high order complex is likely to increase polyubiquitination efficiency.  相似文献   

10.
11.
Apoptosis is an organised ATP‐dependent programmed cell death that organisms have evolved to maintain homoeostatic cell numbers and eliminate unnecessary or unhealthy cells from the system. Dysregulation of apoptosis can have serious manifestations culminating into various diseases, especially cancer. Accurate control of apoptosis requires regulation of a wide range of growth enhancing as well as anti‐oncogenic factors. Appropriate regulation of magnitude and temporal expression of key proteins is vital to maintain functional apoptotic signalling. Controlled protein turnover is thus critical to the unhindered operation of the apoptotic machinery, disruption of which can have severe consequences, foremost being oncogenic transformation of cells. The ubiquitin proteasome system (UPS) is one such major cellular pathway that maintains homoeostatic protein levels. Recent studies have found interesting links between these two fundamental cellular processes, wherein UPS depending on the cue can either inhibit or promote apoptosis. A diverse range of E3 ligases are involved in regulating the turnover of key proteins of the apoptotic pathway. This review summarises an overview of key E3 ubiquitin ligases involved in the regulation of the fundamental proteins involved in apoptosis, linking UPS to apoptosis and attempts to emphasize the significance of this relationship in context of cancer.  相似文献   

12.
The ubiquitin proteasome system is involved in the regulation of nearly every aspect of plant growth and development. Protein ubiquitination involves the covalent attachment of ubiquitin to target proteins through a cascade catalyzed by three enzymes known as E1, E2 and E3. E3s are of particular interest as they confer substrate specificity during ubiquitination through their diverse substrate recognition domains. Recently, a number of E3s have been identified that actively participate in abscisic acid hormone biology, including regulation of biosynthesis, de-repression or activation of abscisic acid response and degradation of signaling components. In this review, we summarize recent exciting studies of the different types of E3s that target specific mediators of abscisic acid signaling or affect the plants response to the hormone.Key words: abscisic acid, E3 ubiquitin ligase, proteasome, ubiquitinationPost-translational control of protein degradation by the ubiquitin proteasome system (UPS) is a highly regulated process essential for the proper growth and development of all eukaryotes through removing abnormal proteins and most short-lived regulatory proteins.1,2 Plants utilize the UPS to alter their proteome to mediate cellular changes required for growth, development and responses to biotic and abiotic stress. Plants also rely a great deal on hormones to induce changes in growth and development in response to a wide range of environmental stimuli. Hormone biosynthesis, perception, signaling and response can be exquisitely regulated through modulating protein levels via the UPS. Regulation of the abscisic acid (ABA) signaling pathway, like auxin, gibberellin, jasmonate and ethylene, have been linked to UPS components with the application of biochemical, genetic and genomic approaches.35 Although some aspects of ABA signaling have been elucidated, the involvement of the UPS, especially E3 ubiquitin ligases, help us gain further insight into the entire network of ABA signal transduction. In this review we focus on recently identified E3s that play a variety of roles in ABA signaling. A number of articles are available that provide a comprehensive review of the role of E3 ligases in the biosynthesis, perception and signaling by other hormones such as auxin and ethylene.35  相似文献   

13.
Cullin RING ligases (CRLs) are the largest family of cellular E3 ubiquitin ligases and mediate polyubiquitination of a number of cellular substrates. CRLs are activated via the covalent modification of the cullin protein with the ubiquitin-like protein Nedd8. This results in a conformational change in the cullin carboxy terminus that facilitates the ubiquitin transfer onto the substrate. COP9 signalosome (CSN)-mediated cullin deneddylation is essential for CRL activity in vivo. However, the mechanism through which CSN promotes CRL activity in vivo is currently unclear. In this paper, we provide evidence that cullin deneddylation is not intrinsically coupled to substrate polyubiquitination as part of the CRL activation cycle. Furthermore, inhibiting substrate-receptor autoubiquitination is unlikely to account for the major mechanism through which CSN regulates CRL activity. CSN also did not affect recruitment of the substrate-receptor SPOP to Cul3, suggesting it may not function to facilitate the exchange of Cul3 substrate receptors. Our results indicate that CSN binds preferentially to CRLs in the neddylation-induced, active conformation. Binding of the CSN complex to active CRLs may recruit CSN-associated proteins important for CRL regulation. The deneddylating activity of CSN would subsequently promote its own dissociation to allow progression through the CRL activation cycle.  相似文献   

14.
15.
The expression of the ubiquitin related protein Nedd8/RUB is essential for growth in most organisms. Nedd8/RUB has been shown to modify the cullin subunit of culling-based ubiquitin protein ligases (E3). Neddylation acts to regulate the function of these E3s and organisms with lesions in the neddylation process exhibit severe growth defects. In this review we describe the proteins that participate in neddylation and discuss a model for Nedd8/RUB regulation of ubiquitin ligase function.  相似文献   

16.
A novel family of membrane-bound E3 ubiquitin ligases   总被引:1,自引:0,他引:1  
A novel E3 ubiquitin ligase family that consists of viral E3 ubiquitin ligases (E3s) and their mammalian homologues was recently discovered. These novel E3s are membrane-bound molecules that share the secondary structure and catalytic domain for E3 activity. All family members have two transmembrane regions at the center and a RING-CH domain at the amino terminus. Forced expression of these novel E3s has been shown to reduce the surface expression of various membrane proteins through ubiquitination of target molecules. Initial examples of viral E3s were identified in Kaposi's sarcoma associated herpesvirus (KSHV) and murine gamma-herpesvirus 68 (MHV-68) and have been designated as modulator of immune recognition (MIR) 1, 2 and mK3, respectively. MIR 1, 2 and mK3 are able to down-regulate MHC class I molecule expression, and mK3 is required to establish an effective latent viral infection in vivo. The first characterized mammalian homologue to MIR 1, 2 and mK3 is c-MIR/MARCH VIII. Forced expression of c-MIR/MARCH VIII down-regulates B7-2, a co-stimulatory molecule important for antigen presentation. Subsequently, several mammalian molecules related to c-MIR/MARCH VIII have been characterized and named as membrane associated RING-CH (MARCH) family. However, the precise physiological function of MARCH family members remains as yet unknown.  相似文献   

17.
Cope GA  Deshaies RJ 《Cell》2003,114(6):663-671
COP9 Signalosome (CSN) is a fascinating protein complex whose biochemical and physiological functions are only beginning to be understood. It is conserved throughout eukaryotes and is critical to the proper development of all multicellular organisms in which its function has been explored. Recent work suggests that CSN plays a key role in sustaining the activity of SCF and other cullin-based ubiquitin ligases, which may account for its essential roles in development. Here, we summarize what is known about CSN, and discuss hypotheses for how CSN promotes the activity of SCF ubiquitin ligases.  相似文献   

18.
19.
A subset of proteins targeted by the N-end rule pathway bear degradation signals called N-degrons, whose determinants include destabilizing N-terminal residues. Our previous work identified mouse UBR1 and UBR2 as E3 ubiquitin ligases that recognize N-degrons. Such E3s are called N-recognins. We report here that while double-mutant UBR1(-/-) UBR2(-/-) mice die as early embryos, the rescued UBR1(-/-) UBR2(-/-) fibroblasts still retain the N-end rule pathway, albeit of lower activity than that of wild-type fibroblasts. An affinity assay for proteins that bind to destabilizing N-terminal residues has identified, in addition to UBR1 and UBR2, a huge (570 kDa) mouse protein, termed UBR4, and also the 300-kDa UBR5, a previously characterized mammalian E3 known as EDD/hHYD. UBR1, UBR2, UBR4, and UBR5 shared a approximately 70-amino-acid zinc finger-like domain termed the UBR box. The mammalian genome encodes at least seven UBR box-containing proteins, which we propose to call UBR1 to UBR7. UBR1(-/-) UBR2(-/-) fibroblasts that have been made deficient in UBR4 as well (through RNA interference) were significantly impaired in the degradation of N-end rule substrates such as the Sindbis virus RNA polymerase nsP4 (bearing N-terminal Tyr) and the human immunodeficiency virus type 1 integrase (bearing N-terminal Phe). Our results establish the UBR box family as a unique class of E3 proteins that recognize N-degrons or structurally related determinants for ubiquitin-dependent proteolysis and perhaps other processes as well.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号