首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytoskeletal proteins assemble into dynamic polymers that play many roles in nuclear and cell division, signal transduction, and determination of cell shape and polarity. The distribution and dynamics of microtubules (MTs) and actin filaments (AFs) are determined, among other factors, by the location of their nucleation sites. Whereas the sites of microtubule nucleation in plants are known to be located under the plasma membrane and on the nuclear envelope during interphase, there is a striking lack of information about nucleation sites of AFs. In the studies reported herein, low temperature (0 °C) was used to de‐polymerize AFs and MTs in tobacco BY‐2 (Nicotiana tabacum L.) cells at interphase. The extent of de‐polymerization of cytoskeletal filaments in interphase cells during cold treatment and the subcellular distribution of nucleation sites during subsequent recovery at 25 °C were monitored by means of fluorescence microscopy. The results show that AFs re‐polymerized rapidly from sites located in the cortical region and on the nuclear envelope, similarly to the initiation sites of MTs. In contrast to MTs, however, complete reconstitution of AFs was preceded by the formation of transient actin structures including actin dots, rods, and filaments with a dotted signal. Immunoblotting of soluble and sedimentable protein fractions showed no changes in the relative amounts of free and membrane‐bound actin or tubulin.  相似文献   

2.
Müller J  Menzel D  Samaj J 《Protoplasma》2007,230(3-4):231-242
Summary. The cytoskeleton in plant cells plays an important role in controlling cell shape and mediating intracellular signalling. However, almost nothing is known about the reactions of cytoskeletal elements to heat stress, which represents one of the major environmental challenges for plants. Here we show that living epidermal root cells of Arabidopsis thaliana could cope with short-term heat shock stress showing disruption and subsequent recovery of microtubules and actin microfilaments in a time-dependent manner. Time-lapse imaging revealed a very dynamic behavior of both cytoskeletal elements including transient depolymerization and disassembly upon heat shock (40–41 °C) followed by full recovery at room temperature (20 °C) within 1–3 h. Reaction of microtubules, but not actin filaments, to heat shock was dependent on cell type and developmental stage. On the other hand, recovery of actin filaments, but not microtubules, from heat shock stress was dependent on the same parameters. The relevance of this adaptive cytoskeletal behavior to intracellular signalling is discussed. Correspondence and reprints: Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Federal Republic of Germany.  相似文献   

3.
The actin cytoskeleton regulates an array of diverse cellular activities that support the establishment of plant–microbe interactions and plays a critical role in the execution of plant immunity. However, molecular and cellular mechanisms regulating the assembly and rearrangement of actin filaments (AFs) at plant–pathogen interaction sites remain largely elusive. Here, using live-cell imaging, we show that one of the earliest cellular responses in Arabidopsis thaliana upon powdery mildew attack is the formation of patch-like AF structures beneath fungal invasion sites. The AFs constituting actin patches undergo rapid turnover, which is regulated by the actin-related protein (ARP)2/3 complex and its activator, the WAVE/SCAR regulatory complex (W/SRC). The focal accumulation of phosphatidylinositol-4,5-bisphosphate at fungal penetration sites appears to be a crucial upstream modulator of the W/SRC–ARP2/3 pathway-mediated actin patch formation. Knockout of W/SRC–ARP2/3 pathway subunits partially compromised penetration resistance with impaired endocytic recycling of the defense-associated t-SNARE protein PEN1 and its deposition into apoplastic papillae. Simultaneously knocking out ARP3 and knocking down the Class I formin (AtFH1) abolished actin patch formation, severely impaired the deposition of cell wall appositions, and promoted powdery mildew entry into host cells. Our results demonstrate that the ARP2/3 complex and formins, two actin-nucleating systems, act cooperatively and contribute to Arabidopsis penetration resistance to fungal invasion.

ARP2/3 complex, acting cooperatively with Class I formins, modulates actin patch formation beneath fungal penetration sites, contributing to the penetration resistance of Arabidopsis against powdery mildew invasion.  相似文献   

4.
Both Arp2/3 complex and the Abl2/Arg nonreceptor tyrosine kinase are essential to form and maintain diverse actin-based structures in cells, including cell edge protrusions in fibroblasts and cancer cells and dendritic spines in neurons. The ability of Arg to promote cell edge protrusions in fibroblasts does not absolutely require kinase activity, raising the question of how Arg might modulate actin assembly and turnover in the absence of kinase function. Arg has two distinct actin-binding domains and interacts physically and functionally with cortactin, an activator of the Arp2/3 complex. However, it was not known whether and how Arg influences actin filament stability, actin branch formation, or cofilin-mediated actin severing or how cortactin influences these reactions of Arg with actin. Arg or cortactin bound to actin filaments stabilizes them from depolymerization. Low concentrations of Arg and cortactin cooperate to stabilize filaments by slowing depolymerization. Arg stimulates formation of actin filament branches by Arp2/3 complex and cortactin. An Arg mutant lacking the C-terminal calponin homology actin-binding domain stimulates actin branch formation by the Arp2/3 complex, indicative of autoinhibition. ArgΔCH can stimulate the Arp2/3 complex even in the absence of cortactin. Arg greatly potentiates cofilin severing of actin filaments, and cortactin attenuates this enhanced severing. The ability of Arg to stabilize filaments, promote branching, and increase severing requires the internal (I/L)WEQ actin-binding domain. These activities likely underlie important roles that Arg plays in the formation, dynamics, and stability of actin-based cellular structures.  相似文献   

5.
6.
Rhodamine-phalloidin staining of winter oilseed rape suspension cells revealed that the structure of actin cytoskeleton changes with the phase of cell growth. In small, 4-day-old cells, entering the exponential phase of growth, a dense and uniformly distributed cortical microfilament networks was seen. In six-day-old vacuolated cells, which reached the stationary phase of growth, the actin cytoskeleton was composed of thicker microfilament cables in irregular arrangements. In cells acclimated in cold for 7 days a dense, uniformly distributed and cortical microfilament network was still seen. The fine microfilament network was sensitive to extracellular freezing since the structures underwent depolymerization at −3 °C (in the presence of extracellular ice), both in non-acclimated and cold-acclimated cells. The thicker transvacuolar cables in cells of the stationary growth phase resisted freezing to −7 °C. Acclimation of suspensions at 2 °C resulted in slowing down growth of cells and in the increased freezing tolerance of cells as indicated by a decrease of LT50 from −11 °C to −17.5o or to −25 °C when determined 7 or 20 days after the beginning of the cold treatment, respectively. Freezing tolerance of non-acclimated cells decreased from −11 °C to −8 °C during subculture, showing a transient increase to −17 °C on the day 6. Results indicate that the arrangement of actin microfilaments and their sensitivity to freezing-induced depolymerization depends on the phase of cell growth rather than on cell acclimation status. Possible mechanisms involved in the freezing-induced depolymerization of actin microfilaments are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Yokota E  Izeki T  Shimmen T 《Protoplasma》2003,221(3-4):217-226
Summary.  In root hair cells of Limnobium stoloniferum, transvacuolar strands disperse and cytoplasmic spherical bodies (CSBs) emerge upon treatment with a protein phosphatase inhibitor, calyculin A (CA), whose effects were previously shown to be canceled by simultaneous treatment of the cells with a nonselective protein kinase inhibitor, K-252a. CSB formation is also suppressed by latrunculin B (LB) or cytochalasin D, actin filament depolymerization drugs, or 2,3-butanedione monoxime, an inhibitor of myosin activity. To confirm the involvement of myosin activity in CSB formation induced by CA, we examined the effect of an inhibitor of energy metabolism, NaN3, on CSB formation in root hair cells pretreated simultaneously with CA and LB. In the presence of CA-LB, CSB formation was suppressed due to the depolymerization of actin filaments. When these drugs were removed, the actin filaments recovered and CSBs emerged even in the presence of K-252a. These results indicated that the phosphorylation level in the cells is elevated during the CA-LB treatment and that a phosphorylation level sufficient for the CSB formation was sustained even after CA removal. On the other hand, CSB formation after simultaneous treatment with CA and LB was significantly suppressed in the presence of NaN3. In such cells, actin filament bundles recovered, although their organization was random. The present and previous results suggested that myosin activity is necessary for CSB formation induced by CA, and that myosin regulated by phosphorylation-dephosphorylation is implicated in the organization of the actin cytoskeleton in root hair cells. Received June 26, 2002; accepted October 18, 2002; published online April 2, 2003 RID="*" ID="*" Correspondence and reprints: Department of Life Science, Graduate School of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Japan.  相似文献   

8.
The involvement of actin filaments (AFs) in vesicle trafficking, cell wall construction and tip growth was investigated during pollen tube development of Picea meyeri. Pollen germination and tube elongation were inhibited in a dose-dependent manner by the latrunculin B (LatB) treatment. The fine AFs were broken down into disorganized fragments showing a tendency to aggregate. FM4-64 labeling revealed that the dynamic balance of vesicle trafficking was perturbed due to F-actin disruption and the fountain-like cytoplasmic pattern changed into disorganized Brownian movement. The configuration and/or distribution of cell wall components, such as pectins, callose and cellulose, as well as arabinogalactan proteins changed in obvious ways after the LatB application. Fourier transform infrared (FTIR) analysis further established significant changes in the chemical composition of the wall material. Our results indicate that depolymerization of AFs affects the distribution and configuration of cell wall components in Picea meyeri pollen tube by disturbing vesicle trafficking.  相似文献   

9.
For many years the existence of actin in the nucleus has been doubted because of the lack of phalloidin staining as well as the failure to document nuclear actin filaments by electron microscopy. More recent findings reveal actin to be a component of chromatin remodeling complexes and of the machinery involved in RNA synthesis and transport. With distinct functions for nuclear actin emerging, the quest for its conformation and oligomeric/polymeric structure in the nucleus has resumed importance. We used chemically cross-linked 'lower dimer' (LD) to generate mouse monoclonal antibodies specific for different actin conformations. One of the resulting antibodies, termed 1C7, recognizes an epitope that is buried in the F-actin filament, but is surface-exposed in G-actin as well as in the LD. In immunofluorescence studies with different cell lines, 1C7 selectively reacts with non-filamentous actin in the cytoplasm. In addition, it detects a discrete form of actin in the nucleus, which is different from the nuclear actin revealed by the previously described 2G2 [Gonsior, S.M., Platz, S., Buchmeier, S., Scheer, U., Jockusch, B.M., Hinssen, H., 1999. J. Cell Sci. 112, 797]. Upon latrunculin-induced disassembly of the filamentous cytoskeleton in Rat2 fibroblasts, we observed a perinuclear accumulation of the 1C7-reactive actin conformation. In addition, latrunculin treatment led to the assembly of phalloidin-staining actin structures in chromatin-free regions of the nucleus in these cells. Our results indicate that distinct actin conformations and/or structures are present in the nucleus and the cytoplasm of different cell types and that their distribution varies in response to external signals.  相似文献   

10.
Summary We studied the mechanism controlling the organization of actin filaments (AFs) inHydrocharis root hair cells, in which reverse fountain streaming occurs. The distribution of AFs and microtubules (MTs) in root hair cells were analyzed by fluorescence microscopy and electron microscopy. AFs and MTs were found running in the longitudinal direction of the cell at the cortical region. AFs were observed in the transvacuolar strand, but not MTs. Ultrastructural studies revealed that AFs and MTs were colocalized and that MTs were closer to the plasma membrane than AFs. To examine if MTs regulate the organization of AFs, we carried out a double inhibitor experiment using cytochalasin B (CB) and propyzamide, which are inhibitors of AFs and MTs, respectively. CB reversibly inhibited cytoplasmic streaming while propyzamide alone had no effect on it. However, after treatment with both CB and propyzamide, removal of CB alone did not lead to recovery of cytoplasmic streaming. In these cells, AFs showed a meshwork structure. When propyzamide was also removed, cytoplasmic streaming and the original organization of AFs were recovered. These results strongly suggest that MTs are responsible for the organization of AFs inHydrocharis root hair cells.  相似文献   

11.
12.
The reorganization of actin filaments (AFs) and vacuoles in guard cells is involved in the regulation of stomatal movement. However, it remains unclear whether there is any interaction between the reorganization of AFs and vacuolar changes during stomatal movement. Here, we report the relationship between the reorganization of AFs and vacuolar fusion revealed in pharmacological experiments, and characterizing stomatal opening in actin‐related protein 2 (arp2) and arp3 mutants. Our results show that cytochalasin‐D‐induced depolymerization or phalloidin‐induced stabilization of AFs leads to an increase in small unfused vacuoles during stomatal opening in wild‐type (WT) Arabidopsis plants. Light‐induced stomatal opening is retarded and vacuolar fusion in guard cells is impaired in the mutants, in which the reorganization and the dynamic parameters of AFs are aberrant compared with those of the WT. In WT, AFs tightly surround the small separated vacuoles, forming a ring that encircles the boundary membranes of vacuoles partly fused during stomatal opening. In contrast, in the mutants, most AFs and actin patches accumulate abnormally around the nuclei of the guard cells, which probably further impair vacuolar fusion and retard stomatal opening. Our results suggest that the reorganization of AFs regulates vacuolar fusion in guard cells during stomatal opening.  相似文献   

13.
Summary Since photo-induced orientation movement of a single, ribbon-shaped chloroplast in each cell of the filamentous green algaMougeotia is inhibited in the presence of cytochalasin B, actin is thought to be involved in the process of chloroplast movements. However, this possibility remains to be proved. A specific class of cytoplasmic filaments, which emerge from the advancing front of the moving chloroplast, can be seen by differential interference contrast (DIC) microscopy. However, no one has yet succeeded in defining the nature of these filaments. We have been able to stain the actin filaments (AFs) associated with the moving chloroplast with fluorescein-conjugated phalloidin (FP) after pre-treatment withm-maleimidobenzoyl N-hydroxysuccinimide ester (MBS). No filamentous structures were observed in cells that had been pre-irradiated with low-fluence rate red light. However, transversely oriented fluorescent filaments appeared at the front edge of the moving chloroplast when it began to rotate under irradiation with high-fluence rate white light. These filaments disappeared after completion of the orientation movement, suggesting the simultaneous appearance of AFs and the orientation movement of the chloroplast. Thick cytoplasmic strands connecting the edge of the chloroplast with the parietal cytoplasm were often seen by DIC microscopy before and after completion of the high-fluence rate orientation movement. These thick cytoplasmic strands could not be stained by FP, but were often stained by 3,3-dihexyloxacarbocyanine iodide (DiOC6(3)), suggesting that they are transvacuolar strands that include endoplasmic reticulum.  相似文献   

14.
We used confocal microscopy and in vitro analyses to show that Nicotiana tabacum WLIM1, a LIM domain protein related to animal Cys-rich proteins, is a novel actin binding protein in plants. Green fluorescent protein (GFP)-tagged WLIM1 protein accumulated in the nucleus and cytoplasm of tobacco BY2 cells. It associated predominantly with actin cytoskeleton, as demonstrated by colabeling and treatment with actin-depolymerizing latrunculin B. High-speed cosedimentation assays revealed the ability of WLIM1 to bind directly to actin filaments with high affinity. Fluorescence recovery after photobleaching and fluorescence loss in photobleaching showed a highly dynamic in vivo interaction of WLIM1-GFP with actin filaments. Expression of WLIM1-GFP in BY2 cells significantly delayed depolymerization of the actin cytoskeleton induced by latrunculin B treatment. WLIM1 also stabilized actin filaments in vitro. Importantly, expression of WLIM1-GFP in Nicotiana benthamiana leaves induces significant changes in actin cytoskeleton organization, specifically, fewer and thicker actin bundles than in control cells, suggesting that WLIM1 functions as an actin bundling protein. This hypothesis was confirmed by low-speed cosedimentation assays and direct observation of F-actin bundles that formed in vitro in the presence of WLIM1. Taken together, these data identify WLIM1 as a novel actin binding protein that increases actin cytoskeleton stability by promoting bundling of actin filaments.  相似文献   

15.
In response to heat shock (34°C, 30 min), cell morphology and actin organization in Dictyostelium discoideum are drastically changed. Loss of pseudopodia and disappearance of F-actin-containing structures were observed by using fluorescence microscopy. These changes were paralleled by a rapid decrease of the F-actin content measured by a TRITC-phalloidin binding assay. The effects of heat shock on cell morphology and actin organization are transient: After heat shock (34°C) or during a long-term heat treatment (30°C), cell morphology, F-actin patterns and F-actin content recovered/adapted to a state which is characteristic for untreated cells. Because F-actin may be stabilized by increased amounts of heat shock proteins, their response and interaction with F-actin was analyzed. After a 1 h heat treatment (34°C), the major heat shock protein of D. discoideum (HSP70) showed maximally increased synthesis rates and levels. During recovery from a 34°C shock or during a continuous heat treatment at 30°C, the HSP70 content first increased and then declined slowly toward normal levels. Pre-treatment of cells with a short heat shock of 30 min at 34°C stabilized the F-actin content when the cells were exposed to a second heat shock. Furthermore, a transient colocalization of HSP70 and actin was observed at the beginning of heat treatment (30°C) using immunological detection of HSP70 in the cytoskeletal actin fraction.  相似文献   

16.
The role of actin filaments in rhizoid morphogenesis was studied in Spirogyra . When the algal filaments were severed, new terminal cells started tip growth and finally formed rhizoids. Actin inhibitors, latrunculin B and cytochalasin D, reversibly inhibited the process. A mesh-like structure of actin filaments (AFs) was formed at the tip region. Gd3+ inhibited tip growth and decreased AFs in the tip region. Either a decrease in turgor pressure or lowering of the external Ca2+ concentration also induced similar results. It was suggested that the mesh-like AF structure is indispensable for the elongation of rhizoids. A possible organization mechanism of the mesh-like AF structure was discussed.  相似文献   

17.
Eun SO  Lee Y 《Planta》2000,210(6):1014-1017
Actin in guard cells is assembled in a radial pattern when stomata are induced to open under light, but the filaments are disassembled when stomata are closed under darkness or by abscisic acid (S.-O. Eun and Y. Lee, 1997, Plant Physiol. 115: 1491–1498). To test if signals that open stomata commonly generate the polymerized form of actin in guard cells, leaves of Commelina communis L. were treated with a potent stomatal opening agent, fusicoccin, and the actin organization examined by immunolocalization techniques. When stomata were induced to open by fusicoccin, hardly any of the filamentous form of actin was detected; instead, the actin resembled that present in guard cells that had been treated with an antagonist to actin filaments, cytochalasin D, and showed a sharp contrast to the long filaments developed in illuminated guard cells. Furthermore, treatment of illuminated leaves with fusicoccin disintegrated actin filaments that had already been formed in the guard cells. Preincubation of leaves with phalloidin, which interferes with fusicoccin-induced actin depolymerization, delayed fusicoccin-induced opening during the early phase. These observations suggest that the prevention of actin filament formation and/or depolymerization of actin filaments may accelerate the stomatal opening process in response to fusicoccin. Received: 1 October 1999 / Accepted: 29 November 1999  相似文献   

18.
We investigated the effect of brefeldin A on membrane trafficking and the actin cytoskeleton of pollen tubes of Lilium longiflorum with fluorescent dyes, inhibitor experiments, and confocal laser scanning microscopy. The formation of a subapical brefeldin A-induced membrane aggregation (BIA) was associated with the formation of an actin basket from which filaments extended towards the tip. The orientation of these actin filaments correlated with the trajectories of membrane material stained by FM dyes, suggesting that the BIA-associated actin filaments are used as tracks for retrograde transport. Analysis of time series indicated that these tracks (actin filaments) were either stationary or glided along the plasma membrane towards the BIA together with the attached membranes or organelles. Disturbance of the actin cytoskeleton by cytochalasin D or latrunculin B caused immediate arrest of membrane trafficking, dissipation of the BIA and the BIA-associated actin basket, and reorganization into randomly oriented actin rods. Our observations suggest that brefeldin A causes ectopic activation of actin-nucleating proteins at the BIA, resulting in retrograde movement of membranes not only along but also together with actin filaments. We show further that subapical membrane aggregations and actin baskets supporting retrograde membrane flow can also be induced by calyculin A, indicating that dephosphorylation by type 2 protein phosphatases is required for proper formation of membrane coats and polar membrane trafficking.  相似文献   

19.
Eun SO  Bae SH  Lee Y 《Planta》2001,212(3):466-469
Cortical actin filaments in guard cells of Commelina communis L. show signal-specific organization during stomatal movements [S.-O. Eun and Y. Lee (1997) Plant Physiol 115: 1491–1498; S.-O. Eun and Y. Lee (2000) Planta 210: 1014–1017]. To study the roles of actin in signal transduction, it is advantageous to use Arabidopsis thaliana (L.) Heynh., an excellent model plant with numerous well-characterized mutants. Using an immunolocalization technique, we found that actin deployments in guard cells of A. thaliana were basically identical to those in C. communis: actin proteins were assembled into radial filaments under illumination, and were disassembled by ABA. In addition, we examined actin organization in an ABA-insensitive mutant (abi1-1) to test the involvement of protein phosphatase 2C (PP2C) in the control of actin structure. A clear difference was observed after ABA treatment, namely, neither stomatal closing nor depolymerization of actin filaments was observed in guard cells of the mutant. Our results indicate that PP2C participates in ABA-induced actin changes in guard cells. Received: 23 June 2000 / Accepted: 20 October 2000  相似文献   

20.
Hable WE  Miller NR  Kropf DL 《Protoplasma》2003,221(3-4):193-204
Summary.  Previous work has demonstrated that actin plays important roles in axis establishment and polar growth in fucoid zygotes. Distinct actin arrays are associated with fertilization, polarization, growth, and division, and agents that depolymerize actin filaments (cytochalasins, latrunculin B) perturb these stages of the first cell cycle. Rearrangements of actin arrays could be accomplished by transport of intact filaments and/or by actin dynamics involving depolymerization of the old array and polymerization of a new array. To investigate the requirement for dynamic actin during early development, we utilized the actin-stabilizing agent jasplakinolide. Immunofluorescence of actin arrays showed that treatment with 1–10 μM jasplakinolide stabilized existing arrays and induced polymerization of new filaments. In young zygotes, a cortical actin patch at the rhizoid pole was stabilized, and in some cells supernumerary patches were formed. In older zygotes that had initiated tip growth, massive filament assembly occurred in the rhizoid apex, and to a lesser degree in the perinuclear region. Treatment disrupted polarity establishment, polar secretion, tip growth, spindle alignment, and cytokinesis but did not affect the maintenance of an established axis, mitosis, or cell cycle progression. This study suggests that dynamic actin is required for polarization, growth, and division. Rearrangements in actin structures during the first cell cycle are likely mediated by actin depolymerization within old arrays and polymerization of new arrays. Received July 15, 2002; accepted November 27, 2002; published online June 13, 2003 RID="*" ID="*" Correspondence and reprints: Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号