首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The health benefits of flavonoids for humans are increasingly attracting attention. Because the extraction of high-purity flavonoids from plants presents a major obstacle, interest has emerged in biosynthesizing them using microbial hosts. Eriodictyol is a flavonoid with anti-inflammatory and antioxidant activities. Its efficient synthesis has been hampered by two factors: the poor expression of cytochrome P450 and the low intracellular malonyl coenzyme A (malonyl-CoA) concentration in Escherichia coli. To address these issues, a truncated plant P450 flavonoid, flavonoid 3′-hydroxylase (tF3′H), was functionally expressed as a fusion protein with a truncated P450 reductase (tCPR) in E. coli. This allowed the engineered E. coli to produce eriodictyol from l-tyrosine by simultaneously coexpressing the fusion protein with tyrosine ammonia lyase (TAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), and chalcone isomerase (CHI). In addition, metabolic engineering was employed to enhance the availability of malonyl-CoA so as to achieve a new metabolic balance and rebalance the relative expression of genes to enhance eriodictyol accumulation. This approach made the production of eriodictyol 203% higher than that in the control strain. By using these strategies, the production of eriodictyol from l-tyrosine reached 107 mg/liter. The present work offers an approach to the efficient synthesis of other hydroxylated flavonoids from l-tyrosine or even glucose in E. coli.  相似文献   

2.
Twenty hydroxylated and acetoxylated 3-phenylcoumarins were synthesized, and the structure-activity relationships were investigated by evaluating the ability of these compounds to modulate horseradish peroxidase (HRP) catalytic activity and comparing the results to four flavonoids (quercetin, myricetin, kaempferol and galangin), previously reported as HRP inhibitors. It was observed that 3-phenylcoumarins bearing a catechol group were as active as quercetin and myricetin, which also show this substituent in the B-ring. The presence of 6,2'-dihydroxy group or 6,7,3',4'-tetraacetoxy group in the 3-phenylcoumarin structure also contributed to a significant inhibitory effect on the HRP activity. The catechol-containing 3-phenylcoumarin derivatives also showed free radical scavenger activity. Molecular modeling studies by docking suggested that interactions between the heme group in the HRP active site and the catechol group linked to the flavonoid B-ring or to the 3-phenyl coumarin ring are important to inhibit enzyme catalytic activity.  相似文献   

3.
4.
To elucidate gene regulation of flower colour formation, the gene expressions of the enzymes involved in flavonoid biosynthesis were investigated in correlation with their product during floral development in lisianthus. Full-length cDNA clones of major responsible genes in the central flavonoid biosynthetic pathway, including chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3',5'-hydroxylase (F3'5'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and flavonol synthase (FLS), were isolated and characterized. In lisianthus, the stage of the accumulation of flavonols and anthocyanins was shown to be divided clearly. The flavonol content increased prior to anthocyanin accumulation during floral development and declined when anthocyanin began to accumulate. CHS, CHI, and F3H were necessary for both flavonol and anthocyanin biosynthesis and were coordinately expressed throughout all stages of floral development; their expressions were activated independently at the stages corresponding to flavonol accumulation and anthocyanin accumulation, respectively. Consistent with flavonol and anthocyanin accumulation patterns, FLS, a key enzyme in flavonol biosynthesis, was expressed prior to the expression of the genes involved in anthocyanin biosynthesis. The genes encoding F3'5'H, DFR, and ANS were expressed at later stages, just before pigmentation. The genes responsible for the flavonoid pathways branching to anthocyanins and flavonols were strictly regulated and were coordinated temporally to correspond to the biosynthetic order of their respective enzymes in the pathways, as well as in specific organs. In lisianthus, FLS and DFR, at the position of branching to flavonols and anthocyanins, were supposed to play a critical role in regulation of each biosynthesis.  相似文献   

5.
The development of efficient microbial processes for the production of flavonoids has been a metabolic engineering goal for the past several years, primarily due to the purported health-promoting effects of these compounds. Although significant strides have been made recently in improving strain titers and yields, current fermentation strategies suffer from two major drawbacks-(1) the requirement for expensive phenylpropanoic precursors supplemented into the media and (2) the need for two separate media formulations for biomass/protein generation and flavonoid production. In this study, we detail the construction of a series of strains capable of bypassing both of these problems. A four-step heterologous pathway consisting of the enzymes tyrosine ammonia lyase (TAL), 4-coumarate:CoA ligase (4CL), chalcone synthase (CHS), and chalcone isomerase (CHI) was assembled within two engineered l-tyrosine Escherichia coli overproducers in order to enable the production of the main flavonoid precursor naringenin directly from glucose. During the course of this investigation, we discovered that extensive optimization of both enzyme sources and relative gene expression levels was required to achieve high quantities of both p-coumaric acid and naringenin accumulation. Once this metabolic balance was achieved, however, such strains were found to be capable of producing 29 mg/l naringenin from glucose and up to 84 mg/l naringenin with the addition of the fatty acid enzyme inhibitor, cerulenin. These results were obtained through cultivation of E. coli in a single minimal medium formulation without additional precursor supplementation, thus paving the way for the development of a simple and economical process for the microbial production of flavonoids directly from glucose.  相似文献   

6.
Catharanthus roseus (Madagascar periwinkle) flavonoids have a simple methylation pattern. Characteristic are B-ring 5' and 3' methylations and a methylation in the position 7 of the A-ring. The first two can be explained by a previously identified unusual O-methyltransferase (CrOMT2) that performs two sequential methylations. We used a homology based RT-PCR strategy to search for cDNAs encoding the enzyme for the A-ring 7 position. Full-length cDNAs for three proteins were characterized (CrOMT5, CrOMT6, CrOMT7). The deduced polypeptides shared 59-66% identity among each other, with CrOMT2, and with CrOMT4 (a previously characterized protein of unknown function). The five proteins formed a cluster separate from all other OMTs in a relationship tree. Analysis of the genes showed that all C. roseus OMTs had a single intron in a conserved position, and a survey of OMT genes in other plants revealed that this intron was highly conserved in evolution. The three cDNAs were cloned for expression of His-tagged recombinant proteins. CrOMT5 was insoluble, but CrOMT6 and CrOMT7 could be purified by affinity chromatography. CrOMT7 was inactive with all compounds tested. The only substrates found for CrOMT6 were 3'-O-methyl-eriodictyol (homoeriodictyol) and the corresponding flavones and flavonols. The mass spectrometric analysis showed that the enzyme was not the expected 7OMT, but a B-ring 4'OMT. OMTs with this specificity had not been described before, and 3',4'-dimethylated flavonoids had not been found so far in C. roseus, but they are well-known from other plants. The identification of this enzyme activity raised the question whether methylation could be a part of the mechanisms channeling flavonoid biosynthesis. We investigated four purified recombinant 2-oxoglutarate-dependent flavonoid dioxygenases: flavanone 3beta-hydroxylase, flavone synthase, flavonol synthase, and anthocyanidin synthase. 3'-O-Methyl-eriodictyol was a substrate for all four enzymes. The activities were only slightly lower than with the standard substrate naringenin, and in some cases much higher than with eriodictyol. Methylation in the A-ring, however, strongly reduced or abolished the activities with all four enzymes. The results suggested that B-ring 3' methylation is no hindrance for flavonoid dioxygenases. These results characterized a new type of flavonoid O-methyltransferase, and also provided new insights into the catalytic capacities of key dioxygenases in flavonoid biosynthesis.  相似文献   

7.
The enhancing effects of 12 kinds of flavonoids on the mutagenicity of 2-acetylaminofluorene (AAF) in Salmonella typhimurium TA98 were investigated. In the mixed applications of AAF (22.4 nmoles/plate) with flavonoids (31.4-45.0 nmoles/plate) in the presence of a mammalian metabolic activation system (S9 mix), morin, galangin, flavonol, kaempferol, quercetin and myricetin enhanced the mutagenicity of AAF by 3.3-10.2-fold. The potency of the mutagenicity enhancing effects increased in the described order. For the mutagenicity-enhancing effects of the flavonoids on AAF, the flavonol structure, including the free 3-hydroxyl group and the 2,3-double bond, were essential. In the quercetin analogues, the 5-hydroxyl group was also essential. Further, the numbers of the hydroxyl groups substituted at the 3', 4' and 5'-positions in the B-ring contributed to an increase of the enhancing effect, whereas the substitution of a hydroxyl group at the 2'-position depressed the potency of the effect.  相似文献   

8.
Anthocyanins are colorful plant pigments with promising applications as pharmaceuticals and colorants. In order to engineer efficient pigment biosynthesis in Escherichia coli, the activities of various dihydroflavonol 4-reductases (DFRs) were characterized for the three primary dihydroflavonol substrates. The biochemical assays demonstrated variable DFR activities for dihydroflavonol with one B-ring hydroxyl group, the precursor of pelargonidin derivatives. In contrast, dihydroflavonols with two and three B-ring hydroxylation were metabolized with comparable efficiency. Furthermore, the catalysis of DFR for the secondary substrates, flavanones, also depended on the number of B-ring hydroxyl groups. Engineering the expression of the DFR clones together with plant-specific 4-coumaroyl:CoA ligase, chalcone synthase, chalcone isomerase, and flavanone 3-hydroxylase in E. coli resulted in the synthesis of pelargonidin at various levels, from p-coumaric acids. The identification of a robust DFR from this study can also be used for engineering recombinant synthesis of other bioactive flavonoids, such as flavan-3-ols.  相似文献   

9.
Flavanones are the common precursors of plant polyphenolic compounds collectively known as flavonoids. Leguminous plants have evolved a distinct class of flavanone molecules, known as 5-deoxyflavanones that play important roles in their symbiotic interactions. A four-step metabolic circuit was constructed in Escherichia coli with plant genes from heterologous origins: 4-coumarate:coenzyme A ligase from Petroselinum crispum, chalcone synthases (CHS) from Medicago sativa and Petunia x hybrida and chalcone reductase and chalcone isomerase from M. sativa. Evaluation of the different recombinant strains in shake flask experiments demonstrated that P. hybrida rather than M. sativa CHS resulted in the highest liquiritigenin production levels in glucose minimal medium, starting from precursor p-coumaric acid. Expression of the same recombinant pathway in Saccharomyces cerevisiae resulted in the accumulation of both 5-hydroxyflavanone and 5-deoxyflavanone, with the yields of the later lower than that achieved in E. coli. Other phenylpropanoid acid precursors, such as cinnamic acid and caffeic acid could also be metabolized through the recombinant pathway, yielding corresponding 5-deoxyflavanone compounds. The construction of such recombinant strains for 5-deoxyflavanone biosynthesis offers an alternative way to biochemically characterize flavonoid biosynthetic enzymes and promising production platforms for the biosynthesis of such high-value natural products.  相似文献   

10.
Anthocyanins are colorful plant pigments with promising applications as pharmaceuticals and colorants. In order to engineer efficient pigment biosynthesis in Escherichia coli, the activities of various dihydroflavonol 4-reductases (DFRs) were characterized for the three primary dihydroflavonol substrates. The biochemical assays demonstrated variable DFR activities for dihydroflavonol with one B-ring hydroxyl group, the precursor of pelargonidin derivatives. In contrast, dihydroflavonols with two and three B-ring hydroxylation were metabolized with comparable efficiency. Furthermore, the catalysis of DFR for the secondary substrates, flavanones, also depended on the number of B-ring hydroxyl groups. Engineering the expression of the DFR clones together with plant-specific 4-coumaroyl:CoA ligase, chalcone synthase, chalcone isomerase, and flavanone 3-hydroxylase in E. coli resulted in the synthesis of pelargonidin at various levels, from p-coumaric acids. The identification of a robust DFR from this study can also be used for engineering recombinant synthesis of other bioactive flavonoids, such as flavan-3-ols.  相似文献   

11.
Molecular mechanisms of the influence of flavonoids on the voltage gating of a single alpha-hemolysin channel in planar lipid membranes are studied. It is shown that the addition of flavonoids hydroxylated in position 5 of the A-ring and in position 4' of the B-ring into bilayer bathing solution shifts the voltage dependence of channel switching from high- to low-conductance states to voltages nearer zero. It is concluded that the effect is likely to be attributed to a specific interaction of at least three flavonoid molecules with the voltage sensor of an alpha-hemolysin pore. Possible flavonoid binding sites and identification of amino acid residues included into the voltage sensor domain of the alpha-hemolysin channel are discussed.  相似文献   

12.
Pear (Pyrus sp.) is a major fruit crop of temperate regions with increasing extent of cultivation. Pear flavonoids contribute to its fruit color, pathogen defense, and are health beneficial ingredients of the fruits. Comparative Southern analyses with apple (Malus x domestica) cDNAs showed comparable genomic organization of flavonoid genes of both related genera. A homology-based cloning approach was used to obtain the cDNAs of most enzymes of the main flavonoid pathway of Pyrus: phenylalanine ammonia lyase, chalcone synthase, chalcone isomerase, flavanone 3β-hydroxylase, flavonol synthase, dihydroflavonol 4-reductase, leucoanthocyanidin reductase 1 and 2, anthocyanidin synthase, anthocyanidin reductase, and UDP-glucose : flavonoid 7-O-glucosyltransferase. The substrate specificities of the recombinant enzymes expressed in yeast were determined for physiological and non-physiological substrates and found to be in general agreement with the characteristic pear flavonoid metabolite pattern of mainly B-ring dihydroxylated anthocyanins, flavonols, catechins, and flavanones. Furthermore, significant differences in substrate specificities and gene copy numbers in comparison to Malus were identified. Cloning of the cDNAs and studying the enzymes of the Pyrus flavonoid pathway is an essential task toward a comprehensive knowledge of Pyrus polyphenol metabolism. It also elucidates evolutionary patterns of flavonoid/polyphenol pathways in the Rosaceae, which allocate several important crop plants.  相似文献   

13.
In Arabidopsis thaliana, silencing of hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT), a lignin biosynthetic gene, results in a strong reduction of plant growth. We show that, in HCT-silenced plants, lignin synthesis repression leads to the redirection of the metabolic flux into flavonoids through chalcone synthase activity. Several flavonol glycosides and acylated anthocyanin were shown to accumulate in higher amounts in silenced plants. By contrast, sinapoylmalate levels were barely affected, suggesting that the synthesis of that phenylpropanoid compound might be HCT-independent. The growth phenotype of HCT-silenced plants was shown to be controlled by light and to depend on chalcone synthase expression. Histochemical analysis of silenced stem tissues demonstrated altered tracheary elements. The level of plant growth reduction of HCT-deficient plants was correlated with the inhibition of auxin transport. Suppression of flavonoid accumulation by chalcone synthase repression in HCT-deficient plants restored normal auxin transport and wild-type plant growth. By contrast, the lignin structure of the plants simultaneously repressed for HCT and chalcone synthase remained as severely altered as in HCT-silenced plants, with a large predominance of nonmethoxylated H units. These data demonstrate that the reduced size phenotype of HCT-silenced plants is not due to the alteration of lignin synthesis but to flavonoid accumulation.  相似文献   

14.
Cytochrome P-450-dependent hydroxylases are typical enzymes for the modification of basic flavonoid skeletons. We show in this study that CYP71D9 cDNA, previously isolated from elicitor-induced soybean (Glycine max L.) cells, codes for a protein with a novel hydroxylase activity. When heterologously expressed in yeast, this protein bound various flavonoids with high affinity (1.6 to 52 microm) and showed typical type I absorption spectra. These flavonoids were hydroxylated at position 6 of both resorcinol- and phloroglucinol-based A-rings. Flavonoid 6-hydroxylase (CYP71D9) catalyzed the conversion of flavanones more efficiently than flavones. Isoflavones were hardly hydroxylated. As soybean produces isoflavonoid constituents possessing 6,7-dihydroxy substitution patterns on ring A, the biosynthetic relationship of flavonoid 6-hydroxylase to isoflavonoid biosynthesis was investigated. Recombinant 2-hydroxyisoflavanone synthase (CYP93C1v2) efficiently used 6,7,4'-trihydroxyflavanone as substrate. For its structural identification, the chemically labile reaction product was converted to 6,7,4'-trihydroxyisoflavone by acid treatment. The structures of the final reaction products for both enzymes were confirmed by NMR and mass spectrometry. Our results strongly support the conclusion that, in soybean, the 6-hydroxylation of the A-ring occurs before the 1,2-aryl migration of the flavonoid B-ring during isoflavanone formation. This is the first identification of a flavonoid 6-hydroxylase cDNA from any plant species.  相似文献   

15.
Flavonoids are ubiquitous phenolic compounds and at least 9,000 have been isolated from plants. Most flavonoids have been isolated and assessed in terms of their biological activities. Microorganisms such as Escherichia coli and Saccharomyces cerevisiae are efficient systems for the synthesis of flavonoids. Kaempferol 3-O-rhamnoside has notable biological activities such as the inhibition of the proliferation of breast cancer cells, the absorption of glucose in the intestines, and the inhibition of the self-assembly of beta amyloids. We attempted to synthesize kaempferol 3-O-rhamnoside from glucose in E. coli. Five flavonoid biosynthetic genes [tyrosine ammonia lyase (TAL), 4-coumaroyl CoA ligase (4CL), chalcone synthase (CHS), flavonol synthase (FLS), and flavonol 3-O-rhamnosyltransferase (UGT78D1)] from tyrosine were introduced into E. coli that was engineered to increase tyrosine production. By using this approach, the production of kaempferol 3-O-rhamnoside increased to 57 mg/L.  相似文献   

16.
The flavonol myricetin, reacts with oxygen-centred galvinoxyl radicals 28 times faster than d-alpha-tocopherol (vitamin E), the main lipid-soluble antioxidant in biological membranes. Moreover, each myricetin molecule reduces twice as many such radicals as vitamin E. However, myricetin fails to protect vitamin E-deficient microsomes from lipid peroxidation as assessed by the formation of thiobarbituric acid reactive substances (TBARS). Novel and potentially therapeutic antioxidants have been prepared that combine the radical-scavenging ability of a myricetin-like head group with a lipophilic chain similar to that of vitamin E. C(6)-C(12) alkyl chains are attached to the A-ring of either a 3,3',4',5'-tetrahydroxyflavone or a 3,2',4',5'-tetrahydroxyflavone head group to give lipophilic flavonoids (C log P = 4 to 10) that markedly inhibit iron-ADP catalysed oxidation of microsomal preparations. Orientation of the head group as well as total lipophilicity are important determinants of antioxidant efficacy. MM2 models indicate that our best straight chain 7-alkylflavonoids embed to the same depth in the membrane as vitamin E. The flavonoid head groups are prepared by aldol condensation followed by Algar-Flynn-Oyamada (AFO) oxidation or by Baker-Venkataraman rearrangement. The alkyl tails are introduced by Suzuki or Negishi palladium-catalysed cross-coupling or by cross-metathesis catalysed by first generation Grubbs catalyst, which tolerate phenolic hydroxyl and ketone groups.  相似文献   

17.
7-O-Methyl aromadendrin (7-OMA) is an aglycone moiety of one of the important flavonoid-glycosides found in several plants, such as Populus alba and Eucalyptus maculata, with various medicinal applications. To produce such valuable natural flavonoids in large quantity, an Escherichia coli cell factory has been developed to employ various plant biosynthetic pathways. Here, we report the generation of 7-OMA from its precursor, p-coumaric acid, in E. coli for the first time. Primarily, naringenin (NRN) (flavanone) synthesis was achieved by feeding p-coumaric acid and reconstructing the plant biosynthetic pathway by introducing the following structural genes: 4-coumarate-coenzyme A (CoA) ligase from Petroselinum crispum, chalcone synthase from Petunia hybrida, and chalcone isomerase from Medicago sativa. In order to increase the availability of malonyl-CoA, a critical precursor of 7-OMA, genes for the acyl-CoA carboxylase α and β subunits (nfa9890 and nfa9940), biotin ligase (nfa9950), and acetyl-CoA synthetase (nfa3550) from Nocardia farcinica were also introduced. Thus, produced NRN was hydroxylated at position 3 by flavanone-3-hydroxylase from Arabidopsis thaliana, which was further methylated at position 7 to produce 7-OMA in the presence of 7-O-methyltransferase from Streptomyces avermitilis. Dihydrokaempferol (DHK) (aromadendrin) and sakuranetin (SKN) were produced as intermediate products. Overexpression of the genes for flavanone biosynthesis and modification pathways, along with malonyl-CoA overproduction in E. coli, produced 2.7 mg/liter (8.9 μM) 7-OMA upon supplementation with 500 μM p-coumaric acid in 24 h, whereas the strain expressing only the flavanone modification enzymes yielded 30 mg/liter (99.2 μM) 7-OMA from 500 μM NRN in 24 h.  相似文献   

18.
The plant flavonoids quercetin (3,5,7,3',4'-pentahydroxyflavone), morin (3,5,7,2',4'-pentahydroxyflavone), kaempferol (3,5,7,4'-tetrahydroxyflavone), chrysin (5,7-dihydroxyflavone), fisetin (3,7,3',4'-tetrahydroxyflavone), myricetin (3,5,7,3',4',5'-hexahydroxyflavone), myricitrin (myricetin-3-rhamnoside), hesperetin (3',5,7-trihydroxy-4'-methoxyflavanone), quercitrin (quercetin-3-L-rhamnoside), rutin (quercetin-3-rhamnosylglucoside or quercetin-3-rutinoside), and hesperidin (hesperetin-7-rutinoside) have been assayed for mutagenicity in the Salmonella/microsomal activation system. Quercetin, morin, kaempferol, fisetin, myricetin, quercitrin and rutin were mutagenic in the histidine reversion system with the frameshift strain TA98. The flavonols quercetin and myricetin are mutagenic without metabolic activation, although more effective when a rat liver microsomal preparation (S-9) is included; all others require metabolic activation. Flavonoids are common constituents of higher plants, with extensive medical uses. In addition to pure compounds, we have examined crude extracts of tobacco (snuff) and extracts from commonly available nutritional supplements containing rutin. Mutagenic activity can be detected and is correlated with the flavonoid content.  相似文献   

19.
(2S)-Flavanones (naringenin and pinocembrin) are key intermediates in the flavonoid biosynthetic pathway in plants. Recombinant Escherichia coli cells containing four genes for a phenylalanine ammonia-lyase, cinnamate/coumarate:CoA ligase, chalcone synthase, and chalcone isomerase, in addition to the acetyl-CoA carboxylase, have been established for efficient production of (2S)-naringenin from tyrosine and (2S)-pinocembrin from phenylalanine. Further introduction of the flavone synthase I gene from Petroselinum crispum under the control of the T7 promoter and the synthetic ribosome-binding sequence in pACYCDuet-1 caused the E. coli cells to produce flavones: apigenin (13 mg/l) from tyrosine and chrysin (9.4 mg/l) from phenylalanine. Introduction into the E. coli cells of the flavanone 3β-hydroxylase and flavonol synthase genes from the plant Citrus species led to production of flavonols: kaempferol (15.1 mg/l) from tyrosine and galangin (1.1 mg/l) from phenylalanine. The combinatorial biosynthesis of the flavones and flavonols in E. coli is promising for the construction of a library of various flavonoid compounds and un-natural flavonoids in bacteria.  相似文献   

20.
Flavonoids are a large family of plant polyphenolic secondary metabolites. Although they are widespread throughout the plant kingdom, some flavonoid classes are specific for only a few plant species. Due to their presumed health benefits there is growing interest in the development of food crops with tailor-made levels and composition of flavonoids, designed to exert an optimal biological effect. In order to explore the possibilities of flavonoid engineering in tomato fruits, we have targeted this pathway towards classes of potentially healthy flavonoids which are novel for tomato. Using structural flavonoid genes (encoding stilbene synthase, chalcone synthase, chalcone reductase, chalcone isomerase and flavone synthase) from different plant sources, we were able to produce transgenic tomatoes accumulating new phytochemicals. Biochemical analysis showed that the fruit peel contained high levels of stilbenes (resveratrol and piceid), deoxychalcones (butein and isoliquiritigenin), flavones (luteolin-7-glucoside and luteolin aglycon) and flavonols (quercetin glycosides and kaempferol glycosides). Using an online high-performance liquid chromatography (HPLC) antioxidant detection system, we demonstrated that, due to the presence of the novel flavonoids, the transgenic tomato fruits displayed altered antioxidant profiles. In addition, total antioxidant capacity of tomato fruit peel with high levels of flavones and flavonols increased more than threefold. These results on genetic engineering of flavonoids in tomato fruit demonstrate the possibilities to change the levels and composition of health-related polyphenols in a crop plant and provide more insight in the genetic and biochemical regulation of the flavonoid pathway within this worldwide important vegetable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号