首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of membrane lipid composition in determining the electrical properties of neuronal cells was investigated by altering the available fatty acids in the growth medium of cultured neuroblastoma X glioma hybrid cells, clone NG108-15. Growth of the cells for several days in the presence of polyunsaturated fatty acids (linoleic, linolenic, and arachidonic) caused a pronounced decrease in the Na+ action-potential rate of rise (dV/dt) and smaller decreases in the amplitude, measured by intracellular recording. Oleic acid had no effect on the action potentials generated by the cells. In contrast, a saturated fatty acid (palmitate) and a trans monounsaturated fatty acid (elaidate) caused increases in both the rate of rise and the amplitude. No changes in the resting membrane potentials or Ca2+ action potentials of fatty acid-treated cells were observed. The membrane capacitance and time constant were not altered by exposure to arachidonate, oleate, or elaidate, whereas arachidonate caused a small increase in membrane resistance. Examination of the membrane phospholipid fatty acid composition of cells grown with various fatty acids revealed no consistent alterations which could explain these results. To examine the mechanism for arachidonate-induced decreases in dV/dt, the binding of 3H-saxitoxin (known to interact with voltage-sensitive Na+) channels was measured. Membranes from cells grown with arachidonate contained fewer saxitoxin binding sites, suggesting fewer Na+ channels in these cells. We conclude that conditions which lead to major changes in the membrane fatty acid composition have no effect on the resting membrane potential, membrane capacitance, time constant, or Ca2+ action potentials in NG108-15 cells. Membrane resistance also does not appear to be very sensitive to membrane fatty acid composition. However, changes in the availability of fatty acids and/or changes in the subsequent membrane fatty acid composition lead to altered Na+ action potentials. The primary mechanism for this alteration appears to be through changes in the number of Na+ channels in the cells.  相似文献   

2.
Theoretical simulations have suggested that interstitial potential (Vis) during action potential propagation affects measurements of the transmembrane action potential in bathed ventricular muscle. To evaluate the Vis experimentally, we obtained Vis and intracellular action potential (Vic) recordings at various depths in paced guinea pig papillary muscles bathed in oxygenated Tyrode's solution. The peak-to-peak amplitude and the maximum dV/dt (dV/dtmax) of the intrinsic downward deflection of the Vis recordings were determined. The transmembrane action potential (TM) was obtained by subtracting each Vis from the corresponding Vic recording, and measurements for the phase zero depolarization and action potential foot of the Vic were compared with the measurements for the TM. At penetration depths of approximately 54 microns, the amplitude and dV/dtmax of the Vis were 13 mV and -38 V/s. When the depth was increased to 200 microns, these parameters increased to 24 mV and -59 V/s (P less than 0.005), and when the depth was further increased to 390 microns, the parameters decreased to 16 mV and -38 V/s. Because of the Vis at the various depths, the Vic underestimated dV/dtmax of phase zero of the TM by 20-31%, which would reduce estimates of Na+ current obtained from dV/dt. Also, the Vic overestimated the time constant of the 2-8 mV foot of the action potential by 48-82%, which would reduce estimates of the "effective" membrane capacitance by 33-45%. These influences of the Vis on measurements may affect results of quantitative studies of the ventricular action potential.  相似文献   

3.
Effect of ethanol on cholesterol and phospholipid composition of HeLa cells   总被引:1,自引:0,他引:1  
Chronic exposure of animals to ethanol leads to changes in membrane lipid composition which may be related to the development of tolerance and physical dependence. The object of the present study was to investigate this phenomenon at a cellular level. HeLa cells were grown in the presence of ethanol (86 mM) for periods of up to 9 days. Both the cholesterol and phospholipid concentration of these cells increased during this period but the cholesterol:phospholipid ratio remained unchanged. Among the phospholipid classes phosphatidic acid decreased while phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine increased rapidly, returning toward control values by 9 days. Significant decreases were observed in saturated (14:0, 16:0) and monoenoic (16:1, 18:1) fatty acids while the major polyenoic fatty acid (20:4) increased. It is concluded that cultured mammalian cells represent a useful model for investigation of the direct effects of ethanol on membrane lipid metabolism.  相似文献   

4.
In order to study the effect of n-3 fatty acids on the physical state of the erythrocyte membrane, measured as osmotic fragility, rats were fed a diet supplemented in n-3 fatty acids (1.5 ml/day, 35% 20:5, 30% 22:6) for 21 days. With salt concentrations ranging from 0.37% to 0.44%, osmotic resistance was increased by 25% to 45% in cells from n-3-fed animals compared to controls. No change was observed in either phospholipid or cholesterol content in the membrane. A small, but still significant difference (P less than 0.05) in phospholipid sub-class distribution was observed in that the phosphatidylethanolamine fraction was decreased and the phosphatidylserine fraction increased after n-3 supplementation. The major change was, however, that the level of eicosapentaenoic acid (20:5(n-3] in phospholipids was increased from 1.5% of total fatty acids to 4.5%. This increase was mainly at the expense of linoleic acid (18:2(n-6]. No change was observed in the level of docosahexaenoic acid (22:6(n-3]. It is thus concluded that both the fatty acid composition and the nature of the phospholipid polar head group may influence the osmotic fragility of erythrocytes.  相似文献   

5.
Previous studies have shown that aldosterone treatment of amphibian epithelial cells results not only in stimulation of Na(+) absorption but also in changes in phospholipid composition which are necessary for the mineralocorticoid action of aldosterone. The present study was designed to investigate the effect of aldosterone on phospholipids of mammalian epithelia. Phospholipid and fatty acid composition was examined in colonic epithelium (mineralocorticoid target tissue) and thymus (non-mineralocorticoid but glucocorticoid target tissue) of rats which had received aldosterone or vehicle by a miniosmotic pump for 7 days. Aldosterone increased the mass of colonic phospholipids relative to cellular proteins with concomitant changes in the percentage distribution of fatty acids, whereas the relative distribution of membrane phospholipds was not changed. Phosphatidylcholine increased the content of polyunsaturated and decreased that of monounsaturated fatty acids, which predominantly reflected the accretion of arachidonic and a decrease in oleic and palmitoleic acids. Within the phosphatidylethanolamine subclass, pretreatment of rats with aldosterone decreased the content of monounsaturated fatty acids (predominantly oleic and palmitoleic acid) and of n-3 fatty acids, and increased the content of saturated fatty acids (palmitic acid). The saturated-to-nonsaturated fatty acid ratio also significantly increased after aldosterone treatment. No changes in thymic phospholipids were seen. The results are consistent with the contention that aldosterone specifically modulates phospholipid concentration and metabolism in mineralocorticoid target tissue. The changes in phospholipid content and its fatty acid composition during the fully developed effect of aldosterone may reflect a physiologically important phenomenon with long-term consequences for membrane structure and function.  相似文献   

6.
Phospholipid and phospholipid fatty acid compositional changes were studied in rat cortical astrocytes during dibutyryl cyclic adenosine monophosphate (dBcAMP, 0.25 mM) treatment starting after 14 days in culture (DIC). After 15 DIC, ethanolamine- and choline glycerophospholipid levels were increased 1.2- and 1.3-fold, respectively in treated compared to control cells. However, after 21 and 28 DIC, these levels were not significantly different between groups. Both groups had an increase in phosphatidylserine levels with increasing time in culture. Similarly, ethanolamine plasmalogen levels were transiently elevated after 21 DIC, but returned to previous levels after 28 DIC. The phospholipid fatty acid compositions for the acid stable and labile ethanolamine- and choline glycerophospholipids indicated that in dBcAMP treated cells, 20:4 n-6 and 22:6 n-3 proportions were elevated with increasing time in culture relative to control cells. As 20:4 n-6 proportions increased, there was a concomitant decrease in 20:3 n-9 proportions, suggesting an up regulation of n-6 series elongation and desaturation. In contrast, in control cells, the 20:4 n-6 proportions decreased with a corresponding increase in the 20:3 n-9 proportions. Thus, in treated cells, the cellular phospholipid fatty acid composition was dramatically different than control cells, suggesting that dBcAMP treatment may act to increase fatty acid elongation and desaturation.  相似文献   

7.
我们先前的研究表明,植物多糖抑制体外培养的小鼠肉瘤S180细胞增殖并使细胞膜磷脂含量减少,同时抑制膜磷脂酰肌醇转换。为进一步探讨植物多糖与膜磷脂的关系,本文采用毛细管柱气相色谱法分析了茯苓多糖(PPS)、刺五加多糖(ASPS)与S180细胞一同温育24h后,细胞膜磷脂和中性脂的脂肪酸组成变化,发现中性脂的脂肪酸组成和不饱和性不受影响,磷脂的脂肪酸组成发生明显改变,花生四烯酸(C(20:4))和豆蔻酸(C(14:0))降低(P<0.05或P<0.01),与用作阳性药物对照的氨甲喋呤作用相似。本文对膜磷脂脂肪酸组成变化的意义结合先前的实验结果进行了讨论,认为在PPS、ASPS的抗肿瘤机理中,细胞膜磷脂生化特性的改变是重要环节。  相似文献   

8.
Incorporation of exogenous cholesterol was compared in human adenocarcinoma colon cells (Caco-2) after incubation with 100 microM of either linoleic acid (LA, 18:2n-6), gamma-linolenic acid (GLA, 18:3n-6), arachidonic acid (AA, 20:4n-6) or adrenic acid (or n-6 docosatetraenoic acid, DTA, 22:4n-6). In both cells 7 days after seeding and 14 days after confluency, incubation with LA significantly raised the proportion of 18:2n-6 but not its long-chain metabolites in cellular phospholipid. Incubation with GLA increased the levels of 18:3n-6, 20:3n-6, and 20:4n-6. Incubation with AA increased the levels of 20:4n-6 and 22:4n-6, and incubation with DTA increased the levels of 22:4n-6 as well as its retro-conversion metabolite, 20:4n-6. A subsequent addition of cholesterol (180 microM) to the medium significantly raised the cellular cholesterol level but less so in the cells 7 days after seeding incubated with GLA. The increase in cellular cholesterol level was generally greater in the cells of 7 days after seeding, particularly those incubated with long-chain highly unsaturated n-6 fatty acids, than in those of 14 days after confluency. These findings suggest that the cell growth and the extent of unsaturation in cell membrane phospholipid fatty acids modulate the incorporation of the exogenous cholesterol into the Caco-2 cells.  相似文献   

9.
Training improves insulin sensitivity, which in turn may affect performance by modulation of fuel availability. Insulin action, in turn, has been linked to specific patterns of muscle structural lipids in skeletal muscle. This study investigated whether regular exercise training exerts an effect on the muscle membrane phospholipid fatty acid composition in humans. Seven male subjects performed endurance training of the knee extensors of one leg for 4 wk. The other leg served as a control. Before, after 4 days, and after 4 wk, muscle biopsies were obtained from the vastus lateralis. After 4 wk, the phospholipid fatty acid contents of oleic acid 18:1(n-9) and docosahexaenoic acid 22:6(n-3) were significantly higher in the trained (10.9 +/- 0.5% and 3.2 +/- 0.4% of total fatty acids, respectively) than the untrained leg (8.8 +/- 0.5% and 2.6 +/- 0.4%, P < 0.05). The ratio between n-6 and n-3 fatty acids was significantly lower in the trained (11.1 +/- 0.9) than the untrained leg (13.1 +/- 1.2, P < 0.05). In contrast, training did not affect muscle triacylglycerol fatty acid composition. Citrate synthase activity was increased by 17% in the trained compared with the untrained leg (P < 0.05). In this model, diet plays a minimal role, as the influence of dietary intake is similar on both legs. Regular exercise training per se influences the phospholipid fatty acid composition of muscle membranes but has no effect on the composition of fatty acids stored in triacylglycerols within the muscle.  相似文献   

10.
Phase Plane Trajectories of the Muscle Spike Potential   总被引:2,自引:0,他引:2       下载免费PDF全文
To facilitate a study of the transmembrane action current, the striated muscle spike potential was recorded against its first time derivative. The specialized recording methods are described, as well as several mathematical transformations between a coordinate system in V, t, and the present coordinate system in V, dV/dt. The particular properties of the present recording method permitted an estimation for the “sodium” potential in muscle fibers at +39 mv. The maximum membrane conductance during spike production is in the order of 150 to 200 mmhos/cm2. The changes in the shape of the recorded response indicate that the ionic currents and membrane conductances are reduced by Tris buffer or hypertonic Ringer's fluid. However, no marked changes in the properties of active membrane were observed when chloride ion was replaced by sulfate.  相似文献   

11.
Mature green tomato fruit ( Lycopersicon esculentum cv. Caruso) were stored at 1°C or 20°C and analyzed on day 0, 18 and 22 for electrolyte leakage, ripening-associated changes in pigmentation and phospholipid fatty acid composition. Chilled fruit were also analyzed 4 days after they were returned to 20°C. Fruit did not ripen significantly during chilling and subsequent storage at 20°C, and showed visible chilling injury symptoms only at 20°C. Electrolyte leakage increased in control and chilled fruit, indicating enhanced membrane permeability during both ripening and chilling. Returning the fruit to ambient temperature gave an apparent decrease in electrolyte leakage. Phospholipid and linolenic acid content and double bond index decreased during ripening at 20°C. The small changes in phospholipid fatty acid composition during chilling cannot account for the enhanced membrane permeability. The significant decrease in percentage of linolenic acid and in double bond index in the total lipids, but not in the phospholipids, upon returning the fruit to 20°C suggests loss of galactolipid polyunsaturated fatty acids  相似文献   

12.
The action of acetylcholine (ACh) and verapamil (VePa) on the action potential (V(t)), phase plane trajectories of V(t) (dV/dt--V(t) -- plot) and isotonic contractions were investigated using an isolated vegal innervated preparation from rabbit atrium (method I) and investigating action potentials from atrial trabeculae by means a modified sucrose gap technique (method II). If the VePa-concentration increases to 4 mg/1 the duration of the action potential decreases at 20 and 90% repolarization (driving frequencies 2 s-1). In the VePa-solutions phase plane trajectories of the action potential did not change significantly. ACh application favours the disappearance of a region in the repolarization phase plane plot showing anomalous rectification (d(--dV/dt)/dV less than 0) both by control conditions and verapamil. The electrotropic ACh-and vagal effects will be unchanged by verapamil. The inotropic ACh-and vegal action (method I) increases by VePa (2 mg/1). The action of ACh and verapamil will be analysed using a mathematical model for reconstructing the repolarization phase of mammalian atrial myocardium action potentials.  相似文献   

13.
Yersinia enterocolitica is capable of growing in a broad range of temperatures from 4 to 45 C. How this organism alters its membrane lipids in response to the change of growth temperature is very interesting. The fatty acids of membrane lipids of cells cultured at 5, 15, 25 and 37 C were analyzed and the physical states of these membrane lipids were characterized. The major phospholipids of this bacterium were phosphatidylethanolamine, phosphatidylglycerol, cardiolipin, lysophosphatidylglycerol and lysophosphatidylethanolamine. No significant difference in phospholipid composition in response to culture temperatures was observed. It was reported in our previous paper that the major fatty acids of membrane phospholipids of Y. enterocolitica were C15:0, C16:0, C16:1, cyclopropane C17:0 and C18:0. Some differences in the fatty acid composition were, however, observed with the change of culture temperature. When the culture temperature was raised, the saturated and cyclopropane fatty acids substantially increased and the unsaturated ones decreased. A reverse phenomenon was observed when culture temperature was lowered. From the viewpoints of membrane physical state, adaptational changes were analyzed using a nylon microcapsule method. Phase transition in membrane lipids of cells grown at each culture temperature took place in the range of about 5 C below and about 10 C above the culture temperature. It is, therefore, considered that Y. enterocolitica maintains its membrane rigidity and fluidity in response to growth temperature by changing the membrane fatty acid composition.  相似文献   

14.
The free fatty acid and phospholipid composition of 4 psychrophilic marineVibrio spp. have been determined in chemostat culture with glucose as the limiting substrate over a temperature range 0–20°C. All the isolates show maximum glucose and lactose uptake at 0°C and this correlates with maximum cell yield. None of the isolates contain fatty acids with a chain length exceeding 17 carbon atoms.Vibrio AF-1 andVibrio AM-1 respond to decreased growth temperatures by synthesizing increased proportions of unsaturated fatty acids (C15:1, C16:1 and C17:1) whereas inVibrio BM-2 the fatty acids undergo chain length shortening. The fourth isolate (Vibrio BM-4) contains high levels (60%) of hexadecenoic acid at all growth temperatures and the fatty acid composition changes little with decreasing temperature. The principal phospholipid components of the four psychrophilic vibrios were phosphatidylserine, phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Lyso-phosphatidylethanolamine and 2 unknown phospholipids were additionally found inVibrio AF-1. The most profound effect of temperature on the phospholipid composition of these organisms was the marked increase in the total quantities synthesized at 0°C. At 15°C phosphatidylglycerol accumulated in the isolates as diphosphatidylglycerol levels decreased. Additionally inVibrio BM-2 andVibro BM-4 phosphatidylserine accumulates as phosphatidylethanolamine biosynthesis was similarly impaired. The observed changes in fatty acid and phospholipid composition in these organisms at 0°C may explain how solute transport is maintained at low temperature.Abbreviations PS Phosphatidylserine - PE phosphatidylethanolamine - PG phosphatidylglycerol - DPG diphosphatidylglycerol - lyso PE lysophosphatidylethanolamine  相似文献   

15.
We have investigated the lipid chemistry during cold acclimation in the freeze tolerant earthworm Dendrobaena octaedra. The dominant phospholipid fatty acids (PLFA) of D. octaedra were 20:4, 20:5 and 20:1 (50% of total PLFA) followed by 18:0, 18:1 and 18:2omega6,9 (25% of total PLFA). The ability to tolerate freezing in this species was acquired after acclimation at low temperature for 2-4 weeks. During this period one particular membrane PLFA, 18:2omega6,9, increased significantly and there was a good correlation between the proportion of this PLFA and the survival of freezing. The composition of neutral lipid fatty acids (NLFA), most likely representing storage lipids (triacylglycerides), also changed during cold acclimation so that the overall degree of unsaturation increased. Using a common-garden experiment approach, we compared lipid composition of three genetically different populations (Denmark, Finland and Greenland) that differed in their freeze tolerance. Inter-populational differences and differences due to cold acclimation in overall fatty acid composition were evident in both PLFAs and NLFAs. Specifically, the PLFAs, 20:4 and 20:5, were considerably more represented in worms from Greenland, and this contributed to a higher UI of PLFAs in this population.  相似文献   

16.
1. Lipid extracts were obtained from castor-bean endosperm tissue at various times during germination and, after purification, the total lipid content was determined. Quantitative measurements of the triglyceride and phospholipid content together with the fatty acid composition were made. 2. The total lipid content of the endosperm rapidly decreased during germination; after 10 days less than 20% of the original weight of lipid remained. In contrast, the phospholipid content (initially less than 0.5% of the total lipid) increased slightly during this time. The fatty acid composition and the relative proportions of the triglyceride species of the total lipid extract remained constant during 10 days of germination. 3. Gibberellic acid (0.3 mM) markedly stimulated the rate of lipid breakdown but did not alter either the fatty acid composition or the relative proportion of triglyceride species. 4. The embryo had little effect on lipid metabolism in the endosperm tissue; only after 6 days of germination were differences observed in the rate of fat utilization in the presence and absence of the embryo.  相似文献   

17.
18.
The phospholipid composition of Rhodopseudomonas acidophila strain 10050 grown aerobically or anaerobically in the light was determined. The major phospholipids present in the aerobic cells were phosphatidylethanolamine (PE; 54%), phosphatidylglycerol (PG; 24%) and cardiolipin (diphosphatidylglycerol, DPG) (14%), together with phosphatidylcholine (PC; 5%). On moving the cells to anaerobic photosynthetic growth in the light PE remained the major phospholipid (37-49%), but there was a major change in the proportion of PC, which increased to 31-33%, and corresponding reductions in the contents of PG to 11-16% and DPG to 4-5%. The fatty acid composition of the phospholipids was unusual, compared with other purple non-sulfur photosynthetic bacteria, in that it contained 16:0 (29%), 17:1 (20%) and 19:1 (9%) plus several mainly unsaturated 2-OH fatty acids (9% total) as major components, when grown aerobically in the dark. In contrast when grown photosynthetically under anaerobic conditions there was <2% 17:1 or 19:1 present, while the amounts of 16:1 and 18:1 increased, and 16:0 decreased. The phospholipid composition of the purified light-harvesting complex 2 (LH2) complex was PE (43%), PC (42%) and DPG (15%). Unexpectedly, there was no PG associated with the purified LH2. These findings contrast with previous studies on several other photosynthetic bacteria, which had shown an increase in PG upon photosynthetic growth [Biochem. J. 181 (1979) 339]. The prior hypothesis that phosphatidylglycerol has some specific role to play in the function of light-harvesting complexes cannot be true for Rps. acidophila. It is suggested that specific integral membrane proteins may strongly influence the phospholipid content of the host membranes into which they are inserted.  相似文献   

19.
Male weanling rats were fed diets containing 20% (w/w) fat differing in fatty acid composition for 24 days. Synaptic plasma membranes were isolated from the brain and the fatty acid composition of phosphatidylethanolamine and phosphatidylcholine was determined. In vitro assays of phosphatidylethanolamine methyl-transferase activity were performed on fresh membrane samples to assess effect of dietary fat on the rate of phosphatidylethanolamine methylation for phosphatidylcholine synthesis via the phosphatidylethanolamine methyltransferase pathway. Dietary level of n-6 and ratio of n-6 to n-3 fatty acids influenced membrane phospholipid fatty acid composition and activity of the lipid-dependent phosphatidylethanolamine methyltransferase pathway. Rats fed a diet rich in n-6 fatty acids produced a high ratio of n-6/n-3 fatty acids in synaptosomal membrane phosphatidylethanolamine, and elevated rates of methylation of phosphatidylethanolamine to phosphatidylcholine by phosphatidylethanolamine methyltransferases, suggesting that the pathway exhibits substrate selectivity for individual species of phosphatidylethanolamine containing long-chain homologues of dietary n-6 and n-3 fatty acids (20:4(n-6), 22:4(n-6), 22:5(n-6) and 22:6(n-3). It may be concluded that diet alters the membrane content of n-6, n-3 and monounsaturated fatty acids, and that change in phosphatidylethanolamine species available for methylation to phosphatidylcholine alters the rate of product synthesis in vivo by the phosphatidylethanolamine methyltransferase pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号