首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intrauterine programming hypothesis proposed that cardiovascular and metabolic disease originate through developmental plasticity and fetal adaptation arising from failure of the materno-placental supply of nutrients. The hypothesis is supported by experimental data in animals indicating that maternal nutrition can program long term effects on the offspring. The intrauterine conditions in which the fetus develops have an important role in regulating the function of its physiological systems later in life. Intrauterine programming of physiological systems occurs at the gene, cell, tissue, organ, and system levels and causes permanent structural and functional changes, which can lead to overt disease, particularly with increasing age. The physiological prevention of disease programming is discussing.  相似文献   

2.
Rogers LK  Velten M 《Life sciences》2011,89(13-14):417-421
The "fetal origin of adult disease Hypothesis" originally described by Barker et al. identified the relationship between impaired in utero growth and adult cardiovascular disease risk and death. Since then, numerous clinical and experimental studies have confirmed that early developmental influences can lead to cardiovascular, pulmonary, metabolic, and psychological diseases during adulthood with and without alterations in birth weight. This so called "fetal programming" includes developmental disruption, immediate adaptation, or predictive adaptation and can lead to epigenetic changes affecting a specific organ or overall health. The intrauterine environment is dramatically impacted by the overall maternal health. Both premature birth or low birth weight can result from a variety of maternal conditions including undernutrition or dysnutrition, metabolic diseases, chronic maternal stresses induced by infections and inflammation, as well as hypercholesterolemia and smoking. Numerous animal studies have supported the importance of both maternal health and maternal environment on the long term outcomes of the offspring. With increasing rates of obesity and diabetes and survival of preterm infants born at early gestational ages, the need to elucidate mechanisms responsible for programming of adult cardiovascular disease is essential for the treatment of upcoming generations.  相似文献   

3.
Adversities in pregnancy, including poor diet and stress, are associated with increased risk of developing both metabolic and mental health disorders later in life, a phenomenon described as fetal programming or developmental origins of disease. Predominant hypotheses proposed to explain this relationship suggest that the adversity imposes direct changes to the developing fetus which are maintained after birth resulting in an increased susceptibility to ill health. However, during pregnancy the mother, the developing fetus, and the placenta are all exposed to the adversity. The same adversities linked to altered offspring outcome can also result in suboptimal maternal care, which is considered an independent adverse exposure for the offspring. Recent key experiments in mice reveal the potential of prenatal adversity to drive alterations in maternal care through abnormal maternal–pup interactions and via alterations in placental signaling. Together, these data highlight the critical importance of viewing fetal programming holistically paying attention to the intimate, bidirectional, and reiterative relationship between mothers and their offspring.  相似文献   

4.
The foetal origins of adult diseases or Barker hypothesis suggests that there can be adverse in uterus effects on the foetus that can lead to certain diseases in adults. Extending this hypothesis to the early stages of embryo development, in particular, to preimplantation stages, it was recently demonstrated that, long-term programming of postnatal development, growth and physiology can be irreversibly affected during this period of embryo development by suboptimal in vitro culture (IVC). As an example, it was found in two recent studies that, mice derived from embryos cultured in suboptimal conditions can suffer from obesity, increased anxiety, and deficiencies on their implicit memory system. In addition, it was observed that suboptimal IVC can cause disease in mature animals by promoting alterations in their genetic imprinting during preimplantation development. Imprinting and other epigenetic mechanisms control the establishment and maintenance of gene expression patterns in the embryo, placenta and foetus. The previously described observations, suggest that the loss of epigenetic regulation during preimplantation development may lead to severe long-term effects. Although mostly tested in rodents, the hypothesis that underlies these studies can also fit assisted reproductive technology (ART) procedures in other species, including humans. The lack of information on how epigenetic controls are lost during IVC, and on the long-term consequences of ART, underscore the necessity for sustained epigenetic analysis of embryos produced in vitro and long-term tracking of the health of the human beings conceived using these procedures.  相似文献   

5.
Human epidemiological and animal laboratory studies show that suboptimal environments in the womb and during early neonatal life alter development and predispose the individual to lifelong health problems. The concept of the developmental origins of adult diseases has become well accepted because of the compelling animal studies that have precisely defined the outcomes of specific exposures such as nutrient restriction, overfeeding during pregnancy, maternal stress, and exogenously administered glucocorticoids. This review focuses on the use of animal models to evaluate exposures, mechanisms, and outcomes involved in developmental programming of hypertension, diabetes, obesity, and altered pituitary-adrenal function in offspring in later life. Ten principles of developmental programming are described as fundamental, regardless of the exposure during development and the physiological system involved in the altered outcome. The 10 principles are discussed in the context of the physiological systems involved and the animal model studies that have been conducted to evaluate exposures, mechanisms, and outcomes. For example, the fetus responds to challenges such as hypoxia and nutrient restriction in ways that help to ensure its survival, but this "developmental plasticity" may have long-term consequences that may not be beneficial in adult life. To understand developmental programming, which represents the interaction of nature and nurture, it is necessary to integrate whole animal systems physiology, in vitro cellular biology, and genomic and proteomic approaches, and to use animal models that are carefully characterized and appropriate for the questions under study. Animal models play an important role in this evaluation because they permit combined in vivo and in vitro study at different critical time windows during the exposure and the ensuing developmental responses.  相似文献   

6.
Maternal transmission of risk for atherosclerosis   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: In the last 20 years, an increasing amount of epidemiological and pathological evidence has become available illustrating the relationship between an adverse in-utero environment and increased risk of vascular disease in the offspring. It is now generally accepted that epigenetic phenomena, such as either DNA methylation or chromatin modifications or both mediate the long-term memory and thus developmental programming of cells and tissues. RECENT FINDINGS: In utero, the placenta and fetus are exposed to the metabolic, antioxidant and pro-inflammatory and anti-inflammatory signals from the mother and will likely respond specifically. In the fetus, these responses may lead to permanent changes either in DNA methylation or chromatin modification or both and these changes may lead to increased atherosclerosis susceptibility in adulthood. However, the molecular mechanisms responsible for the translation of an adverse maternal environment into permanent epigenetic changes are poorly understood. SUMMARY: In this review, we briefly summarize the possible signals crossing the placental barrier and discuss the molecular mechanisms of epigenetic programming in the developing fetus leading to increased athero-susceptibility of the vessel wall.  相似文献   

7.
8.

Background

Long-term hypoxia (LTH) is an important stressor related to health and disease during development. At different time points from fetus to adult, we are exposed to hypoxic stress because of placental insufficiency, high-altitude residence, smoking, chronic anemia, pulmonary, and heart disorders, as well as cancers. Intrauterine hypoxia can lead to fetal growth restriction and long-term sequelae such as cognitive impairments, hypertension, cardiovascular disorders, diabetes, and schizophrenia. Similarly, prolonged hypoxic exposure during adult life can lead to acute mountain sickness, chronic fatigue, chronic headache, cognitive impairment, acute cerebral and/or pulmonary edema, and death.

Aim

LTH also can lead to alteration in metabolites such as fumarate, 2-oxoglutarate, malate, and lactate, which are linked to epigenetic regulation of gene expression. Importantly, during the intrauterine life, a fetus is under a relative hypoxic environment, as compared to newborn or adult. Thus, the changes in gene expression with development from fetus to newborn to adult may be as a consequence of underlying changes in the metabolic profile because of the hypoxic environment along with developmental maturation. To examine this possibility, we examined the metabolic profile in carotid arteries from near-term fetus, newborn, and adult sheep in both normoxic and long-term hypoxic acclimatized groups.

Results

Our results demonstrate that LTH differentially regulated glucose metabolism, mitochondrial metabolism, nicotinamide cofactor metabolism, oxidative stress and antioxidants, membrane lipid hydrolysis, and free fatty acid metabolism, each of which may play a role in genetic-epigenetic regulation.  相似文献   

9.
Maternal obesity caused by overnutrition during pregnancy increases susceptibility to metabolic risks in adulthood, such as obesity, insulin resistance, and type 2 diabetes; however, whether and how it affects the cognitive system associated with the brain remains elusive. Here, we report that pregnant obesity induced by exposure to excessive high fatty or highly palatable food specifically impaired reversal learning, a kind of adaptive behavior, while leaving serum metabolic metrics intact in the offspring of rats, suggesting a much earlier functional and structural defects possibly occurred in the central nervous system than in the metabolic system in the offspring born in unfavorable intrauterine nutritional environment. Mechanically, we found that above mentioned cognitive inflexibility might be associated with significant striatal disturbance including impaired dopamine homeostasis and disrupted leptin signaling in the adult offspring. These collective data add a novel perspective of understanding the adverse postnatal sequelae in central nervous system induced by developmental programming and the related molecular mechanism through which priming of risk for developmental disorders may occur during early life.  相似文献   

10.
People who were small at birth have been shown to have an increased risk of CHD and chronic bronchitis in later life. These findings have led to the fetal origins hypothesis that proposes that the fetus adapts to a limited supply of nutrients, and in doing so it permanently alters its physiology and metabolism, which could increase its risk of disease in later life. The Dutch famine--though a historical disaster--provides a unique opportunity to study effects of undernutrition during gestation in humans. People who had been exposed to famine in late or mid gestation had reduced glucose tolerance. Whereas people exposed to famine in early gestation had a more atherogenic lipid profile, somewhat higher fibrinogen concentrations and reduced plasma concentrations of factor VII, a higher BMI and they appeared to have a higher risk of CHD. Though the latter was based on small numbers, as could be expected from the relatively young age of the cohort. Nevertheless, this is the first evidence in humans that maternal undernutrition during gestation is linked with the risk of CHD in later life. Our findings broadly support the hypothesis that chronic diseases originate through adaptations made by the fetus in response to undernutrition. The long-term effects of intrauterine undernutrition, however, depend upon its timing during gestation and on the tissues and systems undergoing critical periods of development at that time. Furthermore, our findings suggest that maternal malnutrition during gestation may permanently affect adult health without affecting the size of the baby at birth. This gives the fetal origins hypothesis a new dimension. It may imply that adaptations that enable the fetus to continue to grow may nevertheless have adverse consequences for health in later life. CHD may be viewed as the price paid for successful adaptations to an adverse intra-uterine environment. It also implies that the long-term consequences of improved nutrition of pregnant women will be underestimated if these are solely based on the size of the baby at birth. We need to know more about what an adequate diet for pregnant women might be. In general, women are especially receptive to advice about diet and lifestyle before and during a pregnancy. This should be exploited to improve the health of future generations.  相似文献   

11.
Epidemiological research since the 1980s has highlighted the consequences of early life adversity, particularly during gestation and early infancy, for adult health (the “Barker hypothesis”). The fast‐evolving field of molecular epigenetics is providing explanatory mechanisms concerning phenotypic plasticity in response to developmental stressors and the accumulation of disease risk throughout life. In addition, there is now evidence for the heritability of poor health across generations via epigenetic modifications. This research has the potential to invoke a paradigmatic shift in how we interpret factors such as growth insults and immune response in past skeletal remains. It demonstrates that health cannot be understood in terms of immediate environmental circumstances alone. Furthermore, it requires both a theoretical and practical re‐evaluation of disease biographies and the life course more generally. Individual life courses can no longer be regarded as discrete, bounded, life histories, with clearly defined beginning and end points. If socioeconomic circumstances can have intergenerational effects, including disease susceptibility and growth stunting, then individual biographies should be viewed as nested or “embedded” within the lives of others. This commingling of life courses may prove problematic to unravel; nevertheless, this review aims to consider the potential consequences for bioarchaeological interpretations. These include a greater consideration of: the temporal power of human skeletons and a life course approach to past health; infant health and the implications for maternal well‐being; and the impact of non‐proximate stressors (e.g., early life and ancestral environments) on the presence of health indicators. Am J Phys Anthropol 158:530–540, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
There exist numerous experimental and epidemiological data indicating that malnutrition in early development may influence the risk of developing metabolic disorders in adult life, including type 2 diabetes mellitus (T2DM). Epidemiological evidence for such a relationship was mostly obtained in quasi-experimental studies (natural experiments) carried out on the populations of different countries. These studies revealed that exposure to famine in prenatal and/or early postnatal development is associated with increased risk of developing type 2 diabetes in adult life. Epigenetic regulation of gene activity is considered to be the main mechanism linking starvation in early life and increased risk of type 2 diabetes in adulthood. It is believed that exposure to famine during pregnancy may induce persistent epigenetic variations that are thought to have some adaptive value in the early postnatal development but that also lay grounds for metabolic disorders, including type 2 diabetes, in later life. The present review consolidates and discusses the data indicating the possibility of early developmental programming of type 2 diabetes obtained in the course of quasi-experimental studies.  相似文献   

13.
It is increasingly accepted that alterations of the intrauterine and early postnatal nutritional, metabolic and hormonal environment may predispose individuals to development of diseases in later life. Results from studies of the offspring of diabetic mothers strongly support this hypothesis. It has also been suggested that being light at birth leads to an increased risk of the metabolic syndrome (Syndrome X) in later life (the Barker hypothesis). The pathophysiological mechanisms that underlie this programming are unclear. However, hormones are important environment-dependent organizers of the developing neuroendocrine-immune network, which regulates all the fundamental processes of life. Hormones can act as 'endogenous functional teratogens' when present in non-physiological concentrations, induced by alterations in the intrauterine or neonatal environment during critical periods of perinatal life. Perinatal hyperinsulinism is pathognomic in offspring of diabetic mothers. Early hyperinsulinism also occurs as a result of early postnatal overfeeding. In rats, endogenous hyperinsulinism, as well as peripheral or intrahypothalamic insulin treatment during perinatal development, may lead to 'malprogramming' of the neuroendocrine systems regulating body weight, food intake and metabolism. This results in an increased disposition to become obese and to develop diabetes throughout life. Similar malprogramming may occur due to perinatal hypercortisolism and hyperleptinism. With regard to 'small baby syndrome' and the thrifty phenotype hypothesis, we propose that early postnatal overfeeding of underweight newborns may substantially contribute to their long-term risk of obesity and diabetes. In summary, a complex malprogramming of the central regulation of body weight and metabolism may provide a general aetiopathogenetic concept, explaining perinatally acquired disposition to later disease and, thereby, opening a wide field for primary prevention.  相似文献   

14.
Ontogeny of the mechanisms of physiological functions and behavior are adjusted --"programmed" during early development to match predicted conditions of future life environment. The discrepancies between anticipated and actual environmental conditions provoke endocrine, cardiovascular, metabolic and psychiatric pathologies. Alterations in gene expression and of subsequent regulation of the gene activities, as well as morphogenetic abnormalities due to changes in cell migration and apoptosis could be the mechanisms of this phenomenon. Inhibition of a targeted-gene expression by short interfering RNA in the developing mammalian brain in vivo have revealed programming of the adult animal psychophysiological qualities by the neurogene during critical period of the brain development. Mechanism of early-life programming evidently has adaptive evolutionary-genetic basis and is capable of transmitting effects of adverse treatments endued by ancestors to subsequent generations.  相似文献   

15.
In utero programming of cardiovascular disease   总被引:7,自引:0,他引:7  
Barker DJ 《Theriogenology》2000,53(2):555-574
Low birth weight, thinness and short body length at birth are now known to be associated with increased rates of cardiovascular disease and non-insulin dependent diabetes in adult life. The fetal origins hypothesis proposes that these diseases originate through adaptations which the fetus makes when it is undernourished. These adaptations may be cardiovascular, metabolic or endocrine. They permanently change the structure and function of the body. Prevention of the diseases may depend on prevention of imbalances in fetal growth or imbalances between pre- and post-natal growth, or imbalances in nutrient supply to the fetus.  相似文献   

16.
Oona Poranen  Suvi Ruuskanen 《Ibis》2021,163(1):247-252
The pace‐of‐life syndrome hypothesis (POLS) represents an attractive theoretical framework suggesting that physiological and behavioural traits have evolved together with environmental conditions and life‐history strategies. POLS predicts that metabolic differences covary with behavioural variation such that high metabolic rate is associated with risk‐prone behaviour and a faster pace‐of‐life, whereas a low metabolic rate is associated with risk‐averse behaviour and a slower pace‐of‐life. We tested the POLS hypothesis in captive European Pied Flycatchers during their first year by examining the relationship between explorative behaviour and basal metabolic rate. Our results are inconsistent with POLS. The positive association of explorative behaviour with basal metabolic rate was not recovered for either sex, possibly due to foraging conditions in the aviaries where control and trial groups were fed twice a day, the birds' young age, developmental plasticity, or a non‐existent syndrome.  相似文献   

17.
Prolonged exposure to stress during development can have long-term detrimental effects on health and wellbeing. However, the environmental matching hypothesis proposes that developmental stress programs physiology and behaviour in an adaptive way that can enhance fitness if early environments match those experienced later in life. Most research has focused on the harmful effects that stress during a single period in early life may exert in adulthood. In this study, we tested the potential additive and beneficial effects that stress experienced during both pre- and post-hatching development may have on adult physiology and behaviour. Japanese quail experienced different stress-related treatments across two developmental life stages: pre-hatching corticosterone (CORT) injection, post-hatching unpredictable food availability, both pre- and post-hatching treatments, or control. In adulthood, we determined quails' acute stress response, neophobia and novel environment exploration. The pre-hatching CORT treatment resulted in attenuated physiological responses to an acute stressor, increased activity levels and exploration in a novel environment. Post-hatching unpredictable food availability decreased adults' latency to feed. Furthermore, there were cumulative effects of these treatments across the two developmental stages: quail subjected to both pre- and post-hatching treatments were the most explorative and risk-taking of all treatment groups. Such responses to novel environments could enhance survival in unpredictable environments in later life. Our data also suggest that these behavioural responses may have been mediated by long-term physiological programming of the adrenocortical stress response, creating phenotypes that could exhibit fitness-enhancing behaviours in a changing environment.  相似文献   

18.
Life history theory integrates ecological, physiological, and molecular layers within an evolutionary framework to understand organisms’ strategies to optimize survival and reproduction. Two life history hypotheses and their implications for child growth, development, and health (illustrated in the South African context) are reviewed here. One hypothesis suggests that there is an energy trade‐off between linear growth and brain growth. Undernutrition in infancy and childhood may trigger adaptive physiological mechanisms prioritizing the brain at the expense of body growth. Another hypothesis is that the period from conception to infancy is a critical window of developmental plasticity of linear growth, the duration of which may vary between and within populations. The transition from infancy to childhood may mark the end of a critical window of opportunity for improving child growth. Both hypotheses emphasize the developmental plasticity of linear growth and the potential determinants of growth variability (including the role of parent–offspring conflict in maternal resources allocation). Implications of these hypotheses in populations with high burdens of undernutrition and infections are discussed. In South Africa, HIV/AIDS during pregnancy (associated with adverse birth outcomes, short duration of breastfeeding, and social consequences) may lead to a shortened window of developmental plasticity of growth. Furthermore, undernutrition and infectious diseases in children living in South Africa, a country undergoing a rapid nutrition transition, may have adverse consequences on individuals’ cognitive abilities and risks of cardio‐metabolic diseases. Studies are needed to identify physiological mechanisms underlying energy allocation between biological functions and their potential impacts on health.  相似文献   

19.
Endothelial signaling during development   总被引:15,自引:0,他引:15  
Blood vessels perfuse all tissues in the body and mediate vital metabolic exchange between tissues and blood. Increasing evidence, however, points to a direct role for paracrine signaling between blood vessel cells and surrounding target organ cells, during embryonic development and cell differentiation. Understanding the nature of this signaling and its heterogeneity, both in the embryo and in adult tissues, may not only provide insights into mechanisms for normal developmental cell fate decisions, but could also lead to novel targeted therapeutic approaches for a variety of diseases such as heart disease, diabetes or cancer.  相似文献   

20.
The influence of leptin on early life programming of obesity   总被引:2,自引:0,他引:2  
Epidemiological evidence together with experimental models shows a direct relationship between fetal and early postnatal growth patterns and an increased risk of adult metabolic disease. Maternal health and nutrition are key determinants in influencing infant growth but the precise molecular mechanisms underlying this relationship are unclear, although it is evident that there are critical time windows when these effects are important. Animal models show mechanistic parallels with human populations and highlight that the early environment represents a therapeutic window for protection from obesity and metabolic disease. The observation that developmental programming can be reversed has been demonstrated in studies in which both maternal and neonatal leptin treatment prevents the induction of the adverse metabolic phenotype. Given that orally administered peptides are absorbed intact by the new born, the prospect of providing supplemental leptin either as drops or in milk deserves serious consideration as a means of reducing or reversing the obesity and type 2 diabetes epidemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号