首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lyamouri M  Enerly E  Kress H  Lambertsson A 《Gene》2002,282(1-2):199-206
In Drosophila melanogaster, the apparently unrelated genes anon-66Da, RpL14, and anon-66Db (from telomere to centromere) are located on a 5547 bp genomic fragment on chromosome arm 3L at cytological position 66D8. The three genes are tightly linked, and flanked by two relatively large genes with unknown function. We have taken a comparative genomic approach to investigate the evolutionary history of the three genes. To this end we isolated a Drosophila virilis 7.3 kb genomic fragment which is homologous to a 5.5 kb genomic region of D. melanogaster. Both fragments map to Muller's element D, namely to section 66D in D. melanogaster and to section 32E in D. virilis, and harbor the genes anon-66Da, RpL14, and anon-66Db. We demonstrate that the three genes exhibit a high conservation of gene topography in general and in detail. While most introns and intergenic regions reveal sequence divergences, there are, however, a number of interspersed conserved sequence motifs. In particular, two introns of the RpL14 gene contain a short, highly conserved 60 nt long sequence located at corresponding positions. This sequence represents a novel Drosophila small nucleolar RNA, which is homologous to human U49. Whereas DNA flanking the three genes shows no significant interspecies homologies, the 3'-flanking region in D. virilis contains sequences from the transposable element Penelope. The Penelope family of transposable elements has been shown to promote chromosomal rearrangements in the D. virilis species group. The presence of Penelope sequences in the D. virilis 7.3 kb genomic fragment may be indicative for a transposon-induced event of transposition which did not yet scramble the order of the three genes but led to the breakdown of sequence identity of the flanking DNA.  相似文献   

2.
Substantial insights into basic strategies for embryonic body patterning have been obtained from genetic analyses of Drosophila melanogaster. This knowledge has been used in evolutionary comparisons to ask if genes and functions are conserved. To begin to ask how highly conserved are the mechanisms of mRNA localization, a process crucial to Drosophila body patterning, we have focused on the localization of bcd mRNA to the anterior pole of the embryo. Here we consider two components involved in that process: the exuperantia (exu) gene, required for an early step in localization; and the cis-acting signal that directs bcd mRNA localization. First, we use the cloned D. melanogaster exu gene to identify the exu genes from Drosophila virilis and Drosophila pseudoobscura and to isolate them for comparisons at the structural and functional levels. Surprisingly, D. pseudoobscura has two closely related exu genes, while D. melanogaster and D. virilis have only one each. When expressed in D. melanogaster ovaries, the D. virilis exu gene and one of the D. pseudoobscura exu genes can substitute for the endogenous exu gene in supporting localization of bcd mRNA, demonstrating that function is conserved. Second, we reevaluate the ability of the D. pseudoobscura bcd mRNA localization signal to function in D. melanogaster. In contrast to a previous report, we find that function is retained. Thus, among these Drosophila species there is substantial conservation of components acting in mRNA localization, and presumably the mechanisms underlying this process.  相似文献   

3.
4.
We have isolated clones corresponding to the autosomal chorion locus of Drosophila melanogaster, from two distantly (D. virilis and D. grimshawi) and one closely (D. subobscura) related species. In all the species the locus is unique within the genome and encompasses the same four chorion genes and an adjacent nonchorion gene, in the same order. In all species the locus specifically amplifies in the ovary, as in D. melanogaster. We present the nucleotide sequences of DNA segments that total 8.3 kb in length and include gene s15-1 from D. subobscura, D. virilis, and D. grimshawi as well as gene s19-1 from D. subobscura and D. grimshawi. They show clearly nonuniform rates of divergence, both within and outside the limits of the genes. Highlighted by a background of extensive sequence divergence elsewhere in the extragenic region, highly conserved elements are observed in the 5' flanking DNA and might represent regulatory elements.  相似文献   

5.
González J  Casals F  Ruiz A 《Genetics》2004,168(1):253-264
Interspecific comparative molecular analyses of transposed genes and their flanking regions can help to elucidate the time, direction, and mechanism of gene transposition. In the Drosophila melanogaster genome, three Larval serum protein 1 (Lsp1) genes (alpha, beta and gamma) are present and each of them is located on a different chromosome, suggesting multiple transposition events. We have characterized the molecular organization of Lsp1 genes in D. buzzatii, a species of the Drosophila subgenus and in D. pseudoobscura, a species of the Sophophora subgenus. Our results show that only two Lsp1 genes (beta and gamma) exist in these two species. The same chromosomal localization and genomic organization, different from that of D. melanogaster, is found in both species for the Lsp1beta and Lsp1gamma genes. Overall, at least two duplicative and two conservative transpositions are necessary to explain the present chromosomal distribution of Lsp1 genes in the three Drosophila species. Clear evidence for implication of snRNA genes in the transposition of Lsp1beta in Drosophila has been found. We suggest that an ectopic exchange between highly similar snRNA sequences was responsible for the transposition of this gene. We have also identified the putative cis-acting regulatory regions of these genes, which seemingly transposed along with the coding sequences.  相似文献   

6.
Wallau GL  Kaminski VL  Loreto EL 《Genetica》2011,139(11-12):1487-1497
The transposable element (TE) Paris was described in a Drosophila virilis strain (virilis species group) as causing a hybrid dysgenesis with other mobile genetic elements. Since then, the element Paris has only been found in D. buzzatii, a species from the repleta group. In this study, we performed a search for Paris-like elements in 56 species of drosophilids to improve the knowledge about the distribution and evolution of this element. Paris-like elements were found in 30 species from the Drosophila genus, 15 species from the Drosophila subgenus and 15 species from the Sophophora subgenus. Analysis of the complete sequences obtained from the complete available Drosophila genomes has shown that there are putative active elements in five species (D. elegans, D. kikkawai, D. ananassae, D. pseudoobscura and D. mojavensis). The Paris-like elements showed an approximately 242-bp-long terminal inverted repeats in the 5' and 3' boundaries (called LIR: long inverted repeat), with two 28-bp-long direct repeats in each LIR. All potentially active elements presented degeneration in the internal region of terminal inverted repeat. Despite the degeneration of the LIR, the distance of 185?bp between the direct repeats was always maintained. This conservation suggests that the spacing between direct repeats is important for transposase binding. The distribution analysis showed that these elements are widely distributed in other Drosophila groups beyond the virilis and repleta groups. The evolutionary analysis of Paris-like elements suggests that they were present as two subfamilies with the common ancestor of the Drosophila genus. Since then, these TEs have been primarily maintained by vertical transmission with some events of stochastic loss and horizontal transfer.  相似文献   

7.
8.
Evolution of the glucose dehydrogenase gene in Drosophila   总被引:5,自引:0,他引:5  
The glucose dehydrogenase genes (Gld) of Drosophila melanogaster, of D. pseudoobscura, and of D. virilis have been isolated and compared with each other in order to identify conserved and divergent aspects of their structure and expression. The exon/intron structure of Gld is conserved. The Gld mRNAs are similar, with a range of 2.6-2.8 kb among the three species. All three species exhibit peaks of Gld expression during every major developmental stage, although considerable variation in the precise timing of these peaks exists between species. Interspecific gene transfer experiments demonstrate that the regulation and function of the D. pseudoobscura Gld is similar enough to the homologous gene in D. melanogaster to substitute for its essential role in the eclosion process. Comparison of the putative promoter sequences has identified both shared and divergent sequence elements which are likely responsible, respectively, for the conserved and divergent patterns of expression observed. The entire coding sequences of the pseudoobscura and melanogaster Gld genes are presented and shown to encode a 612-amino-acid pre-protein. The inferred amino acid sequences are 92% conserved between the two species. In general the intronic regions of Gld are unusually well conserved.  相似文献   

9.
Drosophila melanogaster males transfer seminal fluid proteins along with sperm during mating. Among these proteins, ACPs (Accessory gland proteins) from the male's accessory gland induce behavioral, physiological, and life span reduction in mated females and mediate sperm storage and utilization. A previous evolutionary EST screen in D. simulans identified partial cDNAs for 57 new candidate ACPs. Here we report the annotation and confirmation of the corresponding Acp genes in D. melanogaster. Of 57 new candidate Acp genes previously reported in D. melanogaster, 34 conform to our more stringent criteria for encoding putative male accessory gland extracellular proteins, thus bringing the total number of ACPs identified to 52 (34 plus 18 previously identified). This comprehensive set of Acp genes allows us to dissect the patterns of evolutionary change in a suite of proteins from a single male-specific reproductive tissue. We used sequence-based analysis to examine codon bias, gene duplications, and levels of divergence (via dN/dS values and ortholog detection) of the 52 D. melanogaster ACPs in D. simulans, D. yakuba, and D. pseudoobscura. We show that 58% of the 52 D. melanogaster Acp genes are detectable in D. pseudoobscura. Sequence comparisons of ACPs shared and not shared between D. melanogaster and D. pseudoobscura show that there are separate classes undergoing distinctly dissimilar evolutionary dynamics.  相似文献   

10.
J. P. Carulli  D. L. Hartl 《Genetics》1992,132(1):193-204
DNA sequences and chromosomal locations of four Drosophila pseudoobscura opsin genes were compared with those from Drosophila melanogaster, to determine factors that influence the evolution of multigene families. Although the opsin proteins perform the same primary functions, the comparisons reveal a wide range of evolutionary rates. Amino acid identities for the opsins range from 90% for Rh2 to more than 95% for Rh1 and Rh4. Variation in the rate of synonymous site substitution is especially striking: the major opsin, encoded by the Rh1 locus, differs at only 26.1% of synonymous sites between D. pseudoobscura and D. melanogaster, while the other opsin loci differ by as much as 39.2% at synonymous sites. Rh3 and Rh4 have similar levels of synonymous nucleotide substitution but significantly different amounts of amino acid replacement. This decoupling of nucleotide substitution and amino acid replacement suggests that different selective pressures are acting on these similar genes. There is significant heterogeneity in base composition and codon usage bias among the opsin genes in both species, but there are no consistent relationships between these factors and the rate of evolution of the opsins. In addition to exhibiting variation in evolutionary rates, the opsin loci in these species reveal rearrangements of chromosome elements.  相似文献   

11.
T Barnett  P M Rae 《Cell》1979,16(4):763-775
A large proportion of the 28S ribosomal RNA genes in Drosophila virilis are interrupted by a DNA sequence 9.6 kilobase pairs long. As regards both its presence and its position in the 28S gene (about two thirds of the way in), the D. virilis rDNA intervening sequence is similar to that found in D. melanogaster rDNA, but lengths differ markedly between the two species. Degrees of nucleotide sequence homology have been detected bewteen rDNA interruptions of the two species. This homology extends to putative rDNA intervening sequences in diverse higher diptera (other Drosophila species, the house fly and the flesh fly), but hybridization of cloned D. melanogaster and D. virilis rDNA interruption segments to DNA of several lower diptera has been negative. As is the case with melanogaster rDNA interruptions, segments of the virilis rDNA intervening sequence hybridize with non-rDNA components of the virilis genome, and interspecific homology may involve these non-rDNA sequences as well as rDNA interruptions. There is, however, evidence from buoyant density fractionation of DNA that the distributions of interruption-related sequences are distinct in D. melanogaster and D. virilis genomes. Moreover, thermal denaturation studies have indicated differing extents of homology between hybridizable sequences in D. virilis DNA and different segments of the D. melanogaster rDNA intervening sequence. We infer from our studies that rDNA intervening sequences are prevalent among higher diptera; that in the course of the evolution of these organisms, elements of the intervening sequences have been moderately to highly conserved; and that this conservation extends in at least two distantly related species of Drosophila to similar sequences found elsewhere in the genomes.  相似文献   

12.
The locations of 77 markers along the chromosomal elements B (41 markers) and C (36 markers) of Drosophila subobscura, D. pseudoobscura, and D. melanogaster were obtained by in situ hybridization on polytene chromosomes. In comparisons between D. subobscura and D. pseudoobscura, 10 conserved segments (accounting for 32% of the chromosomal length) were detected on element B and eight (17% of the chromosomal length) on element C. The fixation rate of paracentric inversions inferred by a maximum likelihood approach differs significantly between elements. Muller's element C (0.17 breakpoints/Mb/million years) is evolving two times faster than element B (0.08 breakpoints/Mb/million years). This difference in the evolutionary rate is paralleled by differences in the extent of chromosomal polymorphism in the corresponding lineages. Element C is highly polymorphic in D. subobscura, D. pseudoobscura, and in other obscura group species such as D. obscura and D. athabasca. In contrast, the level of polymorphism in element B is much lower in these species. The fixation rates of paracentric inversions estimated in the present study between species of the Sophophora subgenus are the highest estimates so far reported in the genus for the autosomes. At the subgenus level, there is also a parallelism between the high fixation rate and the classical observation that the species of the Sophophora subgenus tend to be more polymorphic than the species of the Drosophila subgenus. Therefore, the detected relationship between level of polymorphism and evolutionary rate might be a general characteristic of chromosomal evolution in the genus Drosophila.  相似文献   

13.
14.
E B Kokoza  E S Beliaeva  E F Zhimulev 《Genetika》1991,27(12):2082-2090
The DNA sequences from Drosophila melanogaster early ecdysterone-inducible puff 2B have been located in 8 Drosophila species by in situ hybridization. The location site of the ecs, dor and swi genes in D. funebris, D. virilis, D. hydei, D. repleta, D. mercatorum, D. paranaensis is a puff on the telomeric and of X chromosome; in D. kanekoi it is the puff in distal part of X chromosome; and in D. pseudoobscura it is the puff in proximal portion of X chromosome. So, conservative organization of DNA sequences located in D. melanogaster 2B puff could be suggested. Dispersed distribution of some DNA segments from the region studied in D. hydei chromosomes was revealed.  相似文献   

15.
The mobile element ZAM, recently identified in Drosophila melanogaster, is similar in structure and coding potential to vertebrate retroviruses. In this paper, we analyze the insertional and structural polymorphism of this element and show that members of this family appear to have a long evolutionary history in the genome of Drosophila. It is present in all the species of the D. melanogaster subgroup and in more distantly related species like D. takahashii, D. ananassae, or D. virilis but in a lower copy number or with a lower homology. Two categories of strains have been previously identified in D. melanogaster: strains with a high copy number of ZAM and strains with a low copy number. Here, we show that ZAM is at least in a low copy number in each tested strain of the species analyzed. The study of ZAM's genomic distribution by FISH mapping analysis to salivary gland polytene chromosomes or on mitotic chromosomes indicates that most of the insertion sites of ZAM elements are associated with the constitutive heterochromatin regardless of the ZAM copy number. In addition, our results suggest that multiple ZAM elements are present at the insertion sites visualized by in situ experiments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Codon Usage Bias and Base Composition of Nuclear Genes in Drosophila   总被引:16,自引:8,他引:8       下载免费PDF全文
E. N. Moriyama  D. L. Hartl 《Genetics》1993,134(3):847-858
The nuclear genes of Drosophila evolve at various rates. This variation seems to correlate with codon-usage bias. In order to elucidate the determining factors of the various evolutionary rates and codon-usage bias in the Drosophila nuclear genome, we compared patterns of codon-usage bias with base compositions of exons and introns. Our results clearly show the existence of selective constraints at the translational level for synonymous (silent) sites and, on the other hand, the neutrality or near neutrality of long stretches of nucleotide sequence within noncoding regions. These features were found for comparisons among nuclear genes in a particular species (Drosophila melanogaster, Drosophila pseudoobscura and Drosophila virilis) as well as in a particular gene (alcohol dehydrogenase) among different species in the genus Drosophila. The patterns of evolution of synonymous sites in Drosophila are more similar to those in the prokaryotes than they are to those in mammals. If a difference in the level of expression of each gene is a main reason for the difference in the degree of selective constraint, the evolution of synonymous sites of Drosophila genes would be sensitive to the level of expression among genes and would change as the level of expression becomes altered in different species. Our analysis verifies these predictions and also identifies additional selective constraints at the translational level in Drosophila.  相似文献   

17.
18.
Two Drosophila pseudoobscura genomic clones have sequence similarity to the Drosophila melanogaster amylase region that maps to the 53CD region on the D. melanogaster cytogenetic map. The two clones with similarity to amylase map to sections 73A and 78C of the D. pseudoobscura third chromosome cytogenetic map. The complete sequences of both the 73A and 78C regions were compared to the D. melanogaster genome to determine if the coding region for amylase is present in both regions and to determine the evolutionary mechanism responsible for the observed distribution of the amylase gene or genes. The D. pseudoobscura 73A and 78C linkage groups are conserved with the D. melanogaster 41E and 53CD regions, respectively. The amylase gene, however, has not maintained its conserved linkage between the two species. These data indicate that amylase has moved via a transposition event in the D. melanogaster or D. pseudoobscura lineage. The predicted genes within the 73A and 78C regions show patterns of molecular evolution in synonymous and nonsynonymous sites that are consistent with previous studies of these two species.  相似文献   

19.
20.
A gene located within the intron of a larger gene is an uncommon arrangement in any species. Few of these nested gene arrangements have been explored from an evolutionary perspective. Here we report a phylogenetic analysis of kayak (kay) and fos intron gene (fig), a divergently transcribed gene located in a kay intron, utilizing 12 Drosophila species. The evolutionary relationship between these genes is of interest because kay is the homolog of the proto-oncogene c-fos whose function is modulated by serine/threonine phosphorylation and fig is a predicted PP2C phosphatase specific for serine/threonine residues. We found that, despite an extraordinary level of diversification in the intron-exon structure of kay (11 inversions and six independent exon losses), the nested arrangement of kay and fig is conserved in all species. A genomewide analysis of protein-coding nested gene pairs revealed that approximately 20% of nested pairs in D. melanogaster are also nested in D. pseudoobscura and D. virilis. A phylogenetic examination of fig revealed that there are three subfamilies of PP2C phosphatases in all 12 species of Drosophila. Overall, our phylogenetic and genomewide analyses suggest that the nested arrangement of kay and fig may be due to a functional relationship between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号