首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detergent-resistant membranes (DRMs) represent specialized membrane domains resistant to detergent extraction, which may serve to segregate proteins in a specific environment in order to improve their function. Segregation of glycosylphosphatidylinositol-anchored proteins (GPI-APs) in DRMs has been shown to be involved in their sorting to the apical membrane in polarized epithelial cells. Nonetheless, we have shown that both apical and basolateral GPI-APs associate with DRMs. In this report we investigated the lipid composition of DRMs associated with an apical and a basolateral GPI-AP. We found that apical and basolateral DRMs contain the same lipid species although in different ratios. This specific lipid ratio is maintained after mixing the cells before lysis indicating that DRMs maintain their identity after Triton extraction.  相似文献   

2.
The kinetics of cholesterol extraction from cellular membranes is complex and not yet completely understood. In this paper we have developed an experimental approach to directly monitor the extraction of cholesterol from lipid membranes by using surface plasmon resonance and model lipid systems. Methyl-β-cyclodextrin was used to selectively remove cholesterol from large unilamellar vesicles of various compositions. The amount of extracted cholesterol is highly dependent on the composition of lipid membrane, i.e. the presence of sphingomyelin drastically reduced and slowed down cholesterol extraction by methyl-β-cyclodextrin. This was confirmed also in the erythrocyte ghosts system, where more cholesterol was extracted after erythrocytes were treated with sphingomyelinase. We further show that the kinetics of the extraction is mono-exponential for mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine and cholesterol. The kinetics is complex for ternary lipid mixtures composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine, bovine brain sphingomyelin and cholesterol. Our results indicate that the complex kinetics observed in experiments with cells may be the consequence of lateral segregation of lipids in cell plasma membrane.  相似文献   

3.
This report presents an analysis of the phosphorylation of human and rabbit erythrocyte membrane proteins which migrate in NaDodSO4-polyacrylamide gels in the area of the Coomassie Blue-stained proteins generally known as band 3. The phosphorylation of these proteins is of interest as band 3 has been implicated in transport processes. This study shows that there are at least three distinct phosphoproteins associated with the band 3 region of human erythrocyte membranes. These are band 2.9, the major band 3, and PAS-1. The phosphorylation of these proteins is differentially catalyzed by solubilized membrane and cytoplasmic cyclic AMP-dependent and -independent erythrocyte protein kinases. Band 2.9 is present and phosphorylated in unfractionated human and rabbit erythrocyte ghosts but not in NaI- or dimethylmaleic anhydride (DMMA)-extracted membranes. These latter membrane preparations are enriched in band 3 and in sialoglycoproteins. The NaI-extracted ghosts contain residual protein kinase activity which can catalyze the autophosphorylation of band 3 whereas the DMMA-extracted ghosts are usually devoid of any kinase activity. However, both NaI- and DMMA-extracted ghosts, as well as Triton X-100 extracts of the DMMA-extracted ghosts, can be phosphorylated by various erythrocyte protein kinases. The kinases which preferentially phosphorylate the major band 3 protein are inactive towards PAS-1 while the kinases active towards PAS-1 are less active towards band 3. The band 3 protein in the DMMA-extracted ghosts can be cross-linked with the Cu2+ -σ-phenanthroline complex. The cross-linking of band 3 does not affect its capacity to serve as a phosphoryl acceptor nor does phosphorylation affect the capacity of band 3 to form cross-links. In addition to band 2.9, the major band 3 and PAS-1, another minor protein component appears to be present in the band 3 region in human erythrocyte membranes. This protein is specifically phosphorylated by the cyclic AMP-dependent protein kinases isolated from the cytoplasm of rabbit erythrocytes. The rabbit erythrocyte membranes lack PAS-1 and the cyclic AMP-dependent protein kinase substrate.  相似文献   

4.
We have analyzed how translocation intermediates of imported mitochondrial precursor proteins, which span contact sites, interact with the mitochondrial membranes. F1-ATPase subunit beta (F1 beta) was trapped at contact sites by importing it into Neurospora mitochondria in the presence of low levels of nucleoside triphosphates. This F1 beta translocation intermediate could be extracted from the membranes by treatment with protein denaturants such as alkaline pH or urea. By performing import at low temperatures, the ADP/ATP carrier was accumulated in contact sites of Neurospora mitochondria and cytochrome b2 in contact sites of yeast mitochondria. These translocation intermediates were also extractable from the membranes at alkaline pH. Thus, translocation of precursor proteins across mitochondrial membranes seems to occur through an environment which is accessible to aqueous perturbants. We propose that proteinaceous structures are essential components of a translocation apparatus present in contact sites.  相似文献   

5.
The mechanism by which a protein integrates posttranslationally into a membrane can involve the composition of the membrane itself, domains within the inserting polypeptide, and a number of associating proteins. Some integral membrane proteins do not accumulate to normal levels when certain pigments are deficient, and this has been interpreted to mean that such proteins may be rapidly degraded when not in a correct complex. Alternatively, pigments could facilitate the movement of some proteins from an aqueous to a lipid environment. To determine whether chlorophyll is absolutely required for the membrane integration of the light-harvesting chlorophyll-binding protein (LHCP) of chloroplast thylakoid membranes, we have expressed LHCP in Escherichia coli that lacks photosynthetic pigments. LHCP is targeted to the bacterial inner membrane by the addition of a bacterial signal peptide and cannot be extracted from these membranes by NaOH, NaBr, or Na2HCO3 but is extracted by 0.2% Triton X-100. Treatment of isolated right-side-out and inside-out bacterial inner membrane vesicles with trypsin reveals that only the amino terminus of LHCP is exposed on the cytoplasmic face, and the remaining portion of the protein is inaccessible. Treatment of the inside-out vesicles with trypsin followed by alkaline extraction shows that LHCP is intrinsic to the membrane and is not anchored solely by the bacterial signal peptide. Chlorophyll, therefore, is not required for LHCP to integrate into a membrane, but in the absence of these pigments this process is observed to be inefficient.  相似文献   

6.
Design and chemical synthesis of de novo heme proteins with enzymatic activity on cellulose membranes is described. 352 antiparallel four-helix bundle proteins with a single histidine for heme ligation were assembled from three different sets of short amphipathic helices on membrane-bound peptide templates. The templates were coupled by linkers to cellulose membranes of microplate format, which could be cleaved for control of intermediate and final products. The incorporation of heme and the heme oxygenase activity of the 352 proteins were monitored by measuring UV-visible spectra directly on the cellulose. The kinetics of the heme oxygenase reaction was studied by monitoring the decrease of the Soret band and the transient absorbance of verdoheme being an intermediate product in the formation of biliverdin. Four of the proteins covering a broad range of the enzymatic rate constants were selected and synthesized in solution for further characterization. Detailed studies by redox potentiometry, analytical ultracentrifugation, and electron paramagnetic resonance spectroscopy yielded information about the aggregation state of the proteins, the spin state and the putative coordination environment of the iron. The amount of five-coordinated high-spin iron and a positive reduction potential were found to promote the oxygenase activity of the proteins.  相似文献   

7.
Protein extraction methods can vary widely in reproducibility and in representation of the total proteome, yet there are limited data comparing protein isolation methods. The methodical comparison of protein isolation methods is the first critical step for proteomic studies. To address this, we compared three methods for isolation, purification, and solubilization of insect proteins. The aphid Schizaphis graminum, an agricultural pest, was the source of insect tissue. Proteins were extracted using TCA in acetone (TCA-acetone), phenol, or multi-detergents in a chaotrope solution. Extracted proteins were solubilized in a multiple chaotrope solution and examined using 1-D and 2-D electrophoresis and compared directly using 2-D Difference Gel Electrophoresis (2-D DIGE). Mass spectrometry was used to identify proteins from each extraction type. We were unable to ascribe the differences in the proteins extracted to particular physical characteristics, cell location, or biological function. The TCA-acetone extraction yielded the greatest amount of protein from aphid tissues. Each extraction method isolated a unique subset of the aphid proteome. The TCA-acetone method was explored further for its quantitative reliability using 2-D DIGE. Principal component analysis showed that little of the variation in the data was a result of technical issues, thus demonstrating that the TCA-acetone extraction is a reliable method for preparing aphid proteins for a quantitative proteomics experiment. These data suggest that although the TCA-acetone method is a suitable method for quantitative aphid proteomics, a combination of extraction approaches is recommended for increasing proteome coverage when using gel-based separation techniques.  相似文献   

8.
Insulin receptors and glucose transport-inducing proteins have been extracted from rat liver membranes onto positively charged lipid bilayer vesicles. The extraction was carried out during the incubation of the vesicles with lipid vesicles caused an overall enhancement of specific insulin binding and of glucose transport inducement. The latter has been inferred from the oxidation rate of transported glucose through a spherical bilayer membrane entrapping the oxidizing glucose oxidase. Glucose transport is not enhanced by insulin binding, indicating that the two functions become dissociated when the proteins are transferred from the plasma membrane onto the bilayer vesicles.  相似文献   

9.
The GTPases Rho regulate the assembly of polymerized actin structures. Their C-terminal sequences end with the CAAX motif that undergo a lipidation of the cysteine residue. Analogs to the C-terminal ends of Rho proteins, N-acetyl-S-all-trans, trans-farnesyl-L-cysteine and N-acetyl-S-all-trans-geranylgeranyl-L-cysteine, wereused to analyze the role of prenylation in their membrane association. Silver-stained gels indicated that N-acetyl-S-all-trans-geranylgeranyl-L-cysteine treatment released only a few proteins of 20, 46, and 60 kDa. Western blot analysis showed that N-acetyl-S-all-trans-geranylgeranyl-L-cysteine released RhoB (10%), RhoA (28%), and Cdc42 (95%) from membranes, whereas N-acetyl-S-all-trans and trans-farnesyl-L-cysteine did not. Rab1, which possesses two geranylgeranyl groups, was also strongly extracted by N-acetyl-S-all-trans-geranylgeranyl-L-cysteine, whereas Ras, which is farnesylated, was not. Furthermore, N-acetyl-S-all-trans-geranylgeranyl-L-cysteine was very efficient (95%) in dissociating actin and tubulin from membranes but not integral membrane protein P-glycoprotein and sodium/phosphate cotransporter NaP(i)-2. The extraction of Rho and cytoskeletal proteins occurred below the critical micellar concentration of N-acetyl-S-all-trans-geranylgeranyl-L-cysteine. Membrane treatments with 0.7 m KI totally extracted actin, whereas 70% of Cdc42 was released. Actin was, however, insoluble in Triton X-100-treated membranes, whereas this detergent extracted (80%) Cdc42. These data show that Rho proteins and actin are not physically bound together and suggest that their extraction from membranes by N-acetyl-S-all-trans-geranylgeranyl-L-cysteine likely occurs via different mechanisms.  相似文献   

10.
The kinetics of cholesterol extraction from cellular membranes is complex and not yet completely understood. In this paper we have developed an experimental approach to directly monitor the extraction of cholesterol from lipid membranes by using surface plasmon resonance and model lipid systems. Methyl-beta-cyclodextrin was used to selectively remove cholesterol from large unilamellar vesicles of various compositions. The amount of extracted cholesterol is highly dependent on the composition of lipid membrane, i.e. the presence of sphingomyelin drastically reduced and slowed down cholesterol extraction by methyl-beta-cyclodextrin. This was confirmed also in the erythrocyte ghosts system, where more cholesterol was extracted after erythrocytes were treated with sphingomyelinase. We further show that the kinetics of the extraction is mono-exponential for mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine and cholesterol. The kinetics is complex for ternary lipid mixtures composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine, bovine brain sphingomyelin and cholesterol. Our results indicate that the complex kinetics observed in experiments with cells may be the consequence of lateral segregation of lipids in cell plasma membrane.  相似文献   

11.
The involvement of the serum heme-binding proteins hemopexin and albumin in the clearance of erythrocyte membranes from toxic hemin was compared. In the presence of hemopexin initial rates of hemin efflux from resealed ghosts were faster and the amount of extracted hemin larger. When hemin-containing ghosts were treated with a protein mixture of 1:45 hemopexin to albumin, as present in serum, most of the hemin was extracted in the form of heme-hemopexin. It was concluded that hemopexin is the serum protein responsible for heme extraction from cell membranes.  相似文献   

12.
The Rho GDP dissociation inhibitor (GDI) is an ubiquitously expressed regulatory protein involved in the cycling of Rho proteins between membrane-bound and soluble forms. Here, we characterized the Rho solubilization activity of a glutathione S-transferase (GST) - GDI fusion protein in a cell-free system derived from rat kidney. Addition of GST-GDI to kidney brush border membranes resulted in the specific release of Cdc42 and RhoA from the membranes, while RhoB and Ras were not extracted. The release of Cdc42 and RhoA by GST-GDI was dose dependent and saturable with about 50% of both RhoA and Cdc42 extracted. The unextracted Rho proteins were tightly bound to membranes and could not be solubilized by repeated GST-GDI treatment. These results demonstrated that kidney brush border membranes contained two populations of RhoA and Cdc42. Furthermore, the GST-GDI solubilizing activity on membrane-bound Cdc42 and RhoA was abolished at physiological conditions of salt and temperature in all tissues examined. When using bead-immobilized GST-GDI, KCl did not reduced the binding of Rho proteins. However, washing brush border membranes with KCl prior treatment by GST-GDI inhibited the extraction of Rho proteins. Taken together, these results suggest that the binding of GDI to membrane-bound Cdc42 and RhoA occurs easily under physiological ionic strength conditions, but a complementary factor is required to extract these proteins from membranes. These observations suggest that the shuttling activity of GDI upon Rho proteins could be normally downregulated under physiological conditions.  相似文献   

13.
Summary Promitochondrial membranes, prepared fromSaccharomyces cerevisiae grown anaerobically under different conditions of lipid supplementation, have been examined by PMR spectroscopy. Promitochondria from cells cultured anaerobically in media containing both unsaturated fatty acid and sterol supplements, or containing unsaturated fatty acid alone, yield high resolution spectra similar to those which are characteristic of aerobic mitochondria. By contrast, promitochondrial membranes from cells grown only with sterol supplementation in order to deplete unsaturated fatty acid and total phospholipid content of the organelles, yielded PMR spectra which were very substantially broadened. These spectra are similar to those obtained with rat liver mitochondria.PMR spectra of promitochondria from each cell type dispersed in trifluoroacetic acid, or of extracted lipids or residual proteins similarly dispersed, were different only in detail. It appears, therefore, that in the native state membranes of unsaturated fatty acid-depleted promitochondria are structurally different from promitochondria of the other two cell types. The difference may be a consequence of altered lipid-to-protein ratios, and thus of changes in the extent of lipid domain formation in the membranes of these organelles.  相似文献   

14.
1. A fraction enriched in plasma membranes of human tumour KB cell line, a permissive cell for adenovirus type 5, was obtained. 2. Electrophoresis of the membranes in polyacrylamide gels with buffers containing sodium dodecyl sulphate showed that the membranes after reduction with 2-mercaptoethanol contained over 20 polypeptide species. Three polypeptides were glycosylated and had apparent mol.wts. of 92000, 72000 and 62000. 3. The glycoproteins and the specific receptors responsible for adenovirus adsorption to the membranes were readily extracted into solutions containing low concentrations of Triton X-100. Glycolipids and proteins were also made soluble. A membranous residue obtained after Triton X-100 extraction was enriched in several proteins that appeared to consist of polypeptides of lower molecular weight than the average of KB membrane polypeptides. 4. Sphingomyelin, cholesterol and triglycerides were similarly concentrated in the insoluble residue remaining after successive extractions of KB membranes with Triton X-100. Further, ceramide trihexoside was significantly less easily extracted from KB membranes than lactosyl ceramide. 5. The differences noted in the ease of extraction of membrane components are discussed. 6. The components of membranes made soluble by detergent extraction and containing the large part of the KB membrane glycoproteins were subjected to chromatography on Sepharose 6B and DEAE-cellulose and to isoelectric focusing in the presence of buffers containing Triton X-100. In general, the degree of separation into fractions enriched in individual glycoproteins was disappointing. Possible reasons for the poor fractionation of membrane components by chromatographic systems conveniently used for purification of proteins and glycoproteins of non-membranous origin are briefly discussed.  相似文献   

15.
A simple technique of purification of the soluble pig heart mitochondrial F1-ATPase is described. It consists of removal of extrinsic proteins from mitochondrial membranes before extraction with chloroform and ammonium sulfate fractionation. A high degree of purity, an excellent stability and a good yield are attained after gel filtration through an Ultrogel ACA 34 column equilibrated in the presence of 50% glycerol. The tested properties of the F1-ATPase prepared by this method are similar to those of the same enzyme extracted by sonication. The enzyme is virtually devoid of tightly bound nucleotides. In addition, some characteristics of the behaviour of the β subunit are shown.  相似文献   

16.
Lipid-protein interactions in thylakoid membranes from lettuce, pea, tomato, and cucumber have been studied using spin-labeled analogues of the thylakoid membrane lipid components, monogalactosyl diglyceride and phosphatidylglycerol. The electron spin resonance spectra of the spin-labeled lipids all consist of two components, one corresponding to the fluid lipid environment in the membranes and the other to the motionally restricted lipids interacting with the integral membrane proteins. Comparison of the spectra from the same spin label in thylakoid membranes from different plants shows that the overall lipid fluidity in the membranes decreases with chilling sensitivity. Spectral subtraction has been used to quantitate the fraction of the membrane lipids in contact with integral membrane proteins. Thylakoid membranes of cucumber, a typical chilling-sensitive plant, have been found to have a higher proportion of motionally restricted lipids and a different lipid selectivity for lipid-protein interaction, as compared with those of pea, a typical chilling-resistant plant. This correlation with chilling sensitivity holds generally for the different plants studied. It seems likely that the chilling sensitivity in thylakoid membranes is not determined by lipid fluidity alone, but also by the lipid-protein interactions which could affect protein function in a more direct manner.  相似文献   

17.
Four chain spin labels and a spin-labeled cholestane were used to study the dynamic structure of plasma membrane vesicles (PMV) prepared from RBL-2H3 mast cells at temperatures ranging from 22 degrees C to 45 degrees C. Analysis shows that the spectra from most labels consist of two components. The abundant spectral components exhibit substantial ordering that is intermediate between that of a liquid-ordered (Lo) phase, and that of a liquid-crystalline (Lc) phase as represented by model membranes. Also, rotational diffusion rates of the spin labels are comparable to those in the Lo phase. In contrast, the ordering for the less abundant components is much lower. These results indicate that a Lo-like region or phase (the abundant component) and an Lc-like region or phase (the less abundant component) coexist in the PMV. In contrast, membranes reconstituted from extracted lipids exhibit the more ordered phase only. This suggests that membrane-associated proteins are important for the coexistence of Lo-like and Lc-like regions in the plasma membrane. In addition, binding of the myristoylated protein, ARF6 to PMV, leads to a new spectral component for a headgroup lipid spin label that indicates the formation of plasma membrane defects by this low molecular weight GTPase.  相似文献   

18.
The influence of treatments for extracting non-receptor peripheral proteins on the oligomeric states of the acetylcholine receptor has been studied in receptor-rich membranes from Torpedo marmorata. Conventional alkaline treatment of non-alkylated membranes resulted in the extraction of peripheral proteins (30% of total membrane proteins). Concomitantly, partial conversion of the dimer into the monomer was observed in the absence of exogenous reduction. Alkaline extraction at high ionic strength resulted in a marked decrease in protein solubilization, and no conversion of the dimer to the monomer occurred. Alkaline treatment extracted only one half of the peripheral proteins (15% of total protein) from membranes previously alkylated with N-ethylmaleimide or iodoacetamide, or oxidized by sodium periodate. Conversion of dimer to monomer was totally prevented by these treatments. Similar results were obtained by treatment of the membranes with lithium 3,5-diiodosalicylate. The above effects of alkaline extraction on the acetylcholine receptor can be interpreted in the context of two mutually non-exclusive mechanisms: (a) some of the peripheral proteins may directly participate in the thiol-dependent receptor aggregational states. Their extraction destroys this dynamic control. (b) Extraction of peripheral proteins destabilizes the receptor and makes it more susceptible to inter or intramolecular sulfhydryl-disulfide exchange, leading to the endogenous reduction of a proportion of the dimers.  相似文献   

19.
The lipid state in acetylcholine receptor (AcChR)-rich membranes purified from electric organ of Torpedo marmorata was studied in the temperature interval from 0 degrees C to 35 degrees C using the (C-H) stretching and (C-C) skeletal optical vibrations. The Raman spectra of AcChR-rich membranes, recorded immediately after preparation of the samples, indicate that the lipids are in a predominant triclinic crystalline lattice and do not undergo a phase transition when the temperature increases up to 35 degrees C. However, the polar groups of the lipids appear subject to temperature-induced variations. After extraction of 43-kd and other non-receptor proteins, spectra indicate an order-disorder phase transition of lipids at approximately 21 degrees C. This transition appears less cooperative than the transition of the membrane lipid extract. The role of the proteins in preservation of the crystalline state of lipids in AcChR-rich membranes is discussed.  相似文献   

20.
Plasma membrane vesicles prepared from adipocytes incubated with insulin exhibited accelerated D-glucose transport activity characteristic of insulin action on intact fat cells. Both control and insulin-stimulated D-glucose transport activities were inhibited by cytochalasin B and thiol reagents. Extraction of plasma membranes with dimethylmaleic anhydride eluted 80% of the protein from plasma membrane vesicles. The two major glycoprotein bands (94,000 and 78,000 daltons) and small amounts of a 56,000-dalton band were retained in dodecyl sulfate gels of the extracted membranes. Both control and insulin-activated D-glucose transport activities were retained by plasma membrane vesicles extracted with dimethylmaleic anhydride. Cytochalasin B binding activity was also retained by extracted membrane vescles and D-glucose uptake into extracted vescles derived from untreated or insulin-treated fat cells was inhibited by cytochalasin B. These results suggest that the modification of the adipocyte hexose transport system elicited by insulin action is not altered by a major purification step which involves quantitative extraction of extrinsic membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号