首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fatty acid spin labels containing nitroxide groups at different positions in the fatty acid chain have been incorporated into lipid vesicles. Changes in esr parameters of the spin labels in the presence in the membrane of phytol, propionic acid phytol ester or chlorophyll a and the kinetics of chlorophyll a mediated photodestruction of the spin labels suggest a localization of the macrocyclic ring of the chlorophyll molecule in the polar head group region of the membrane.  相似文献   

2.
Chlorophyll a was incorporated into dipalmitoyllecithin vesicles in different concentrations. Depending on the physical state of the lipid, the chlorophyll can aggregate into domains. This phase separation was demonstrated by fluorescence as well as by photoacoustic measurements.  相似文献   

3.
We have used two methods to investigate the reversibility of the interaction of substituted quinones with the thylakoid membrane of plant chloroplasts. Treatment of chloroplasts with added quinones lowers the room-temperature Photosystem II chlorophyll fluorescence intensity by variable amounts depending on the identity and concentration of the quinone. The extent of restoration of the chlorophyll fluorescence level is used as a measure of the effectiveness of the reversal technique. One reversal method involves the addition of thiols to quinone-treated chloroplasts to alter the quinone in a chemical way via a nucleophilic 1,4-Michael addition. In general, the modified quinones exhibit a lower affinity for the thylakoid membrane, as evidenced by an accompanying increase in chlorophyll fluorescence. The thiol concentrations necessary for quenching reversal are found to be in the order [dithiothreitol] less than [2-mercaptoethanol] less than [glutathione]. The second reversal method examines the extent to which added quinones can be removed from thylakoid membranes using a concentration gradient established by resuspension of quinone-treated chloroplasts in quinone-free media. The results further support the reversible nature of the quinone inhibition and indicate that the extent of recovery is dependent upon the degree of fluorescence inhibition originally induced by the added quinone.  相似文献   

4.
To expand our understanding of paramagnetic quenching in membranes, the relationship between fluorophore excited-state lifetime (tau), temperature, and the collisional quenching was studied. Specifically, the ability of tempo to quench the steady-state and time-resolved emission from five lipophilic fluorophores (diphenylhexatriene, perylene, phenanthrene, pyrene, and triphenylene) partitioned into egg phosphatidylcholine (EggPC) liposomes was examined. Also, the temperature dependence of spin-labeled androstane to quench the emission (steady-state and time-resolved) from perylene in EggPC liposomes was determined. Unexpectedly, in EggPC liposomes, the apparent quenching efficiency decreased with increasing tau until the effect leveled off above approximately 20 ns. Moreover, in EggPC liposomes, dynamic quenching decreased with increasing temperature. The results suggest that in membranes, paramagnetic quenching is more complex than generally recognized.  相似文献   

5.
Unlike plants, Chlamydomonas reinhardtii shows a restricted ability to develop nonphotochemical quenching upon illumination. Most of this limited quenching is due to state transitions instead of DeltapH-driven high-energy state quenching, qE. The latter could only be observed when the ability of the cells to perform photosynthesis was impaired, either by lowering temperature to approximately 0 degrees C or in mutants lacking RubisCO activity. Two main features were identified that account for the low level of qE in Chlamydomonas. On one hand, the electrochemical proton gradient generated upon illumination is apparently not sufficient to promote fluorescence quenching. On the other hand, the capacity to transduce the presence of a DeltapH into a quenching response is also intrinsically decreased in this alga, when compared to plants. The possible mechanism leading to these differences is discussed.  相似文献   

6.
7.
The relaxation of the non-photochemical quenching of chlorophyll fluorescence has been investigated in cells of the green alga Dunaliella following illumination. The relaxation after the addition of DCMU or darkening was strongly biphasic. The uncoupler NH4Cl induced rapid relaxation of both phases, which were therefore both energy-dependent quenching, qE. The proportion of the slow phase of qE increased at increasing light intensity. In the presence of the inhibitors rotenone and antimycin the slow phase of qE was stabilised for in excess of 15 min. NaN3 inhibited the relaxation of almost all the qE. The implications of these results are discussed in terms of the interpretation of the non-photochemical quenching of chlorophyll fluorescence in vivo and the mechanism of qE.Abbreviations PS II Photosystem II - qQ photochemical quenching of chlorophyll fluorescence - qNP non-photochemical quenching of chlorophyll fluorescence - qE energy-dependent quenching of chlorophyll fluorescence - F m maximum level of chlorophyll fluorescence for dark adapted cells - F m level of fluorescence at any time when qQ is zero  相似文献   

8.
9.
Summary Irradiation of the principal photosystem II light-harvesting chlorophyll-protein antenna complex, LHC II, with high light intensities brings about a pronounced quenching of the chlorophyll fluorescence. Illumination of isolated thylakoids with high light intensities generates the formation of quenching centres within LHC II in vivo, as demonstrated by fluorescence excitation spectroscopy. In the isolated complex it is demonstrated that the light-induced fluorescence quenching: a) shows a partial, biphasic reversibility in the dark; b) is approximately proportional to the light intensity; c) is almost independent of temperature in the range 0–30°C; d) is substantially insensitive to protein modifying reagents and treatments; e) occurs in the absence of oxygen. A possible physiological importance of the phenomenon is discussed in terms of a mechanism capable of dissipating excess excitation energy within the photosystem II antenna.Abbreviations chla chlorophyll a - chlb chlorophyll b - F0 fluorescence yield with reaction centers open - Fm fluorescence yield with reaction centres closed - Fi fluorescence at the plateau level of the fast induction phase - LHC II light-harvesting chlorophyll a/b protein complex II - PS II photosystem II - PSI photosystem I - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

10.
Fluorescence quenching and resonance energy transfer have been used to determine the localization of the local anesthetic tetracaine in vesicles composed of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) as a function of both temperature and ionic strength. The fluorescence behaviour of tetracaine in vesicles can be attributed to its different partition coefficients in acid and basic solution, in gel phase and fluid phase vesicles, respectively. Using both steady-state and time-resolved fluorescence measurements we show that a saturable binding rather than a partitioning model holds for the interaction of tetracaine with gel phase bilayers. The relative quenching efficiencies of the series of n-AS dyes depend on the phase state of the bilayer and suggest a deeper incorporation of tetracaine in fluid phase than in gel phase membranes. Resonance energy transfer measurements support the view that tetracaine is incorporated predominantly in the region of the 9-AS chromophore in DMPC-bilayers.  相似文献   

11.
A new type of modulation fluorometer was used in the study of energy-dependent chlorophyll fluorescence quenching (qE) in intact leaves. Under conditions of strong energization of the thylakoid membrane (high light intensity, absence of CO2) not only variable fluorescence, FV, but also dark-level fluorescence, FO, was quenched, leading to definition of a quenching coefficient, qO. Information on qO was shown to be essential for correct determination of photochemical (qQ) and energy dependent quenching (qE) by the saturation pulse method. The relationship between qE and qO was analysed over a range of light intensities at steady state conditions. qE was found to consist of two components, the second of which is linearly correlated with qO. qO and the second component of qE are interpreted to reflect the state 1 — state 2 shift caused by LHC II phosphorylation.  相似文献   

12.
The excitation energy of pigment molecules in photosynthetic antennae systems is utilised by photochemistry, partly it is thermally dissipated, and partly it is emitted as fluorescence. Changes in the quantum yield of chlorophyll (Chl) fluorescence reflect the changes in quantum yield of photochemical reaction and thermal dissipation of the excitation energy. Decrease of the Chl fluorescence quantum yield is called the Chl fluorescence quenching. The decrease of the quantum yield that is accompanied by photochemical reactions has been termed the photochemical quenching, and the decrease accompanied by thermal dissipation of the excitation energy is called the non-photochemical quenching. This review deals with mechanisms of the non-photochemical quenching.  相似文献   

13.
Pospíšil  P. 《Photosynthetica》1998,34(3):343-355
The excitation energy of pigment molecules in photosynthetic antennae systems is utilised by photochemistry, partly it is thermally dissipated, and partly it is emitted as fluorescence. Changes in the quantum yield of chlorophyll (Chl) fluorescence reflect the changes in quantum yield of photochemical reaction and thermal dissipation of the excitation energy. Decrease of the Chl fluorescence quantum yield is called the Chl fluorescence quenching. The decrease of the quantum yield that is accompanied by photochemical reactions has been termed the photochemical quenching, and the decrease accompanied by thermal dissipation of the excitation energy is called the non-photochemical quenching. This review deals with mechanisms of the non-photochemical quenching.  相似文献   

14.
In strong illumination, 3-(3, 4-dichlorophenyl)-1,1-dimethylurea (DCMU)-poisoned chloroplasts exhibit a high yield of chlorophyll fluorescence while P-700 turnover, proton uptake, and phosphorylation are inhibited and a pH gradient is undectectable. When 10muM N-methylphenazonium methosulfate (PMS) is included, the fluorescence yield in light is substantially reduced, and when 100 muM ascorbate is also included, the yield is diminished approximately to the level in darkness. Only very slight increases in P-700 turnover and proton uptake (but no detectable pH gradient) accompany the fluorescence yield decline. When 10muM PMS and 15 mM ascorbate are added to poisoned chloroplasts (the oxygen concentration being greatly reduced), P-700 turnover, proton uptake, the pH gradient and phosphorylation all reach high levels. In this case, the yield of chlorophyll fluorescence is low and is the same in both light and dark. Further addition of an uncoupler eliminates proton uptake, the pH gradient and phosphorylation but does not significantly elevate the fluorescence yield. From these observations we suggest that, in DCMU-poisoned chloroplasts, the fluorescence quenching with PMS occurrs by a mechanism unrelated to the generation of a phosphyorylation potential. With chloroplasts unpoisoned by DCMU, PMS quenches fluorescence and considerably stimulates proton uptake, the pH gradient and phosphorylation. However, in this case, PMS serves to restore net electron transport.  相似文献   

15.
In intact, uncoupled type B chloroplasts from spinach, added ATP causes a slow light-induced decline (t12 ≈ 3 min) of chlorophyll a fluorescence at room temperature. Fluorescence spectra were recorded after fast cooling to 77 K and normalized with fluorescein as an internal standard. Related to the fluorescence quenching at room temperature, an increase in Photosystem (PS) I fluorescence (F735) and a decrease in PS II fluorescence (F695) were observed in the low-temperature spectra. The change in the F735F695 ratio was abolished by the presence of methyl viologen. Fluorescence induction at 77 K of chloroplasts frozen in the quenched state showed lowered variable (Fv) and initial (F0) fluorescence at 690 nm and an increase in F0 at 735 nm. The results are interpreted as indicating an ATP-dependent change of the initial distribution of excitation energy in favor of PS I, which is controlled by the redox state of the electron-transport chain and, according to current theories, is caused by phosphorylation of the light-harvesting complex.  相似文献   

16.
Light-induced chlorophyll a (Chl a) fluorescence quenching was studied in light-harvesting complex of photosystem II (LHCII). Fluorescence intensity decreased by ca. 20% in the course of 20 min illumination (412 nm, 36 micromol m(-2) s(-1)) and was totally reversible within 30 min dark adaptation. The pronounced quenching was observed only in LHCII in an aggregated form and exclusively in the presence of molecular oxygen. Structural rearrangement of LHCII correlated to the quenching was monitored by measuring changes in UV-Visible light absorption spectra, and by measuring Fourier-transform infrared spectroscopy (FTIR) in the Amide I region of the protein (1600-1700 cm(-1)). The light-induced structural rearrangement of LHCII was interpreted as a partial disaggregation of the complex based on the decrease in the light scattering signal and the characteristic features observed in the FTIR spectra: the relative increase in the intensity of the band at 1653 cm(-1), corresponding to a protein in the alpha-helical structure at the expense of the band centered at 1621 cm(-1), characteristic of aggregated forms. The fact that the light-driven isomerization of the all-trans violaxanthin to the 13-cis form was not observed under the non-oxygenic conditions coincided with the lack of large-scale conformational reorganization of LHCII. The kinetics of this large-scale structural effect does not correspond to the light-induced fluorescence quenching, in contrast to the kinetics of structural changes in LHCII observable at low oxygen concentrations. Photo-conversion of 5% of the pool of all-trans violaxanthin to 9-cis isomer was observed under such conditions. Possible involvement of the violaxanthin isomerization in the process of structural rearrangements and excitation quenching in LHCII is discussed.  相似文献   

17.
18.
Cyanobacteria have previously been considered to differ fundamentally from plants and algae in their regulation of light harvesting. We show here that in fact the ecologically important marine prochlorophyte, Prochlorococcus, is capable of forming rapidly reversible non-photochemical quenching of chlorophyll a fluorescence (NPQf or qE) as are freshwater cyanobacteria when they employ the iron stress induced chlorophyll-based antenna, IsiA. For Prochlorococcus, the capacity for NPQf is greater in high light-adapted strains, except during iron starvation which allows for increased quenching in low light-adapted strains. NPQf formation in freshwater cyanobacteria is accompanied by deep Fo quenching which increases with prolonged iron starvation.  相似文献   

19.
20.
The photoprotective nature of non-photochemical quenching (NPQ) has not been effectively quantified and the major reason is the inability to quantitatively separate NPQ that acts directly to prevent photoinhibition of photosystem II (PSII). Here we describe a technique in which we use the values of the PSII yield and qP measured in the dark following illumination. We expressed the quantum yield of PSII (Φ(PSII)) via NPQ as: Φ(PSII)=qP×(Fv/Fo)/(1+Fv/Fo+NPQ). We then tested this theoretical relationship using Arabidopsis thaliana plants that had been exposed to gradually increasing irradiance. The values of qP in the dark immediately after the illumination period (here denoted qPd) were determined using a previously described technique for Fo' calculation: Fo'(calc.)=1/(1/Fo-1/Fm-1/Fm'). We found that in every case the actual Φ(PSII) deviated from theoretical values at the same point that qPd deviated from a value of 1.0. In an increasing series of irradiance levels, WT leaves tolerated 1000μmolm(-2)s(-1) of light before qP(d) declined. Leaves treated with the uncoupler nigericin, leaves of the mutant lacking PsbS protein and leaves overexpressing PsbS showed a qP(d) reduction at 100, 600 and 2000μmolm(-2)s(-1) respectively, each at an increasing value of NPQ. Therefore we suggest that this simple and timely technique will be instrumental for identifying photoprotective NPQ (pNPQ) and that it is more appropriate than the qE component. Its applications should be broad: for example it will be useful in physiology-based studies to define the optimal level of nonphotochemical quenching for plant protection and productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号