首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An assay is reported for prolyl 3-hydroxylase activity. The method is based on the release of tritiated water (THO) during 3-hydroxylation of a 2,3-T-l-proline-labeled (T = tritium) polypeptide substrate in which all prolyl residues recognized by prolyl 4-hydroxylase have been converted to 4-hydroxyprolyl residues. The formation of THO was essentially linear with enzyme concentration and time, and the Km for the polypeptide substrate was about 3.4 × 10?8m. A linear correlation was found between THO release and the synthesis of 3-hydroxyproline, the latter being analyzed by amino acid analyzer. The assay is simple, rapid, sensitive, and reproducible, and it is specific even in tissue samples containing a large excess of prolyl 4-hydroxylase activity.  相似文献   

2.
The formation of 3-hydroxyproline was studied with crude rat kidney cortex extract as a source of enzyme and chick embryo tendon protocollagen and procollagen or cartilage protocollagen as a substrate. Synthesis of 3-hydroxyproline was observed with all these substrates and the formation of 3-hydroxyproline ranged up to seven residues per pro-alpha-chain. The highest rate of 3-hydroxylation took place at 20 degrees C and the reaction required Fe2+, O2,2-oxoglutarate and ascorbate. The formation of 3-hydroxyproline was affected by chain length and the conformation of the substrate, in that longer polypeptide chains proved better substrates, while the native triple-helical conformation of protocollagen or procollagen completely prevented the reaction. Formation of 3-hydroxyproline with tendon procollagen as a substrate was not inhibited by antiserum to prolyl 4-hydroxylase or by poly(L-proline) when these substances were used in concentrations which clearly inhibited 4-hydroxyproline formation with tendon protocollagen as a substrate. Furthermore, pure prolyl 4-hydroxylase did not synthesize any 3-hydroxyproline under conditions in which the crude rat kidney cortex enzyme would readily do so. The data thus strongly suggest that prolyl 3-hydroxylase and prolyl 4-hydroxylase are separate enzymes.  相似文献   

3.
为了使脯氨酸-4-羟化酶基因在重组大肠杆菌中得到高表达,通过调整大肠杆菌密码子偏好性以及mRNA二级结构,使得脯氨酸-4-羟化酶基因得到优化。将优化后的脯氨酸-4-羟化酶基因插入含有色氨酸串联启动子的p UC19质粒,构建重组质粒p UC19-ptrp2-Hyp,并导入大肠杆菌BL21(DE3)中。在摇瓶水平,重组菌以L-脯氨酸为底物发酵8 h,可积累(0.492±0.034)g/L的反式-4-羟脯氨酸。在发酵罐水平,通过补料分批发酵来提高反式-4-羟脯氨酸的产量,当补糖速率为18 g/h时,反式-4-羟脯氨酸的产量高达42.5 g/L,反式-4-羟脯氨酸产率为0.966 g/(L·h)。  相似文献   

4.
The crucial role of collagen in fibrotic disorders has prompted attempts to develop drugs that inhibit collagen accumulation. Peptides containing the unphysiological amino acid 5-oxaproline (Opr) have recently been found to act as specific syncatalytic inactivators of pure prolyl 4-hydroxylase, the enzyme that catalyzes the formation of 4-hydroxyproline in collagens. The present study indicates that oxaproline-containing peptides benzyloxycarbonyl-Phe-Opr-Gly-benzyl ester (I) and benzyloxycarbonyl-Phe-Opr-Gly-ethyl ester (II) inactivate prolyl 4-hydroxylase in cultured human skin fibroblasts, peptide I being about twice as potent as peptide II. Inactivation by 50% was observed after culturing with about 20-40 microM concentrations of peptide I for 48 h. The inactivation appears to be specific, as no changes were found in the activities of two other intracellular enzymes of collagen synthesis, lysyl hydroxylase and galactosylhydroxylysyl glucosyltransferase. Synthesis of 4-hydroxyproline by the cells was markedly decreased, and 4-hydroxyproline-deficient procollagen accumulated intracellularly, whereas no changes were found in the incorporation of [14C]leucine into protein after culturing of the cells with a 30 microM concentration of peptide I for 48 h. No changes were seen in the viability of the cells or the release of lactate dehydrogenase from them into the culture medium. No significant changes were found in the steady-state levels of the mRNAs for the pro-alpha 1 chains of type I and type III procollagens or for the alpha and beta subunits of prolyl 4-hyroxylase or fibronectin after culturing with 75 microM peptide I for 48 h. The data indicate that inactivation of cellular prolyl 4-hydroxylase has marked effects on cellular 4-hydroxyproline formation and collagen secretion but no effects on the steady-state levels of mRNAs for type I and III procollagens or the two types of subunit of prolyl 4-hydroxylase.  相似文献   

5.
Prolyl 3-hydroxylase activity and the extent of collagen proline 3-hydroxylation were studied in six transformed and three control human cell lines. In the transformed cell lines, the enzyme activity was markedly high in two, similar to that in control cells in two and significantly low in two. The extent of proline 3-hydroxylation was markedly high in cell lines with high enzyme activity, but it was also significantly high in some transformed cell lines with enzyme activities similar to those in the controls. The results thus suggest that, in addition to the amount of enzyme activity present, the rate of collagen synthesis also affects the extent of proline 3-hydroxylation in the newly synthesized collagen. The effect of acute cell transformation on prolyl 3-hydroxylase and 4-hydroxylase activities was studied by infecting chick-embryo fibroblasts with Rous sarcoma virus mutant NY68, temperature-sensitive for transformation. At the permissive temperature prolyl 3-hydroxylase activity showed a more rapid increase and decrease than did prolyl 4-hydroxylase activity, the maximal activity for both enzymes being about 2.5 times that in the control chick fibroblasts. When the transformed cells were shifted to the non-permissive temperature the decays in the elevated enzyme activities were similar, suggesting identical half-lives.  相似文献   

6.
4-Hydroxyproline, the characteristic amino acid of collagens and collagen-like proteins in animals, is also found in certain proline-rich proteins in plants but has been believed to be absent from viral and bacterial proteins. We report here on the cloning and characterization from a eukaryotic algal virus, Paramecium bursaria Chlorella virus-1, of a 242-residue polypeptide, which shows distinct sequence similarity to the C-terminal half of the catalytic alpha subunits of animal prolyl 4-hydroxylases. The recombinant polypeptide, expressed in Escherichia coli, was found to be a soluble monomer and to hydroxylate both (Pro-Pro-Gly)(10) and poly(L-proline), the standard substrates of animal and plant prolyl 4-hydroxylases, respectively. Synthetic peptides such as (Pro-Ala-Pro-Lys)(n), (Ser-Pro-Lys-Pro-Pro)(5), and (Pro-Glu-Pro-Pro-Ala)(5) corresponding to proline-rich repeats coded by the viral genome also served as substrates. (Pro-Ala-Pro-Lys)(10) was a particularly good substrate, with a K(m) of 20 microM. The prolines in both positions in this repeat were hydroxylated, those preceding the alanines being hydroxylated more efficiently. The data strongly suggest that P. bursaria Chlorella virus-1 expresses proteins in which many prolines become hydroxylated to 4-hydroxyproline by a novel viral prolyl 4-hydroxylase.  相似文献   

7.
Posttranslational modifications can cause profound changes in protein function. Typically, these modifications are reversible, and thus provide a biochemical on-off switch. In contrast, proline residues are the substrates for an irreversible reaction that is the most common posttranslational modification in humans. This reaction, which is catalyzed by prolyl 4-hydroxylase (P4H), yields (2S,4R)-4-hydroxyproline (Hyp). The protein substrates for P4Hs are diverse. Likewise, the biological consequences of prolyl hydroxylation vary widely, and include altering protein conformation and protein–protein interactions, and enabling further modification. The best known role for Hyp is in stabilizing the collagen triple helix. Hyp is also found in proteins with collagen-like domains, as well as elastin, conotoxins, and argonaute 2. A prolyl hydroxylase domain protein acts on the hypoxia inducible factor α, which plays a key role in sensing molecular oxygen, and could act on inhibitory κB kinase and RNA polymerase II. P4Hs are not unique to animals, being found in plants and microbes as well. Here, we review the enzymic catalysts of prolyl hydroxylation, along with the chemical and biochemical consequences of this subtle but abundant posttranslational modification.  相似文献   

8.
A series of 5-oxaproline peptide derivatives was synthesized and evaluated for its ability to inhibit the prolyl 4-hydroxylasein vitro. Structure-activity studies show that the 5-oxaproline sequences, prepared by the 1,3-dipolar cycloaddition of the C-methoxycarbonyl-N-mannosyl nitrone in the presence of the ethylene, are more active than the corresponding proline derivatives. Prolyl 4-hydroxylase belongs to a family of Fe2+-dependent dioxygenase, which catalyzes the formation of 4-hydroxyproline in collagens by the hydroxylation of proline residues in-Gly-Xaa-Pro-Gly- of procollagen chains. In this paper we discover the more selective N-Cbz-Gly-Phe-Pro-Gly-OEt (K m=520 μM) sequences which are showed stronger binding than othersin vitro. Therefore, we set out to investigate constrained tetrapeptide that was designed to mimic the proline structure of peptides for the development of prolyl 4-hydroxylase inhibitor. From this result, we found that the most potent inhibitor is N-Dansyl-Gly-Phe-5-oxaPro-Gly-OEt (K i=1.6 μM). This has prompted attempts to develop drugs which inhibit collagen synthesis. Prolyl 4-hydroxylase would seem a particularly suitable target for antifibrotic therapy.  相似文献   

9.
Prolyl 3-hydroxylase activity, expressed per unit of extract protein, was much higher in rat kidney cortex than in the lung, liver or skin. A marked decrease in activity was found in the kidney cortex, liver and skin beyond 10 days of age. The ratio of prolyl 3-hydroxylase to 4-hydroxylase activity in the kidney cortex was 13--17 times that in the skin, that in the liver 6--8 times, and that in the lung about twice the value for the skin, there being no changes in this ratio with age. In 16-day chick embryos the highest ratios of prolyl 3-hydroxylase to 4-hydroxylase activity were found in the liver, heart, lens, aorta and kidney, and the lowest ratios in tendon, cartilage, cartilaginous and membranous bone and skin. The results suggest that the differences in the extent of prolyl 3-hydroxylation between various collagens can in part be explained by differences in the amount of prolyl e-hydroxylase activity among different cells.  相似文献   

10.
Collagen is the most abundant protein in animals. Its prevalent 4-hydroxyproline residues contribute greatly to its conformational stability. The hydroxyl groups arise from a post-translational modification catalyzed by the nonheme iron-dependent enzyme, collagen prolyl 4-hydroxylase (P4H). Here, we report that 4-oxo-5,6-epoxyhexanoate, a mimic of the α-ketoglutarate co-substrate, inactivates human P4H. The inactivation installs a ketone functionality in P4H, providing a handle for proteomic experiments. Caenorhabditis elegans exposed to the esterified epoxy ketone displays the phenotype of a worm lacking P4H. Thus, this affinity label can be used to mediate collagen stability in an animal, as is desirable in the treatment of a variety of fibrotic diseases.  相似文献   

11.
Monoclonal antibodies to human prolyl 4-hydroxylase   总被引:5,自引:0,他引:5  
Monoclonal antibodies against human prolyl 4-hydroxylase (EC 1.14.11.2), an intracellular enzyme of collagen biosynthesis, were produced by fusing spleen cells from BALB/c mice hyperimmunized with human prolyl 4-hydroxylase and mouse myeloma cells (P3/NS 1/1-AG 4-1). Hybridomas from 14 different primary microtiter-plate well cultures produced antibodies to human prolyl 4-hydroxylase; six of them with the highest antibody titer were cloned and antibodies produced by one clone from each of the six lines were further characterized. All of the six cloned hybrids produced antibodies of the IgG class as detected by immunodiffusion. The enzyme antigen used in the present study was a tetramer composed of two pairs of different subunit proteins, alpha and beta. Only one clone which produced antibodies to the alpha subunit was obtained, the other five antibodies being directed against the beta subunit. All the antibodies reacted with the tetramer form of the enzyme. Species cross-reactivity of the antibodies was tested using cultured human, mouse and chick fibroblasts and purified prolyl 4-hydroxylase from chick and mouse sources. None of the antibodies cross-reacted with chick or mouse fibroblasts, as determined by immunofluorescence, whereas one antibody reacted with purified chick and mouse prolyl 4-hydroxylase when examined by the western blotting technique. This antibody caused a strong inhibition of human prolyl 4-hydroxylase activity, but the other five antibodies had negligible inhibitory effect on the activity of the enzyme.  相似文献   

12.
Prolyl 4-hydroxylase, an alpha 2 beta 2 tetramer, catalyzes the formation of 4-hydroxyproline in collagens by the hydroxylation of proline residues in peptide linkages and plays a crucial role in the synthesis of these proteins. The gene for the beta-subunit of prolyl 4-hydroxylase has recently been mapped to the long arm of human chromosome 17, at band 17q25. We report here chromosomal localization of the gene for the catalytically and regulatorily important alpha-subunit of human prolyl 4-hydroxylase. Analysis of 24 rodent x human cell hybrids by Southern blotting with cDNA probes for the human alpha-subunit indicated complete cosegregation of the gene for the alpha-subunit with human chromosome 10. A cell hybrid containing only part of chromosome 10 mapped the gene to 10q11----qter. In situ hybridization mapped the gene to 10q21.3-23.1. The gene for the alpha-subunit is thus not physically linked to that for the beta-subunit of the enzyme.  相似文献   

13.
Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the formation of 4-hydroxyproline in collagens by the hydroxylation of proline residues in X-Pro-Gly sequences. The reaction requires Fe2+, 2-oxoglutarate, O2, and ascorbate and involves an oxidative decarboxylation of 2-oxoglutarate. Ascorbate is not consumed during most catalytic cycles, but the enzyme also catalyzes decarboxylation of 2-oxoglutarate without subsequent hydroxylation, and ascorbate is required as a specific alternative oxygen acceptor in such uncoupled reaction cycles. A number of compounds inhibit prolyl 4-hydroxylase competitively with respect to some of its cosubstrates or the peptide substrate, and recently many suicide inactivators have also been described. Such inhibitors and inactivators are of considerable interest, because the prolyl 4-hydroxylase reaction would seem a particularly suitable target for chemical regulation of the excessive collagen formation found in patients with various fibrotic diseases. The active prolyl 4-hydroxylase is an alpha 2 beta 2 tetramer, consisting of two different types of inactive monomer and probably containing two catalytic sites per tetramer. The large catalytic site may be cooperatively built up of both the alpha and beta subunits, but the alpha subunit appears to contribute the major part. The beta subunit has been found to be identical to the enzyme protein disulfide isomerase and a major cellular thyroid hormone-binding protein and shows partial homology with a phosphoinositide-specific phospholipase C, thioredoxins, and the estrogen-binding domain of the estrogen receptor. The COOH-terminus of this beta subunit has the amino acid sequence Lys-Asp-Glu-Leu, which was recently suggested to be necessary for the retention of a polypeptide within the lumen of the endoplasmic reticulum. The alpha subunit does not have this COOH-terminal sequence, and thus one function of the beta subunit in the prolyl 4-hydroxylase tetramer appears to be to retain the enzyme within this cell organelle.  相似文献   

14.
The collagen prolyl hydroxylases are enzymes that are required for proper collagen biosynthesis, folding, and assembly. They reside within the endoplasmic reticulum and belong to the group of 2-oxoglutarate and iron-dependent dioxygenases. Although prolyl 4-hydroxylase has been characterized as an alpha2beta2 tetramer in which protein disulfide isomerase is the beta subunit with two different alpha subunit isoforms, little is known about the enzyme prolyl 3-hydroxylase (P3H). It was initially characterized and shown to have an enzymatic activity distinct from that of prolyl 4-hydroxylase, but no amino acid sequences or genes were ever reported for the mammalian enzyme. Here we report the characterization of a novel prolyl 3-hydroxylase enzyme isolated from embryonic chicks. The primary structure of the enzyme, which we now call P3H1, demonstrates that P3H1 is a member of a family of prolyl 3-hydroxylases, which share the conserved residues present in the active site of prolyl 4-hydroxylase and lysyl hydroxylase. P3H1 is the chick homologue of mammalian leprecan or growth suppressor 1. Two other P3H family members are the genes previously called MLAT4 and GRCB. In this study we demonstrate prolyl 3-hydroxylase activity of the purified enzyme P3H1 on a full-length procollagen substrate. We also show it to specifically interact with denatured collagen and to exist in a tight complex with other endoplasmic reticulum-resident proteins. Immunohistochemistry with a monoclonal antibody specific for chick P3H1 localizes P3H1 specifically to tissues that express fibrillar collagens, suggesting that other P3H family members may be responsible for modifying basement membrane collagens.  相似文献   

15.
A column chromatographic analysis of 3-hydroxyproline (3-Hyp), 4-hydroxyproline (4-Hyp), and γ-carboxyglutamic acid (Gla) is described. The analyses of urine and plasma were performed with a JLC-6AH amino acid analyzer. A 0.15 M sodium citrate buffer, pH 2.1, was used for elution. Urinary Gla, 3-Hyp, and 4-Hyp were among the seventeen peaks eluted before asparti acid. Hyp, Gla, glutamine, and asparagine in plasma were separated by elution with 0.2 M sodium citrate buffer, pH 3.25, containing 10% methanol. This single-column procedure achieves the sequential separation and quantitation of Gla, 3-Hyp, and 4-Hyp in urine as well as plasma, and is applicable to the diagnosis of collager, metabolism disorders.  相似文献   

16.
Unlike the parent wild-type strain, theKlebsiella pneumoniae mutant strain MAO4 has a 4-HBA+ phenotype. The capacity of this mutant to take up and metabolize 4-hydroxybenzoate (4-HBA) relies on the expression of a permease and an NADPH-linked monooxygenase (4-HBA-3-hydroxylase). Both enzymes are normally expressed at basal levels, and only the presence of 4-HBA in the media enhances their activities. Strikingly, when theAcinetobacter calcoaceticus pobA gene encoding 4-hydroxybenzoate-3-hydroxylase was expressed in hydroxybenzoateK. pneumoniae wild-type, the bacteria were unable to grow on 4-HBA, suggesting that the main difference between the wild-type and the mutant strain is the capability of the latter to take up 4-HBA. 4-HBA-3-hydroxylase was purified to homogeneity by affinity, gel-filtration, and anion-exchange chromatography. The native enzyme, which appeared to be a dimer of identical subunits, had an apparent molecular mass of 80 kDa and a pI of 4.6. Steady-state kinetics were analyzed; the initial velocity patterns were consistent with a concerted substitution mechanism. The purified enzyme had 362 amino acid residues, and a tyrosine seemed to be involved in substrate activation.  相似文献   

17.
Hydrolyzates of tissues that had been labeled with [14C]proline often contain significant amounts of cis-4-hydroxy[14C]proline. Since animal cells do not contain an enzyme which can effect formation of cis-4-hydroxyproline, there are only two possible explanations for its presence. Either it is formed during acid hydrolysis of trans-4-hydroxyproline (which is synthesized by cells and is a common constituent of connective tissues), or it is produced by a nonenzymatic mechanism such as attack by oxygen radicals. It is important to resolve this issue because if a nonenzymatic mechanism is active in connective tissues, then it will be necessary to reevaluate currently accepted ideas about production of hydroxyproline. This communication describes a method for distinguishing between the two alternate explanations. Tissues or cells are labeled with [14C]proline, and then a known amount of trans-4-hydroxy[3H]proline is added to each sample before hydrolysis; the relative amounts of [14C]- and [3H]-cis-4-hydroxyproline are compared after hydrolysis. It is known from a separate series of measurements with mixtures of [14C]- and [3H]-trans-4-hydroxyproline standards that there is a very high correlation (r = 0.998) between acid-induced formation of the [14C]- and [3H]-cis epimers. One can thus compare the amount of cis-4-hydroxy[14C]proline in a hydrolyzate from a biological system with the amount that would be expected if it were all formed during acid hydrolysis. This method was used to show that fibroblasts cultured under conditions commonly used to study collagen metabolism do not produce cis-4-hydroxyproline. This result strongly suggests that nonenzymatic hydroxylation does not normally occur in cell culture systems.  相似文献   

18.
Prolyl 4-hydroxylase (EC 1.14.11.2), an alpha 2 beta 2 tetramer, catalyses the formation of 4-hydroxyproline in collagens by the hydroxylation of proline residues in peptide linkages. We report here the isolation of cDNA clones coding for the beta-subunit of prolyl 4-hydroxylase from a human hepatoma lambda gt11 library and a corresponding human placenta library. Five overlapping clones covering all the coding sequences and almost all the non-coding sequences were characterized. The size of the mRNA hybridizing with these clones in Northern blotting is approximately 2.5 kb. The clones encode a polypeptide of 508 amino acid residues, including a signal peptide of 17 amino acids. These human sequences were found to be very similar to those recently reported for rat protein disulphide isomerase (EC 5.3.4.1). The degree of homology between these two proteins was 84% at the level of nucleotide sequences or 94% at the level of amino acid sequences. Southern blot analyses of human genomic DNA with a cDNA probe for the beta-subunit indicated the presence of only one gene containing these sequences. The product of a single gene thus appears to possess two different enzymatic functions depending on whether it is present in cells in monomer form or in the prolyl 4-hydroxylase tetramer.  相似文献   

19.
The single 3-hydroxyproline residue in the collagen I polypeptides is essential for proper fibril formation and bone development as its deficiency leads to recessive osteogenesis imperfecta. The vertebrate prolyl 3-hydroxylase (P3H) family consists of three members, P3H1 being responsible for the hydroxylation of collagen I. We expressed human P3H2 as an active recombinant protein in insect cells. Most of the recombinant polypeptide was insoluble, but small amounts were also present in the soluble fraction. P3H1 forms a complex with the cartilage-associated protein (CRTAP) that is required for prolyl 3-hydroxylation of fibrillar collagens. However, coexpression with CRTAP did not enhance the solubility or activity of the recombinant P3H2. A novel assay for P3H activity was developed based on that used for collagen prolyl 4-hydroxylases (C-P4H) and lysyl hydroxylases (LH). A large amount of P3H activity was found in the P3H2 samples with (Gly-Pro-4Hyp)5 as a substrate. The Km and Ki values of P3H2 for 2-oxoglutarate and its certain analogues resembled those of the LHs rather than the C-P4Hs. Unlike P3H1, P3H2 was strongly expressed in tissues rich in basement membranes, such as the kidney. P3H2 hydroxylated more effectively two synthetic peptides corresponding to sequences that are hydroxylated in collagen IV than a peptide corresponding to the 3-hydroxylation site in collagen I. These findings suggest that P3H2 is responsible for the hydroxylation of collagen IV, which has the highest 3-hydroxyproline content of all collagens. It is thus possible that P3H2 mutations may lead to a disease with changes in basement membranes.  相似文献   

20.
J Koivu  R Myllyl? 《Biochemistry》1986,25(20):5982-5986
Protein disulfide-isomerase was isolated as a homogeneous protein from 15-day-old chick embryos. The enzyme has a molecular weight of 56,000 in SDS-polyacrylamide gel electrophoresis. Its Km value for randomly cross-linked ribonuclease, a protein used as a substrate for the enzyme, was 0.3 microM, and the Km value for DTT was 1.0 microM. Its optimum pH was 7.5 and its optimum temperature, 33 degrees C. The maximal velocity of pure protein disulfide-isomerase from chick embryos under optimal conditions was about 29,000 units/g. Protein disulfide-isomerase was able to activate purified prolyl 4-hydroxylase 2- to 3-fold, the activation being higher for enzyme stored for a longer time. This activation is probably due to the repairing of disulfide exchanges occurring in the prolyl 4-hydroxylase structure during purification and storage. Prolyl 4-hydroxylase activity was very stable in microsomes, however, and protein disulfide-isomerase was unable to increase the microsomal prolyl 4-hydroxylase activity, suggesting that prolyl 4-hydroxylase retains its native conformation in microsomes. Protein disulfide-isomerase was able to reactivate prolyl 4-hydroxylase inactivated by mild H2O2 treatment. The activity obtained after this treatment and protein disulfide-isomerase incubation corresponded to the amount of prolyl 4-hydroxylase tetramer found after H2O2 treatment. The data suggest that protein disulfide-isomerase is able to activate only the tetramer part of the enzyme preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号