首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The inhibition of DNA replication in ultraviolet-irradiated human fibroblasts was characterized by quantitative analysis of radiation-induced alterations in the steady-state distribution of sizes of pulse-labeled, nascent DNA. Low, noncytotoxic fluences (<1 J/m2, producing less than one pyrimidine dimer per replicon) rapidly produced an inhibition of DNA synthesis in half-replicon-size replication intermediates without noticeably affecting synthesis in multi-repliconsize intermediates. With time, the inhibition produced by low fluences spread progressively to include multi-replicon-size intermediates. The results indicate that ultraviolet radiation inhibits the initiation of DNA synthesis in replicons. Higher (>1 J/m2, producing more than one dimer per replicon) cytotoxic fluences inhibited DNA synthesis in operating replicons presumably because the elongation of nascent strands was blocked where pyrimidine dimers were present in template strands. Xeroderma pigmentosum fibroblasts with deficiencies in DNA excision repair exhibited an inhibition of replicon initiation after low radiation fluences. indicating the effect was not solely dependent upon operation of the nucleotidyl excision repair pathway. Owing to their inability to remove pyrimidine dimers ahead of DNA growing points, the repair-deficient cells also were more sensitive than normal cells to the ultraviolet-induced inhibition of chain elongation. Xeroderma pigmentosum cells belonging to the variant class were even more sensitive to inhibition of chain elongation than the repair-deficient strains despite their ability to remove pyrimidine dimers. This analysis suggests that normal and repair-deficient human fibroblasts either are able to rapidly bypass certain dimers or these dimers are not recognized by the chain elongation machinery.  相似文献   

2.
To investigate the inhibition of DNA replication by tumor promoters, we incubated HeLa cells with 12-O-tetradecanoylphorbol-13-acetate (TPA; 10?8 to 10?5 g/ml) and quantified DNA synthesis on alkaline sucrose gradients. TPA was found to selectively inhibit replicon initiation without affecting DNA chain elongation in replicons that had already initiated. No inhibition of DNA synthesis was seen when cells were exposed to the nonpromoting derivative of TPA, 4-α-phorbol 12,13-didecanoate. Superoxide dismutase did not prevent the TPA-induced inhibition of initiation.  相似文献   

3.
Modification of replicon operation in HeLa cells by 2,4-dinitrophenol   总被引:3,自引:0,他引:3  
Cycloheximide causes inhibition of semiconservative DNA replication in HeLa cells by reducing the average rate of DNA chain elongation. 2,4-Dinitrophenol inhibits semiconservative DNA replication (50 to 80% inhibitions at 10?3 to 5 × 10?3 M-2,4-dinitrophenol) without affecting the average rate of DNA chain elongation. Therefore, at any given time the number of replicating sections of DNA per DNA-synthesizing (S-phase) cell appears to be reduced in the presence of 2,4-dinitrophenol.Radioactivity profiles of pulse-labeled DNA in alkaline sucrose gradients suggest that 2,4-dinitrophenol modifies initiation and termination patterns of replicating sections, most of which are found to be 10 to 80 μm (mode: 15 to 30 μm) under control conditions. DNA synthesized in the presence of 2,4-dinitrophenol has the density of control DNA, is metabolically stable, and after mitosis, functions normally as a template in the next round of replication.  相似文献   

4.
Treatment of Physarum polycephalum with cycloheximide during the DNA synthesis period resulted in a reduction in the incorporation of [3H]thymidine into DNA. This effect was caused by both a reduction in the specific activity of TTP and by an inhibition of progeny strand elongation within replication units. No effect of the drug on the initiation of synthesis of replication units or on the ligation of DNA fragments was detected.  相似文献   

5.
Arabinosyl cytosine at very low concentrations (5–100 nmolar) inhibits the incorporation of [3H]thymidine into polyoma DNA of infected mouse fibroblasts without affecting the labeling of the [3H]dTTP pool. The specific activities of these pools were determined by a new simple method. Inhibition of DNA synthesis affects chain elongation and not initiation of new rounds of replication.  相似文献   

6.
Logarithmically growing Yoshida sarcoma cells were treated for 1 h with low (2 decades cell kill) or high (more than 6 decades cell kill) doses of alkylating agents. Pulse and chase labelled DNA from treated cells were studied by alkaline sucrose gradient centrifugation. Nitrogen mustard (HN-2), 4-hydroperoxycyclophosphamide (CY-OOH), melphalan (L-PAM) and chlorambucil (CA) had no effect on the elongation rate of newly replicated DNA, both at low and high doses, although per cell the rate of DNA synthesis declined as inferred from the rates of [3H] thymidine incorporation compared to the increase in numbers of S phase cells in the treated populations. It is concluded that these drugs act specifically on the initiation step of the DNA replication, leaving chain elongation undisturbed. At low doses the chemically related sulphur mustard (SM) had also no effect on the maturation of new DNA but at high doses a decreased elongation rate was observed. A transient inhibition of chain growth was observed following treatment with a low dose of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). In contrast, the intercalating agent adriamycin showed a severe but delayed effect resulting in an almost complete block of the maturation.  相似文献   

7.
UV-induced DNA damage stalls DNA replication forks and activates the intra-S checkpoint to inhibit replicon initiation. In response to stalled replication forks, ATR phosphorylates and activates the transducer kinase Chk1 through interactions with the mediator proteins TopBP1, Claspin, and Timeless (Tim). Murine Tim recently was shown to form a complex with Tim-interacting protein (Tipin), and a similar complex was shown to exist in human cells. Knockdown of Tipin using small interfering RNA reduced the expression of Tim and reversed the intra-S checkpoint response to UVC. Tipin interacted with replication protein A (RPA) and RPA-coated DNA, and RPA promoted the loading of Tipin onto RPA-free DNA. Immunofluorescence analysis of spread DNA fibers showed that treating HeLa cells with 2.5 J/m(2) UVC not only inhibited the initiation of new replicons but also reduced the rate of chain elongation at active replication forks. The depletion of Tim and Tipin reversed the UV-induced inhibition of replicon initiation but affected the rate of DNA synthesis at replication forks in different ways. In undamaged cells depleted of Tim, the apparent rate of replication fork progression was 52% of the control. In contrast, Tipin depletion had little or no effect on fork progression in unirradiated cells but significantly attenuated the UV-induced inhibition of DNA chain elongation. Together, these findings indicate that the Tim-Tipin complex mediates the UV-induced intra-S checkpoint, Tim is needed to maintain DNA replication fork movement in the absence of damage, Tipin interacts with RPA on DNA and, in UV-damaged cells, Tipin slows DNA chain elongation in active replicons.  相似文献   

8.
The role of nuclear lamins in DNA replication is unclear. To address this, nuclei were assembled in Xenopus extracts containing AraC, a reversible inhibitor that blocks near the onset of the elongation phase of replication. Dominant-negative lamin mutants lacking their NH(2)-terminal domains were added to assembled nuclei to disrupt lamin organization. This prevented the resumption of DNA replication after the release of the AraC block. This inhibition of replication was not due to gross disruption of nuclear envelope structure and function. The organization of initiation factors was not altered by lamin disruption, and nuclei resumed replication when transferred to extracts treated with CIP, an inhibitor of the cyclin-dependent kinase (cdk) 2-dependent step of initiation. This suggests that alteration of lamin organization does not affect the initiation phase of DNA replication. Instead, we find that disruption of lamin organization inhibited chain elongation in a dose-dependent fashion. Furthermore, the established organization of two elongation factors, proliferating cell nuclear antigen, and replication factor complex, was disrupted by DeltaNLA. These findings demonstrate that lamin organization must be maintained in nuclei for the elongation phase of DNA replication to proceed.  相似文献   

9.
Summary When spores of a thymine-requiring mutant of Bacillus subtilis were germinated in a medium lacking thymine, an initiation potential (an ability to initiate and complete one round of replication in the presence of thymine and in the absence of protein and RNA synthesis) was formed for both chromosomal and plasmid replication. The effect of two inhibitors of DNA gyrase, novobiocin (Nov) and nalidixic acid (Nal), on the initiation potential formed during germination for chromosomal and plasmid replication was examined.Nov and Nal inhibited formation of the initiation potential completely if the drug was added at the onset of germination. In contrast, initiation of chromosomal and plasmid replication occurred in the presence of DNA gyrase inhibitors when the drug was added after the initiation potential had been fully formed. However, chromosomal replication initiated in the presence of the inhibitors ceased after a fragment of approximately 15 MD (15×106 daltons) had been replicated, and plasmid replication was limited to one round of replication in approximately half of the plasmid molecules present in the spores.Furthermore the initiation potential for both chromosomal and plasmid replication though established was destroyed gradually but steadily by prolonged incubation with Nov in the absence of thymine. In addition, relaxation of the superhelical structure of plasmid DNA during incubation with Nov was observed in vivo. This relaxation was blocked by ethidium bromide, which dissociated the S-complex. On the other hand, incubation with Nal did not reduce the initiation potential nor did it change the superhelicity of the plasmid DNA in vivo. This is consistent with the known effect of gyrase inhibitors on the enzymatic activity of DNA gyrase.These results clearly demonstrate that both the action of DNA gyrase and the superhelical structure of the DNA are essential for the initiation of chromosomal and plasmid replication. The specific chromosome organization essential for initiation and elongation and the role of DNA gyrase are discussed.IV of this series is Yoshikawa et al. 1980  相似文献   

10.
To study the mechanism by which ultraviolet (UV) light inhibits DNA replication, we examined the effects of UV 254 nm irradiation on the replication of simian virus 40 (SV40) DNA and SV40-based plasmid in monkey cells. The study was designed to determine the relative contributions made by inhibition of replication initiation and chain elongation to the immediate inhibition of DNA replication following UV irradiation. We used two-dimensional neutral-alkaline electrophoresis to examine the behaviour of replication intermediates unambiguously. Kinetic analysis using this technique showed that initiation of replication started to decline at 15 min post-irradiation. When the pulse label incorporated in SV40 replication intermediates before irradiation was chased for 1 h, most of the label was found in mature Form I and II molecules. This indicated that replication elongation took place on damaged template. We also used a transfection technique to show that heavily irradiated plasmids replicated efficiently in unirradiated transfected cells. By the transfection technique, we observed that UV irradiation of host cells dose-dependently inhibited replication of transfected non-irradiated plasmids, suggesting that the inhibition of DNA replication is due to a global change in cellular physiology induced by UV. This change was also apparent from poor staining of the chromatin by fluorescent-DNA-binding dyes immediately after UV irradiation of intact cells. We conclude that a significant fraction of chain elongation proceeds on damaged templates and DNA replication during the acute response of cells irradiated with UV is mainly controlled by the inhibition of replication initiation.  相似文献   

11.
The DNA increment method, designed for measuring the increment in the amount of DNA after inhibition of initiation of fresh rounds of replication initiation was employed to measure the rate of deoxyribonucleic acid (DNA) chain growth in Mycobacterium tuberculosis H37Rv growing in Youman and Karlson's medium at 37°C with a generation time of 24 h and also in relatively fast growing species like Mycobacterium smegmatis and Escherichia coli. From the results obtained, the time required for a DNA replication fork to traverse the chromosome from origin to terminus (C period) was calculated. The chain elongation rates of DNA of the three organisms was determined from the C period and the known genome sizes assuming that all these genomes have a single replication origin and bidirectional replication fork. The rate for M. tuberculosis was 3,200 nucleotides per min about 11 times slower than that of M. smegmatis and about 13–18 times slower than that of E. coli.Abbreviations DNA deoxyribonucleic acid - td delay in initiation - OD optical density - CAM chloramphenicol - RIF rifampicin  相似文献   

12.
Chieko Wada  Takashi Yura 《Plasmid》1982,8(3):287-298
When temperature-sensitive mafA mutants of Escherichia coli K-12 carrying mini-F plasmid (pSC138) are transferred from 30 to 42 °C, plasmid DNA replication as determined by incorporation of [3H]thymidine into covalently closed circular (CCC) mini-F DNA or by DNA-DNA hybridization is inhibited markedly within 10 min. The results of extensive pulse-chase experiments suggest that the initiation rather than the chain elongation step of plasmid replication is affected under these conditions. The replication inhibition in the mutant is accompanied by appearance of a class of plasmid DNA with a buoyant density higher than that of CCC DNA observed in the wild type, and is followed by gradual inhibition of host cell growth. The inhibition of plasmid replication is reversible at least for 60 min under the conditions used, and the recovery at low temperature (30 °C) depends on the synthesis of untranslated RNA. These results taken together with other evidence suggest that the mafA mutations primarily affect the initial step(s) of F DNA replication, presumably at or before the synthesis of untranslated RNA.  相似文献   

13.
The effect of actinomycin D on adenovirus DNA replication has been examined both in vivo and in a cell-free extract capable of replication on exogenously added template. In both cases we show that 5 micrograms/ml of drug cause an inhibition of DNA synthesis of at least 80%. The in vitro results further demonstrate that both DNA chain growth (elongation) and initiation - the addition of the first nucleotide of the DNA chain (dCMP) to the preterminal protein - are inhibited directly by the drug, by not by alpha-amanitin.  相似文献   

14.
DNA-chain elongation rates, determined by sedimentation analysis, were found to be similar in control and ataxia-telangiectasia lymphoblastoid cells. A γ-radiation dose of 6 Gray, which had previously been shown to have a marked inhibitory effect on initiation of DNA replication, had no appreciable effect on elongation rates in either cell type. Elongation rates were also determined at 20 Gray of γ-rays by pulsing cells with [3H]thymidine prior to irradiation to avoid anomalous sedimentation behaviour. At this radiation dose elongation was almost completely inhibited in control cells while little or no inhibition was observed in ataxia-telangiectasia cells. Deoxyribonucleoside triphosphate pool equilibration times were not altered at either dose.  相似文献   

15.
Using pulse labeling techniques with [3H]thymidine or [3H]cytidine, combined with DNA fiber autoradiography, we have investigated the direction and rate of DNA chain growth in mammalian cells. In general, chain elongation proceeds bidirectionally from the common origin of pairs of adjacent replication sections. This type of replication is noted whether the DNA is labeled first with [3H]thymidine of high specific activity, followed by [3H]thymidine of low specific activity or the sequence is reversed. Approximately one-fifth of the growing points have unique origins and in these replication units, chain growth proceeds in one direction only. Fluorodeoxyuridine and hydroxyurea both inhibit DNA chain propagation. Fluorodeoxyuridine exerts its effect on chain growth within 15–23 min, while the effect of hydroxyurea is evident within 15 min under conditions where the endogenous thymidine pool has been depleted by prior treatment with fluorodeoxyuridine. Puromycin has no effect on chain growth until 60 min after addition of the compound, even though thymidine incorporation is more than 50% reduced within 15 min. After 2 h of treatment with puromycin, the rate of chain growth is reduced by 50%, whereas thymidine incorporation is reduced by 75%. Cycloheximide reduces the rates of DNA chain growth and thymidine incorporation 50% within 15 min, and, on prolonged treatment, the decrease in rate of chain growth generally parallels the reduction in thymidine incorporation.  相似文献   

16.
Inhibition of mammalian cell DNA synthesis by ionizing radiation   总被引:4,自引:0,他引:4  
A semi-log plot of the inhibitory effect of ionizing radiation on the rate of DNA synthesis in normal mammalian cells yields a two-component curve. The steep component, at low doses, has a D0 of about 5 Gy and is the result of blocks to initiation of DNA replicons. The shallow component, at high doses, has a D0 of greater than or equal to 100 Gy and is the result of blocks to DNA chain elongation. The target size for the inhibition of DNA replicon initiation is about 1000 kb, and the target size for inhibition of DNA chain elongation is about 50 kb. There is evidence that the target for both components is DNA alone. Therefore, the target size for inhibition of DNA chain elongation is consistent with the idea that an effective radiation-induced lesion in front of the DNA growing point somehow blocks its advance. The target size for inhibition of DNA replicon initiation is so large that it must include many replicons, which is consistent with the concept that a single lesion anywhere within a large group (cluster) of replicons is sufficient to block the initiation of replication of all replicons within that cluster. Studies with radiosensitive human cell mutants suggest that there is an intermediary factor whose normal function is necessary for radiation-induced lesions to cause the inhibition of replicon initiation in clusters and to block chain elongation; this factor is not related to poly(ADP-ribose) synthesis. Studies with radiosensitive Chinese hamster cell mutants suggest that double-strand breaks and their repair are important in regulating the duration of radiation-induced inhibition of replicon initiation but have little to do with effects on chain elongation. There is no simple correlation between inhibition of DNA synthesis and cell killing by ionizing radiation.  相似文献   

17.
The effect of antitumor antibiotic neocarzinostatin on DNA replication in HeLa cells was studied by pulse-labeling of DNA with [3H]thymidine and sedimentation analysis of the DNA with alkaline sucrose gradients. The drug, which produced DNA damage, primarily inhibited the replicon initiation in the cells at low doses (less than or equal to 0.1 microgram/ml), and at high doses (greater than or equal to 0.5 microgram/ml) inhibited the DNA chain elongation. An analysis of the number of single-strand breaks of parental DNA, induced by neocarzinostatin, indicated that inhibition of the initiation occurred with introduction of single-strand breaks of less than 1.5 . 10(4)/cell, while inhibition of the elongation occurred with introduction of single-strand breaks of more than 7.5 . 10(4)/cell. Assuming that the relative molecular mass of DNA/HeLa cell was about 10(13) Da, the target size of DNA for inhibition of replicon initiation was calculated to be about 10(9) Da, such being close to an average size of loop DNA in the cell and for inhibition of chain elongation, 1-2 . 10(8) Da which was of the same order of magnitude as the size of replicons. Recovery of inhibited DNA replication by neocarzinostatin occurred during post-incubation of the cells and seemed to correlate with the degree of rejoining of the single-strand breaks of parental DNA. Caffeine and theophylline enhanced the recovery of the inhibited replicon initiation, but did not aid in the repair of the breaks in parental DNA.  相似文献   

18.
Inhibitors of DNA replication in mammalian cells are of great interest because of their potential use in chemotherapy and in cell synchronizing protocols in the laboratory. We have used a combination of isotopic labelling protocols and a two-dimensional gel replicon mapping procedure to determine the specific effects of five different replication inhibitors in cultured cells. Utilizing this protocol, we show that hydroxyurea, aphidicolin, and cytosine arabinoside, three known chain elongation inhibitors, are rather ineffective at preventing fork progression even at relatively high concentrations. In contrast, two related compounds that have been suggested to be G1/S inhibitors (mimosine and ciclopyrox olamine [CPX]) actually appear to inhibit initiation at origins. One of these agents (CPX) appears also to inhibit replication in yeast, opening the possibility that the gene encoding the target (initiator?) protein can first be identified in yeast by genetic approaches and can then be used to isolate the mammalian homologue.  相似文献   

19.
In the fission yeast, Schizosaccharomyces pombe, blocks to DNA replication elongation trigger the intra-S phase checkpoint that leads to the activation of the Cds1 kinase. Cds1 is required to both prevent premature entry into mitosis and to stabilize paused replication forks. Interestingly, although Cds1 is essential to maintain the viability of mutants defective in DNA replication elongation, mutants defective in DNA replication initiation require the Chk1 kinase. This suggests that defects in DNA replication initiation can lead to activation of the DNA damage checkpoint independent of the intra-S phase checkpoint. This might result from reduced origin firing that leads to an increase in replication fork stalling or replication fork collapse that activates the G2 DNA damage checkpoint. We refer to the Chk1-dependent, Cds1-independent phenotype as the rid phenotype (for replication initiation defective). Chk1 is active in rid mutants, and rid mutant viability is dependent on the DNA damage checkpoint, and surprisingly Mrc1, a protein required for activation of Cds1. Mutations in Mrc1 that prevent activation of Cds1 have no effect on its ability to support rid mutant viability, suggesting that Mrc1 has a checkpoint-independent role in maintaining the viability of mutants defective in DNA replication initiation.  相似文献   

20.
To investigate the contribution of DNA replication initiation and elongation to the intra-S-phase checkpoint, we examined cells treated with the specific topoisomerase I inhibitor camptothecin. Camptothecin is a potent anticancer agent producing well-characterized replication-mediated DNA double-strand breaks through the collision of replication forks with topoisomerase I cleavage complexes. After a short dose of camptothecin in human colon carcinoma HT29 cells, DNA replication was inhibited rapidly and did not recover for several hours following drug removal. That inhibition occurred preferentially in late-S-phase, compared to early-S-phase, cells and was due to both an inhibition of initiation and elongation, as determined by pulse-labeling nucleotide incorporation in replication foci and DNA fibers. DNA replication was actively inhibited by checkpoint activation since 7-hydroxystaurosporine (UCN-01), the specific Chk1 inhibitor CHIR-124, or transfection with small interfering RNA targeting Chk1 restored both initiation and elongation. Abrogation of the checkpoint markedly enhanced camptothecin-induced DNA damage at replication sites where histone γ-H2AX colocalized with replication foci. Together, our study demonstrates that the intra-S-phase checkpoint is exerted by Chk1 not only upon replication initiation but also upon DNA elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号