首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maltosylisothiocyanate (MITC), synthesized as an affinity label for the hexose carrier, has been reported to label a Band 3 or Mr = 100,000 protein in human erythrocytes, in contradistinction to many studies showing the carrier as a Band 4.5 or Mr = 45,000-66,000 protein on gel electrophoresis. In this work the possibility that MITC interacts with the Band 3 anion transporter was studied. In intact human erythrocytes, MITC labeling was largely confined to Band 3 and was decreased by several competitive inhibitors of hexose transport. However, MITC also appeared to react with the anion transport protein, since MITC labeling of Band 3 was irreversibly decreased by the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) and since MITC also irreversibly inhibited both tritiated dihydro-DIDS labeling of Band 3 and sulfate uptake in intact cells. Although 20 microM DIDS had little effect on hexose transport, the labeling of erythrocyte Band 3 by the dihydro analog was significantly diminished by competitive inhibitors of hexose transport. These data suggest that MITC labels in part the anion transporter as well as other DIDS-reactive sites on Band 3 which appear to be sensitive to competitive inhibitors of hexose transport.  相似文献   

2.
Band 3 of the human erythrocyte is involved in anion transport and binding of the cytoskeleton to the membrane bilayer. Human erythrocytes were treated to incorporate varying concentrations of DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid) a non-penetrating, irreversible inhibitor of anion transport, and both functions of Band 3 were analyzed. The rate of efflux of 35SO4. was measured and the binding of cytoskeletal components to the membrane was evaluated by extracting the membranes with 0.1 n NaOH and analyzing for the peptides remaining with the membrane. It was found that 0.1 n NaOH extracts all the extrinsic proteins from membranes of untreated cells, while, in the case of the membranes from cells treated with DIDS, a portion of the cytoskeletal components, spectrin (Bands 1 and 2) and Band 2.1 (ankyrin, syndein) remain with the membrane. The amount of these cytoskeletal components remaining with the membrane depends on the concentrations of DIDS incorporated. The effect of DIDS on the extractability of the spectrin-Band 2.1 complex correlates well with DIDS inhibition of anion transport (r = 0.91). At DIDS concentrations which completely inhibit anion transport, about 10% of total spectrin-Band 2.1 complex remains unextracted. Another anion-transport inhibitor, pyridoxal phosphate, has no effect on binding of the cytoskeleton to the membrane. On the other hand, digestion of DIDS-pretreated intact erythrocytes with Pronase, chymotrypsin, or trypsin releases the tight binding of Band 3 to cytoskeleton on the inside of the membrane. Since trypsin does not hydrolyze Band 3 the data suggest that a second membrane protein which is trypsin sensitive may be involved with Band 3 in cytoskeletal binding.  相似文献   

3.
A mechanism of erythrocyte shape control has been previously hypothesized in which Band 3, the anion exchange protein, controls the shape. In essence, the mechanism hypothesizes that the membrane skeleton is used to generate different shapes and the alternate influx and efflux of anions mediated by Band 3, which recruit Band 3 to an inward-facing and an outward-facing conformation, contract and relax the skeleton by folding and unfolding spectrin. Spectrin is bound to Band 3 by the intermediary of ankyrin. The mechanism is shown to be consistent with rapid shape deformations of the erythrocyte in blood circulation. We have examined whether the mechanism could provide a basis of echinocytosis and stomatocytosis in disc-sphere transformations of the erythrocyte induced by a wide variety of agents. These agents were classified into four groups: lipids of the bilayer, Donnan equilibrium modifiers, Band 3 anion transport inhibitors and integral membrane protein modifiers. Evidence is presented that the lipids play a secondary function in the control of the erythrocyte shape, as indicated by the mechanism. Two possible functions of the lipids are suggested with respect to the mechanism. Without exception, echinocytogenic and stomatocytogenic Donnan equilibrium modifiers decrease and increase the equilibrium ratio of chloride (Cl-(i)/Cl-(o)), respectively, as predicted by the mechanism. Echinocytosis produced by competitive anion transport inhibitors slowly transported inward by Band 3 and by affinity labels of Band 3 is compatible with the mechanism. Evidence is presented which indicates that echinocytosis and stomatocytosis induced by amphiphilic drugs and detergents occur by inhibition of the Band 3 anion transport. Finally, echinocytosis and stomatocytosis induced by non-covalent and covalent modifiers of integral membrane proteins such as agglutinins and digestive enzymes are consistent with the mechanism.  相似文献   

4.
Anion transport activity and thermotropic behavior of Band 3 are found to be altered after binding of concanavalin (Con A) to human erythrocyte ghosts and isolated Band 3. At lower Con A concentration, the rate coefficients of anion transport enhance with increasing Con A concentration, while noticeable changes of the largest calorimetric endotherm of human erythrocyte membranes termed the C transition (Band 3) can not be observed. With 50 micrograms/ml of Con A, the rate coefficient of Con A-modified ghosts increases 34.4% in comparison with that of normal ghosts. Binding of Con A in lower concentration to ghosts bring about increase of fluidity of lipid which maybe contribute to increase anion transport via Band 3. At higher Con A concentration, the C transition tend to lower temperature with increase in Con A concentration, the C transition is shifted from 69.25 degrees C to 66.25 degrees C with 2.5 mg/ml Con A. It is suggested that the Con A-modified Band 3 possess a looser structure than normal one.  相似文献   

5.
The role of a transmembrane Ca2+ gradient in anion transport by Band 3 of human resealed erythrocyte ghosts has been studied. The results show that a transmembrane Ca2+ gradient is essential for the conformation of erythrocyte Band 3 with higher anion transport activity. The dissipation of the transmembrane Ca2+ gradient by the ionophore A23187 inhibits the anion transport activity. The extent of this inhibition approaches 90% as the Ca2+ concentration on both sides of the ghost membrane is increased to 1.0 mM and half-maximum inhibition is observed at 0.25 mM Ca2+. Addition of ATP (0.4 mM) to the resealing medium can partly reestablish the transmembrane Ca2+ gradient by activation of Ca2+-ATPase and alleviate the inhibition to some extent. N-ethylmaleimide, an inhibitor of erythrocyte Ca2+-ATPase, prevents such restoration. Electron micrographs reveal that numerous larger intramembranous particles can be observed on the P-faces of freeze-fractured resealed ghosts in the absence of a transmembrane Ca2+ gradient.Abbreviations DPA dipicolinic acid - EITC eosin 5-isothiocyanate - DIDS 4,4-diisothiocyanostilbene-2,2-disulfonate - TES N-Tris-(hydroxymethyl)methyl-2-aminoethane sulfonic acid - PMSF phenylmethyl-sulfonylfluoride - NEM N-ethylamaleimide - BSA bovine serum albumin - EGTA ethyleneglycol-bis (aminoethylether)-tetra-acetic acid - EITC-Band 3 Band 3 labeled with EITC - Cai Ca2+ inside resealed ghosts - Cao Ca2+ outside resealed ghosts  相似文献   

6.
Band 3 protein of the human erythrocyte membrane, the anion transport protein, possesses a high affinity steroid binding site. In mixed phospholipid—cholesterol monolayers, the state of occupancy of this site is positively correlated with their cholesterol and sphingomyelin content and negatively with their glycerophospholipid content. We suggest that, in the erythrocyte membrane, the binding site is an inhibitory site of anion transport and that the modulation of its state of occupancy by the membrane lipid is responsible for the negative correlation of anion transport with the membrane's content of cholesterol and sphingomyelin and the positive correlation with the phosphatidylcholine content  相似文献   

7.
Reconstitution of the erythrocyte anion channel   总被引:2,自引:0,他引:2  
Band 3, the membrane protein which mediates erythrocyte anion exchange, was purified on a concanavalin A column. Triglycerides, diglycerides, cholesteryl esters, cholesterol, and phosphatidylcholine were found to copurify. The column product gave at least two and probably three bands by isoelectric focusing. Antibodies prepared against the purified Band 3 appeared to react only with the cytoplasmic face of Band 3. Vesicles prepared with Band 3 had an accelerated uptake of SO4(2-) which could be inhibited by 2-(j'-aminophenyl)-6-methyl benzene thiazo-3', 7-disulfonic acid, a potent inhibitor of anion transport in the intact system. The possible source of this difference is discussed. Band 3 was spin labeled, probably at one specific site. The spectra showed that the spin label was highly immobilized, but no dipole-dipole interactions between spin labels on adjacent Band 3 subunits were apparent.  相似文献   

8.
A human erythrocyte Band 3 peptide, affinity labeled with pyridoxal phosphate, was purified by a combination of gel permeation and reverse-phase high performance liquid chromatography. The amino acid sequence of the transmembrane peptide was determined by sequencing subfragments of the peptide obtained from lysyl endopeptidase and staphylococcal proteinase V8 digestions. When a peptide containing the COOH-terminal of human erythrocyte Band 3 was also purified and sequenced, the affinity-labeled peptide was found to be located close to the COOH-terminal of Band 3, where it could be aligned with amino acid residues 852-927 of a murine erythrocyte Band 3, deduced from a nucleotide sequence of a cDNA clone (Kopito, R. R., and Lodish, H. F. (1985) Nature 316, 234-238). The amino acid sequence of the COOH-terminal region was highly homologous to that of murine Band 3. As a result, the sequence of the COOH-terminal peptide of Band 3 was established as follows. (Formula: see text). The pyridoxal phosphate binding site was identified as Lys-18 which corresponded to Lys-869 of the deduced sequence. It appears that the COOH-terminal region of Band 3 constitutes at least a part of the active center for anion transport in human erythrocyte membranes.  相似文献   

9.
Na2SeO3 could affect the anion flux of Band 3 of inside-out erythrocyte membrane vesicles (IOVs). Such effect was believed to be based on the interaction of SH groups of Band 3 with Na2SeO3. This effect could be eliminated when the cytoplasmic domain of Band 3 was proteolytically removed by trypsin. This suggested that SH groups in the cytoplasmic domain were involved in such interaction. Measurement of the pH dependence of intrinsic fluorescence intensity provided evidence that conformational changes of Band 3 occurred as a consequence of interaction with selenite. KI quenching of intrinsic fluorescence of Band 3 could also show that there was a conformational change in the cytoplasmic domain of Band 3 after reaction with Na2SeO3. Such conformational change in turn could be transmitted to the membrane domain of Band 3 monitored by quenching of intrinsic fluorescence of Band 3 using hypocrellin B (HB) (a photosensitive pigment obtained from a parasitic fungus growing in Yunnan, China). It is suggested that the cytoplasmic domain of Band 3 is not necessary for its anion flux, but is essential for the regulation (e.g., by Se) of its active site located at the membrane domain, and hence, it may provide evidence of communication between the cytoplasmic domain and the membrane domain of Band 3.  相似文献   

10.
The transport activity of Band 3 of spectrin-stripped inside-out erythrocyte membrane vesicles (IOVs) or resealed ghosts was enhanced in the presence of trace amounts of Na2SeO3 (0.2-0.5 p.p.m.); however, at higher concentrations of Na2SeO3 (> 4.0 p.p.m.), an inverse result was obtained. Reassociation of spectrin with IOVs has no effect either on the transport activity of Band 3 or on the enhancement of its activity by Na2SeO3. Sulfhydryl reagents (p-chloromercuribenzoic acid and N-ethylmaleimide) could also inhibit Band 3 activity and eliminate the selenium effect. It is suggested that SH groups are involved in anion transport of Band 3 and that the selenium effect is based on the interaction of SH groups of Band 3 with Na2SeO3.  相似文献   

11.
精胺对红细胞膜阴离子通透性的影响   总被引:1,自引:0,他引:1  
本文采用改进的NH_4Cl等渗膨胀法研究了精胺对红细胞膜阴离子通透性的影响.结果表明精胺对膜阴离子通透性有增大作用,并且这种作用随精胺浓度的增加及作用时间的延长而增大.本文还就精按的作用机制进行了探讨.  相似文献   

12.
Phosphorylation of Band 3, the anion transport protein of human erythrocyte membranes, has been studied by incubating isolated ghosts with [gamma-32P]ATP. One of the phosphate-acceptor sites is tyrosine 8 in the NH2-terminal cytoplasmic domain of the Band 3 protein. Seven out of 11 residues in the sequence surrounding the phosphorylated tyrosine are Asp or Glu. It is concluded that the erythrocyte, like other cells, contains a membrane-associated tyrosine kinase which phosphorylates highly anionic peptide acceptor sites.  相似文献   

13.
The transport inhibitor, eosin 5-maleimide, reacts specifically at an external site on the membrane-bound domain of the anion exchange protein, Band 3, in the human erythrocyte membrane. The fluorescence of eosin-labeled resealed ghosts or intact cells was found to be resistant to quenching by CsCl, whereas the fluorescence of labeled inside-out vesicles was quenched by about 27% at saturating CsCl concentrations. Since both Cs+ and eosin maleimide were found to be impermeable to the red cell membrane and the vesicles were sealed, these results indicate that after binding of the eosin maleimide at the external transport site of Band 3, the inhibitor becomes exposed to ions on the cytoplasmic surface. The lifetime of the bound eosin maleimide was determined to be 3 ns both in the absence and presence of CsCl, suggesting that quenching is by a static rather than a dynamic (collisional) mechanism. Intrinsic tryptophan fluorescence of erythrocyte membranes was also investigated using anion transport inhibitors which do not appreciably absorb light at 335 nm. Eosin maleimide caused a 25% quenching and 4,4'-dibenzamidodihydrostilbene-2,2'-disulfonate) caused a 7% quenching of tryptophan fluorescence. Covalent labeling of red cells by either eosin maleimide or BIDS (4-benzamido-4'-isothiocyanostilbene-2,2'-disulfonate) caused an increase in the susceptibility of membrane tryptophan fluorescence to quenching by CsCl. The quenching constant was similar to that for the quenching of eosin fluorescence and was unperturbed by the presence of 0.5 M KCl. Neither NaCl nor Na citrate produced a large change in the relative magnitude of the tryptophan emission. The tryptophan residues that can be quenched by CsCl appear to be different from those quenched by eosin or BIDS and are possibly located on the cytoplasmic domain of Band 3. The results suggest that a conformational change in the Band 3 protein accompanies the binding of certain anion transport inhibitors to the external transport site of Band 3 and that the inhibitors become exposed on the cytoplasmic side of the red cell membrane.  相似文献   

14.
Band 3 (Mr = 95,000), the anion transport protein of human erythrocyte membranes exists primarily as a dimer in solutions of nonionic detergents such as octaethylene glycol mono-n-dodecyl ether (C12E8). The role of the oligomeric structure of Band 3 in the binding of [14C]4-benzamido-4'-aminostilbene-2,2'-disulfonate (BADS), an inhibitor of anion transport (Ki = 1-2 microM), was studied by characterizing the interaction of BADS with dimers and monomers of Band 3 covalently attached to p-mercuribenzoate-Sepharose 4B. BADS bound to matrix-bound Band 3 dimers with an affinity of approximately 3 microM at a stoichiometry of 1 BADS molecule/Band 3 monomer, in agreement with the BADS binding characteristic of Band 3 in the membrane and in solutions of C12E8. Band 3 dimers could be attached to the matrix via one subunit by limiting the amount of p-chloromercuribenzoate on the Sepharose bead. Matrix-bound monomers were formed by dissociation of the dimers with dodecyl sulfate or guanidine hydrochloride. Complete removal of the denaturants allowed formation of refolded Band 3 monomers since the matrix-bound subunits could not reassociate. These refolded Band 3 monomers were unable to bind BADS. Release of the monomers from the matrix with 2-mercaptoethanol allowed reformation of dimers with recovery of the BADS binding sites. These results suggest that the dimeric structure of Band 3 is required for BADS binding and that the BADS binding sites may be at the interface between the two halves of the Band 3 dimer.  相似文献   

15.
The purpose of this study was to investigate the characteristics of carbonic anhydrase (CA) and the Cl/HCO3 exchanger (Band 3; AE1) in the erythrocytes of bowfin (Amia calva), a primitive air-breathing fish, in order to further understand the strategies of blood CO2 transport in lower vertebrates and gain insights into the evolution of the vertebrate erythrocyte proteins, CA and Band 3. A significant amount of CA activity was measured in the erythrocytes of bowfin (70 mmol CO2 min−1 ml−1), although it appeared to be lower than that in the erythrocytes of teleost fish. The turnover number (Kcat) of bowfin erythrocyte CA was intermediate between that of the slow type I CA isozyme in agnathans and elasmobranchs and the fast type II CA in the erythrocytes of the more recent teleost fishes, but the inhibition properties of bowfin erythrocyte CA were similar to the fast mammalian CA isozyme, CA II. In contrast to previous findings, a plasma CA inhibitor was found to be present in the blood of bowfin. Bowfin erythrocytes were also found to possess a high rate of Cl/HCO3 exchange (6 nmol HCO3 s−1 cm−2) that was sensitive to DIDS. Visualization of erythrocyte membrane proteins by SDS-PAGE revealed a major band in the 100 kDa range for the trout, which would be consistent with the anion exchanger. In contrast, the closest major band for the membranes of bowfin erythrocytes was around the 140 kDa range. Taken together, these results suggest that the strategy for blood CO2 transport in bowfin is probably similar to that in most other vertebrates despite several unique characteristics of erythrocyte CA and Band 3 in these primitive fish.  相似文献   

16.
从人血中提取红细胞膜,用注射器加压推打的方法首次获得了包含80mmol/L吡啶二羧酸(DPA)的封闭完好的内翻外囊泡(IOVs).离心除去囊泡外DPA,即可按Newton法测其阴离子转运活性.此法在红细胞膜内翻外囊泡体系上成功地建立了带3蛋白(Band 3)测活方法,具有简便迅速,重复性好等优点.  相似文献   

17.
Based on immunoblotting procedure, the isolated epithelium of amphibian skin was found to contain a 180 kDa protein which cross-reacts with a polyclonal antiserum raised against human erythrocyte Band 3. Immunoperoxidase and immunofluorescence staining techniques indicated that the Band 3-related protein was localized in the mitochondria-rich cells (MRC) of this epithelium, with characteristic apical labelling pattern. Our findings show that the putative apical anion exchanger of the MRC is immunologically related to the band 3 multigenic family, which catalyzes Cl-HCO3 ? transmembranous exchange. It thus suggests a molecular basis for the role played by these cells in the transepithelial Cl pathway and acid-base regulation.  相似文献   

18.
The human erythrocyte does not behave as a perfect osmometer that is its volume does not change as predicted with the change of the tonicity of the medium, as if there was a fraction of the cell water not participating in the osmotic exchange. A mechanism of control of the erythrocyte shape has been previously proposed in which Band 3 (AE1), the protein anion exchanger of Cl(-) and HCO(3)(-), plays a central role. Specifically, decrease and increase of the ratio of its outward-facing conformation and inward-facing conformation (Band 3(o)/Band 3(i)) contract and relax the membrane skeleton, thus favoring echinocytosis and stomatocytosis, respectively. The equilibrium Band 3(o)/Band 3(i) ratio is determined by the Donnan equilibrium ratio of anions and protons, increasing with it (r=Cl(i)(-)/Cl(o)(-)=HCO 3(i)(-)/HCO 3(o)(-)=H(o)(+)/H(i)(+)). The Donnan ratio is influenced by the erythrocyte transport and metabolic activities. The volume change of the human erythrocyte alters the skeleton conformation as it is accompanied by a change of the membrane curvature. Thus, the mechanism could be a hypothesis for explaining the behavior of the human erythrocyte as an imperfect osmometer since the Donnan ratio controls the Band 3(o)/Band 3(i) ratio which controls the volume by a control of the degree of contraction or relaxation of the skeleton. Predictions made by the hypothesis on the Ponder's coefficient R' values in the presence of sucrose or Band 3 substrates slowly transported as well as on the participation of Band 3 in the osmotic hemolysis appear to be corroborated by previous observations. If the hypothesis was valid, it would follow that there is a pressure gradient across the erythrocyte membrane. The equilibrium volume is antagonistically determined by the Donnan ratio per se and Band 3. Band 3, rather than the ratio of surface-to-volume, primarily controls the osmotic hemolysis.  相似文献   

19.
20.
Biosynthesis of the erythrocyte anion transport protein   总被引:20,自引:0,他引:20  
The biosynthesis of the erythrocyte anion transport protein (Band III) was studied in erythroid precursor cells obtained from the spleens of anemic mice. Newly synthesized Band III was inserted during or immediately after translation into rough endoplasmic reticulum membranes. The asymmetric orientation of Band III in these membranes resembled that of mature Band III in erythrocyte membranes, with the NH2-terminal portion of the molecule facing the cytoplasm. At this stage Band III contained a high mannose core oligosaccharide, which was susceptible to cleavage by endoglycosidase H. During the next 20 to 30 min, this oligosaccharide was processed to a form resistant to endoglycosidase H degradation, presumably in the Golgi complex. The processed Band III was subsequently expressed on the cell surface, at about 30 to 45 min after synthesis. In many respects, therefore, the biosynthesis of Band III resembles that of cotranslationally inserted proteins whose NH2-terminal portions are exposed on the exterior of the cell, like VSV glycoprotein, HLA-A antigens, and glycophorin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号