首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have reported (Kominami S., Shinzawa K. and Takemori S. (1982) Biochem. Biophys. Res. Commun. 109, 916–921) that a cytochrome P-450 purified from guinea pig adrenal microsomes shows 17α-hydroxylase and C-17,20-lyase activities in a reconstituted system with NADPH-cytochrome P-450 reductase. The homogeneity of the purified cytochrome P-450 was examined with the following methods: isoelectric focusing, immunoelectrophoresis and affinity chromatography on cytochrome b5-immobilized Sepharose. It was found that progesterone competitively inhibited C-17,20-lyase reaction and that progesterone was converted into androstenedione by 17α-hydroxylation followed by the lyase reaction. These results indicate that the dual activities are carried out by a single enzyme (P-45017α,lyase). P-45017α,lyase had the maximum activity at pH 6.1 both for 17α-hydroxylation (6.0 nmol/min per nmol of P-450) and the lyase reaction (11.0 nmol/min per nmol of P-450). Upon addition of cytochrome b5 to the reconstituted system, the optimal pH for 17α-hydroxylation was shifted to 7.0 and that of the lyase reaction to 6.6. The maximum activities at these optimal pH values were almost the same in the presence or absence of cytochrome b5. With the addition of cytochrome b5, both the activities were stimulated above pH 6.3–6.5 and were suppressed below pH 6.3–6.5. These results indicate that cytochrome b5 plays some important role in controlling the dual activities of P-45017α,lyase.  相似文献   

2.
Interaction between lanosterol and cytochrome P-450 purified from microsomes of anaerobically-grown Saccharomyces cerevisiae was studied. Lanosterol (4,4,14α-trimethyl-5α-cholesta-8,24-dien-3β-ol) stimulated the oxidation of NADPH by molecular oxygen in the presence of cytochrome P-450 and NADPH-cytochrome P-450 reductase both purified from S. cerevisiae microsomes. Lanosterol stimulated the reduction of cytochrome P-450 by NADPH with the cytochrome P-450 reductase, and induced Type I spectral change of cytochrome P-450. These observations suggest that lanosterol interacts to the substrate region of cytochrome P-450 of S. cerevisiae. Based on these facts, possible role of cytochrome P-450 in lanosterol metabolism in yeast cell is discussed.  相似文献   

3.
The regularities of changes in the functional activity of the microsomal monooxygenase system reconstituted by self-assembly from intact rat liver microsomes solubilized with 4% sodium cholate were studied at variable levels of NADPH-cytochrome P-450 reductase and the 3-methylcholanthrene-induced form of cytochrome P-450. Using antibodies against cytochrome P-448, the role of cytochrome P-448 in the overall reaction of benzopyrene hydroxylation induced in the microsomal membrane by a set of molecular forms of cytochrome P-450 was investigated. The effect of NADPH-cytochrome P-450 reductase and cytochrome P-448 incorporation into reconstituted microsomal membranes on benzpyrene metabolism suggests that in intact microsomal membranes benzopyrene metabolism induced by different forms of cytochrome P-450, with the exception of P-448, is limited by reductase is not the limiting component; however, cytochrome P-448 reveals its maximum activity at the cytochrome to reductase optimal molar ratio of 5:1; above this level, the catalytic activity of cytochrome P-448 is lowered.  相似文献   

4.
Cytochrome P-450cam, the bacterial hemeprotein which catalyzes the 5-exo-hydroxylation of d-camphor, requires two electrons to activate molecular oxygen for this monooxygenase reaction. These two electrons are transferred to cytochrome P-450cam in two one-electron steps by the physiological reductant, putidaredoxin. The present study of the kinetics of reduction of cytochrome P-450cam by reduced putidaredoxin has shown that the reaction obeys first order kinetics with a rate constant of 33 s-1 at 25 degrees C with respect to: 1) the appearance of the carbon monoxide complex of Fe(II) cytochrome P-450cam; 2) the disappearance of the 645 nm absorbance band of high-spin Fe(III) cytochrome P-450cam; and 3) the disappearance of the g = 1.94 EPR signal of reduced putidaredoxin. This data was interpreted as indicative of the rapid formation of a bimolecular complex between reduced putidaredoxin Fe(III) cytochrome P-450cam. The existence of the complex was first shown indirectly by kinetic analysis and secondly directly by electron paramagnetic resonance spectroscopic analysis of samples which were freeze-quenched approximately 16 ms after mixing. The direct evidence for complex formation was the loss of the EPR signal of Fe(III) cytochrome P-450cam upon formation of the complex while the EPR signal of reduced putidaredoxin decays with the same kinetics as the appearance of Fe(II) cytochrome P-450. The mechanism of the loss of the EPR signal of cytochrome P-450 upon formation of the complex is not apparent at this time but may involve a conformational change of cytochrome P-450cam following complex formation.  相似文献   

5.
An electron transport system that catalyzes the oxidation of NADPH by organic, hydroperoxides has been discovered in microsomal fractions. A tissue distribution study revealed that the microsomal fraction of rat liver was particularly effective in catalyzing the NADPH-peroxidase reaction whereas microsomes from adrenal cortex, lung, kidney, and testis were weakly active. The properties of the hepatic microsomal NADPH-peroxidase enzyme system were next examined in detail.The rate of NADPH oxidation by hydroperoxides was first-order with respect to microsomal protein concentration and a Km value for NADPH of less than 3 μm was obtained. Examination of the hydroperoxide specificity revealed that cumene hydroperoxide and various steroid hydroperoxides were effective substrates for the enzyme system. Using cumene hydroperoxide as substrate, the reaction rate showed saturation kinetics with increasing concentrations of hydroperoxide and an apparent Km of about 0.4 mm was obtained. The NADPH-peroxidase reaction was inhibited by potassium cyanide, half-maximal inhibition occurring at a cyanide concentration of 2.2 mm. NADH was able to support the NADPH-dependent peroxidase activity synergistically.Evidence compiled for the involvement of NADPH-cytochrome c reductase (NADPH-cytochrome c oxidoreductase, EC 1.6.2.3) in the NADPH-peroxidase reaction included: (1) an identical pH optimum for both activities; (2) stimulation of NADPH-peroxidase activity by increasing ionic strength; (3) inhibition by 0.05 mm, p-hydroxymercuribenzoate with partial protection by NADPH; (4) inhibition by NADP+; and (5) inactivation by antiserum to NADPH-cytochrome c reductase. In contrast, antibody to cytochrome b5 did not inhibit the NADPH-peroxidase activity. Evidence for the participation of cytochrome P-450 in the NADPH-peroxidase reaction included inhibition by compounds forming type I, type II, and modified type II difference spectra with cytochrome P-450; inhibition by reagents converting cytochrome P-450 to cytochrome P-420; and marked stimulation by in vivo phenobarbital administration. The NADPH-reduced form of cytochrome P-450 was oxidized very rapidly by cumene hydroperoxide under a CO atmosphere.It was concluded that the NADPH-peroxidase enzyme system of liver microsomes is composed of the same electron transport components which function in substrate hydroxylation reactions.  相似文献   

6.
A preparation of partially purified cytochrome P-450 from rat liver microsomes was found to catalyze 12α-hydroxylation of 7α-hydroxy-4-cholesten-3-one in the presence of NADPH and phosphatidyl choline. The reaction was stimulated two- to four-fold by addition of a preparation of cytochrome P-450 reductase. The reaction was inhibited by carbon monoxide to a considerably less extent than other hydroxylations catalyzed by the reconstituted system. In the presence of optimal concentrations of cytochrome P-450 reductase, cytochrome P-450 prepared from livers of starved rats catalyzed the 12α-hydroxylation more efficiently than cytochrome P-450 prepared from livers of normal rats or rats treated with phenobarbital.  相似文献   

7.
Adrenocortical mitochondrial cytochrome P-450 specific to the cholesterol side-chain cleavage (desmolase) reaction differs from that for the 11beta-hydroxylation reaction of deoxycorticosterone. The former cytochrome appears to be more loosely bound to the inner membrane than the latter. Upon ageing at 0 degrees C or by aerobic treatment with ferrous ions, the desmolase P-450 was more stable than the 11beta-hydroxylase P-450. By utilizing artificial hydroxylating agents such as cumene hydroperoxide, H2O2, and sodium periodate, the hydroxylation reaction of deoxycorticosterone to corticosterone in the absence of NADPH was observed to a comparable extent with the reaction in the presence of adrenodoxin reductase, adrenodoxin and NADPH. However, the hydroxylation reaction of cholesterol to pregnenolone was not supported by these artificial agents. Immunochemical cross-reactivity of bovine adrenal desmolase P-450 with rabbit liver microsomal P-450LM4 was also investigated. We found a weak but significant cross-reactivity between the adrenal mitochondrial P-450 and liver microsomal P-450LM4, indicating to some extent a homology between adrenal and liver cytochromes P-450.  相似文献   

8.
Picrorhiza kurrooa L., a high altitude medicinal plant, is known for its drug content called Kutkin. In the present study, DNA-based molecular marker techniques, viz. simple sequence repeats (SSR) and cytochrome P-450 markers were used to estimate genetic diversity in Picrorhiza kurrooa. Twenty five accessions of Picrorhiza kurrooa, collected from ten different eco-geographical locations were subjected to 22 SSR and eight cytochrome P-450 primer pairs, out of which 13 SSR markers detected mean 5.037 alleles with a mean polymorphic information content (PIC) of 0.7718, whereas eight cytochrome P-450 markers detected mean 5.0 alleles with a mean PIC of 0.7596. Genetic relationship among the accessions was estimated by constructing the dendrograms using SSR and cytochrome P-450 data. There was a clear consistency between SSR and cytochrome P-450 trees in terms of positioning of most Picrorhiza accessions. SSR markers could cluster various Picrorhiza kurrooa accessions based on their geographical locations whereas cytochrome P-450 markers could cluster few accessions as per their geographical locations. The Mantel test between SSR and cytochrome P-450 markers revealed a good fit correlation (r = 0.6405). The dendrogram constructed using the combined data of SSR and cytochrome P-450s depicted two clusters of accessions based on its eco-geographical locations whereas two clusters contained the accessions from mixed eco-geographical locations. Overall, the results of the present study point towards quiet high degree of genetic variation among the accessions of each eco-geographic region.  相似文献   

9.
The aerobic metabolism of benzphetamine by liver microsomes, during a cytochrome P-450-catalyzed mixed-function oxidation reaction, results in the formation of an easily detected spectral complex with an absorption band maximum at 456 nm. Electron paramagnetic resonance studies, as well as studies with the chemical reductant, sodium dithionite, or the oxidant, potassium ferricyanide, indicate that the spectral complex results from the formation of a product adduct with reduced cytochrome P-450. The spectral properties of this product complex of cytochrome P-450 have been compared to those observed with carbon monoxide, metyrapone, and ethylisocyanide. The reaction of these reagents to specific pools of microsomal cytochrome P-450 permits the identification of at least two major and two minor types of cytochrome P-450 in liver microsomes prepared from phenobarbital-treated rats.  相似文献   

10.
Debromination of 1,2-dibromoethane (DBE) by a rabbit liver microsomal preparation and a reconstituted cytochrome P-450 enzyme system was investigated. The reaction was performed in our newly constructed reaction vessel, in which a bromide electrode was installed. During the reaction, the liberated bromide ion was continuously measured by the bromide electrode, and the amount was recorded. In the microsomal preparation, the DBE-debromination rate per nmol cytochrome P-450 was enhanced by phenobarbital-pretreatment of rabbits compared with the untreated microsomes, whereas it was diminished by 3-methylcholanthrene-pretreatment. The debromination reaction was reconstituted in a purified enzyme system containing phenobarbital-inducible rabbit liver microsomal cytochrome P-450 (P-450PB), NADPH-cytochrome P-450 reductase, and NADPH. The optimum conditions required the presence of dilauroylphosphatidylcholine and cytochrome b5. Cytochrome b5 was found not to be an obligatory component for the DBE-debromination in the reconstituted system, but it stimulated the activity about 3.4-fold. Preincubation of the reconstituted mixture with guinea pig anti-cytochrome P-450PB antiserum markedly inhibited the debromination reaction.  相似文献   

11.
The role of cytochrome b5 in the NADPH-supported O-deethylation of p-nitrophenetole catalyzed by cytochrome P-450 was studied with reconstituted systems using two types of cytochrome P-450 (P-450PB and P-450MC) purified from rat liver microsomes. The O-deethylation by P-450PB absolutely required the presence of cytochrome b5, whereas the same reaction catalyzed by P-450MC did not require cytochrome b5. These effects of cytochrome b5 on the activities of reconstituted systems were confirmed by the use of antibodies to cytochrome b5. On the other hand, the oxidations of ethylmorphine and aniline by these two types of cytochrome P-450 did not show significant dependence on cytochrome b5. These observations suggest that the requirement for cytochrome b5 in NADPH-supported drug oxidations depends not only on the species of cytochrome P-450 catalyzing the reactions, but also on the substrates oxidized.  相似文献   

12.
Metabolism of the potent hepatocarcinogen N-nitrosodimethylamine (NDMA) was evaluated in reconstituted monooxygenase systems containing each of 11 purified rat hepatic cytochrome P-450 isozymes. The reaction has an absolute requirement for cytochrome P-450, NADPH-cytochrome P-450 reductase, and NADPH, as well as a partial dependence on dilauroylphosphatidylcholine. Of the cytochrome P-450 isozymes evaluated, only cytochrome P-450j, purified from livers of ethanol- or isoniazid-treated rats, had high catalytic activity for the N-demethylation of NDMA. At substrate concentrations of 0.5 and 5 mM, rates of NDMA metabolism to formaldehyde catalyzed by cytochrome P-450j were at least 15-fold greater than the rates obtained with any of the other purified isozymes. At the pH optimum (approximately 6.7) for the reaction, the Km,app and Vmax were 3.5 mM and 23.9 nmol/min/nmol cytochrome P-450j, respectively. With hepatic microsomes from ethanol-treated rats, which contain induced levels of cytochrome P-450j, the Km,app and Vmax were 0.35 mM and 3.9 nmol/min/nmol cytochrome P-450, respectively. Inclusion of purified cytochrome b5 in the reconstituted system containing cytochrome P-450j caused a six-fold decrease in Km,app (0.56 mM) of NDMA demethylation with little or no change in Vmax (29.9 nmol/min/nmol cytochrome P-450j). Trypsin-solubilized cytochrome b5, bovine serum albumin, or hemoglobin had no effect on the kinetic parameters of the reconstituted system, indicating a specific effect of intact cytochrome b5 on the Km,app of the reaction. These results demonstrate high isozyme specificity in the metabolism of NDMA to an ultimate carcinogen and further suggest an important role for cytochrome b5 in this biotransformation process.  相似文献   

13.
Wheat (Triticum aestivum L. cv Etoile de Choisy) microsomes catalyzed the cytochrome P-450-dependent oxidation of the herbicide diclofop to three hydroxy-diclofop isomers. Hydroxylation was predominant at carbon 4, with migration of chlorine to carbon 5 (67%) and carbon 3 (25%). The 2,4-dichloro-5-hydroxy isomer was identified as a minor reaction product (8%). Substrate-specificity studies showed that the activity was not inhibited or was weakly inhibited by a range of xenobiotic or physiological cytochrome P-450 substrates, with the exception of lauric acid. Wheat microsomes also catalyze the metabolism of the herbicides chlorsulfuron, chlortoluron, and 2,4-dichlorophenoxyacetic acid and of the model substrate ethoxycoumarin, as well as the hydroxylation of the endogenous substrates cinnamic and lauric acids. Treatments of wheat seedlings with phenobarbital or the safener naphthalic acid anhydride enhanced the cytochrome P-450 content of the microsomes and all related activities except that of cinnamic acid 4-hydroxylase, which was reduced. The stimulation patterns of diclofop aryl hydroxylase and lauric acid hydroxylase were similar, in contrast with the other activities tested. Lauric acid inhibited competitively (Ki = 9 μm) the oxidation of diclofop and reciprocally. The similarity of diclofop aryl hydroxylase and lauric acid hydroxylase was further investigated by alternative substrate kinetics, autocatalytic inactivation, and computer-aided molecular modelisation studies, and the results suggest that both reactions are catalyzed by the same cytochrome P-450 isozyme.  相似文献   

14.
We confirmed that NADPH-dependent anaerobic amaranch reduction in rat liver microsomes is compatible with the interaction of the dye with Fe(III) heme of cytochrome P-450 as the type II substrate. This process is rate-limiting in the whole reaction. High positive correlation (r = 0.949) between the values of Vmax for reaction of NADPH-dependent anaerobic amaranch reduction and the relative content low spin forms of cytochrome P-450 determined by ESR in microsomes from liver of control and induced by PB, BP, IS and 4-MP rats was observed. Relative content of low spin forms of cytochrome P-450 determined by ESR was increased according to BP less than PB less than control less than IS approximately 4-MP; Vmax values increased according to BP less than PB less than control less than IS less than 4-MP. Thus, reaction of NADPH-dependent anaerobic amaranch reduction may be used for determination of low spin forms of cytochrome P-450 at physiological conditions.  相似文献   

15.
The stoichiometry of NADPH oxidation in rabbit liver microsomes was studied. It was shown that in uncoupled reactions cytochrome P-450, besides O2- generation catalyzes direct two- and four-electron reduction of O2 to produce H2O2 and water, respectively. With an increase in pH and ionic strength, the amount of O2 reduced via an one-electron route increases at the expense of the two-electron reaction. In parallel, with a rise in pH the steady-state concentration of the oxy-complex of cytochrome P-450 increases, while the synergism of NADPH and NADH action in the H2O2 formation reaction is replaced by competition. The four-electron reduction is markedly accelerated and becomes the main pathway of O2 reduction in the presence of a pseudo-substrate--perfluorohexane. Treatment of rabbit with phenobarbital, which induces the cytochrome P-450 isozyme specific to benzphetamine results in a 2-fold increase in the degree of coupling of NADPH and benzphetamine oxidation. The experimental results suggest that the ratio of reactions of one- and two-electron reduction of O2 is controlled by the ratio of rates of one- and two-electron reduction of cytochrome P-450. In the presence of pseudo-substrates cytochrome P-450 acts predominantly as a four-electron oxidase; one of possible reasons for the uncoupling of microsomal monooxygenase reactions is the multiplicity of cytochrome P-450 isozymes.  相似文献   

16.
17.
Studies on the role of cytochrome P-450 in mouse, rat, and chick testis microsomes showed that this CO-binding hemoprotein is involved in the activity of the 17α-hydroxylase. A 70–80% inhibition by CO of the 17α-hydroxylase activity was detected in rat and chick testis microsomes. In the mouse testis, the level of the enzyme activity is ten times greater than that of the rat. This partly explains why an acceleration of NADPH oxidation by progesterone can be observed in mouse but not in rat testis microsomes. In rat testis microsomes, type I binding spectra of cytochrome P-450 was observed with pregnenolone, progesterone, 17-hydroxyprogesterone, androstenedione, and testosterone. The apparent Ks values for progesterone and 17-hydroxyprogesterone were 0.50 and 1.00 μm, respectively.When NADPH is used to measure cytochrome P-450 levels in rat testis microsomes, CO formation resulting from a stimulation in lipid peroxidation by phosphate or Fe2+ was sufficient to bind with 50% of the total amount of cytochrome P-450. Substitution of phosphate by Tris reduced the amount of lipid peroxidation to minimal levels. On a comparable basis, no CO formation was observed in avian testis microsomes.An increase in the testicular levels of cytochrome P-450 resulted upon the administration of HCG and cyclic-AMP to 1-day-old chicks. The lack of stimulation of the cytochrome P-450 levels by progesterone and pregnenolone suggest that the hormonal stimulation of the P-450 levels is not due to substrate induction.  相似文献   

18.
In this report we provide data, for the first time, demonstrating the conversion of the heme moiety of certain cytochrome P-450 and P-420 preparations, to biliverdin, catalyzed by heme oxygenase. We have used purified preparations of cytochromes P-450c, P-450b, P-450/P-420c, or P-450/P-420b as substrates in a heme oxygenase assay system reconstituted with heme oxygenase isoforms, HO-2 or HO-1, NADPH-cytochrome c (P-450) reductase, biliverdin reductase, NADPH, and Emulgen 911. With cytochrome P-450b or P-450/P-420b preparations, a near quantitative conversion of degraded heme to bile pigments was observed. In the case of cytochrome P-450/P-420c approximately 70% of the degraded heme was accounted for as bilirubin but only cytochrome P-420c was appreciably degraded. The role of heme oxygenase in this reaction was supported by the following observations: (i) bilirubin formation was not observed when heme oxygenase was omitted from the assay system; (ii) the rate of degradation of the heme moiety was at least threefold greater with heme oxygenase and NADPH-cytochrome c (P-450) reductase than that observed with reductase alone; and (iii) the presence of Zn- or Sn-protoporphyrins (2 microM), known competitive inhibitors of heme oxygenase, resulted in 70-90% inhibition of bilirubin formation.  相似文献   

19.
The biosynthesis of the tyrosine-derived cyanogenic glucoside dhurrin involves N-hydroxytyrosine, (E)- and (Z)-p-hydroxyphenylacetaldehyde oxime, p-hydroxyphenylacetonitrile, and p-hydroxymandelonitrile as intermediates and has been studied in vitro using a microsomal enzyme system obtained from etiolated sorghum (Sorghum bicolor [L.] Moench) seedlings. The biosynthesis is inhibited by carbon monoxide and the inhibition is reversed by 450 nm light demonstrating the involvement of cytochrome P-450. The combined use of two differently prepared microsomal enzyme systems and of tyrosine, p-hydroxyphenylacetaldehyde oxime, and p-hydroxyphenylacetonitrile as substrates identify two cytochrome P-450-dependent monooxygenases: the N-hydroxylase which converts tyrosine into N-hydroxytyrosine and the C-hydroxylase converting p-hydroxyphenylacetonitrile into p-hydroxymandelonitrile. The inhibitory effect of a number of putative cytochrome P-450 inhibitors confirms the involvement of cytochrome P-450. Monospecific polyclonal antibodies raised toward NADPH-cytochrome P-450-reductase isolated from sorghum inhibits the same metabolic conversions as carbon monoxide. No cytochrome P-450-dependent monooxygenase catalyzing an N-hydroxylation reaction has previously been reported in plants. The metabolism of p-hydroxyphenylacetaldehyde oxime is completely dependent on the presence of NADPH and oxygen and results in the production of p-hydroxymandelonitrile with no accumulation of the intermediate p-hydroxyphenylacetonitrile in the reaction mixture. The apparent NADPH and oxygen requirements of the oxime-metabolizing enzyme are identical to those of the succeeding C-hydroxylase converting p-hydroxyphenylacetonitrile to p-hydroxymandelonitrile. Due to the complex kinetics of the microsomal enzyme system, these requirements may not appertain to the oxime-metabolizing enzyme, which may convert p-hydroxyphenylacetaldehyde oxime to p-hydroxyacetonitrile by a simple dehydration.  相似文献   

20.
Triton X-100, added to yeast Saccharomyces cerevisiae for the purpose of stabilization or solubilization affects the carbon monoxide difference spectrum of reduced cytochrome P-450 and consequently the measurement of cytochrome P-450. Eight minutes is needed for 450-nm peak to reach its maximum height. Triton X-100 is shown to behave as a Type II substrate (absorption maximum at 418 nm and minimum at 390 nm) and to modulate the spin state of cytochrome P-450 from high to low form. Low-spin yeast cytochrome P-450 is reduced more slowly than the high-spin form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号