首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The control of protein synthesis by hemin in rabbit reticulocytes or lysates is mediated by the formation of a high molecular weight protein inhibitor of polypeptide chain initiation termed the hemin-controlled translational repressor (HCR). HCR becomes activated in the absence of hemin from a presynthesized precursor (prorepressor) in a manner that is still unclear but appears to involve a series of discrete conformational changes in a single protein. At a very early stage of activation, HCR (reversible) can be inactivated by hemin, at a somewhat later stage (intermediate HCR) it can still be inactivated in a GTP-dependent reaction by a soluble lysate protein termed the supernatant factor, and after more than several hours of warming, HCR (irreversible) can no longer be inactivated. Formation of HCR involves no detectable change in molecular size but may involve, directly or indirectly, disulfide bond formation or interchange, since activation occurs very rapidly in the presence of such sulfhydryl reagents as N-ethylmaleimide. Once activated, HCR (all three forms) acts by phosphorylating the 35,000 Mr () subunit of eIF-2, the initiation factor that mediates binding of Met-tRNAf to 40 s ribosomal subunits. The protein kinase action of HCR is relatively specific for eIF-2, although HCR also autophosphorylates a 90–100,000 Mr component of itself. While most of the protein synthsized by rabbit reticulocytes is globin, the synthesis, at low levels, of other reticulocyte proteins is also reduced by HCR, consistent with its action on eIF-2, a factor that acts in initiation before mRNA is bound. At present, the mechanism by which phosphorylation of eIF-2 by HCR causes inhibition of polypeptide chain initiation is only partially understood. There is general agreement that the binding of Met-tRNAf to 40 s ribosomal subunits is reduced, perhaps due to impaired interaction of eIF-2-P with other ribosomal protein components. There is also evidence that HCR causes the accumulation of 48 s intermediate initiation complexes, containing a 40 s ribosomal subunit, mRNA, and tRNAf met that is largely deacylated. This suggests that the joining of 48 s complexes with 60 s subunits to form 80 s initiation complexes is also blocked and results in the deacylation of subunit-bound Met-tRNAf. Additional work will be required to delineate the precise molecular mechanisms by which HCR becomes activated in the absence of hemin and how the phosphorylation of eIF-2 interrupts the process of polypeptide chain initiation.Abbreviations HCR hemin-controlled translational repressor - eIF eukaryotic initiation factor  相似文献   

2.
An antibody to a highly purified preparation of the translational repressor (HCR), which mediates hemin control of globin synthesis in rabbit reticulocyte lysates, has been obtained from the serum of immunized guinea pigs. Preincubation with immune but not normal guinea pig IgG leads to neutralization of the inhibitory activity of either crude or highly purified HCR. Excess prorepressor, the precursor of HCR, has essentially no competitive effect on the inactivation of HCR by immune IgG, suggesting that the antigenic determinants responsible for neutralization of HCR by antibody are buried within the prorepressor molecule. These antigenic determinants become exposed at an early stage in the formation of HCR, since hemin-sensitive HCR, formed within 20 min, is inactivated by immune IgG. The antibody also neutralizes the inhibitory activity generated by a short incubation of partially purified prorepressor with N-ethylmaleimide, indicating that the activity formed is the same as natural HCR.  相似文献   

3.
The high salt wash of rabbit reticulocyte ribosomes contains two separate factors which can partially reverse the inhibition of polypeptide chain initiation that results when reticulocyte lysate is incubated in the absence of hemin. These two factors, termed initiation factor (IF) 1 and IF-2, have been separated from each other by chromatography on diethylaminoethyl cellulose and then further purified on hydroxyapatite. IF-1 forms a GTP-dependent complex with methionyl-tRNAf that is retained on Millipore filters. When these factors are added to a system containing reconstituted, salt-extracted ribosomes, IF-1 promotes the binding of methionyl-tRNAf to the 40 S subunit, whereas IF-2 promotes the formation of 80 S initiation complexes from 40 S complexes. Addition of small amounts of one factor and a saturating level of the other to the unfractionated lysate and incubation in the absence of hemin produce an additive stimulation of protein synthesis. Each factor can also partially reverse the inhibitory effect of the hemin-controlled translational repressor. The implication of these findings for the mechanism of hemin control of protein synthesis in reticulocyte lysates is discussed.  相似文献   

4.
The crude soluble fraction of rat liver cytoplasm promotes the binding of acetylphenylalanyl-tRNA but not of Met-tRNAf to 40S subunits derived from 80S ribosomes. A protein has been extensively purified from the soluble fraction that catalyzes the template-dependent, GTP-independent binding of Met-tRNAf, acetylphenylalanyl-tRNA and phenylalanyl-tRNA but not Met-tRNAm. Purification involves fractionation with ammonium sulfate and chromatography on calcium phosphate gel, DEAE-Sephadex, carboxymethyl cellulose and Sephadex G-200. The optimum Mg2+ concentration for the binding reaction with Met-tRNAf is between 6 and 8 mm and the optimum temperature is between 10 and 15 °C. The complex formed as a result of the interaction between 40S subunits, acetylphenylalanyl-tRNA and poly(U) is functional; acetylpolyphenylalanine is synthesized when the isolated 40S-poly(U)·acetylphenylalanyl-tRNA complex is incubated with 60S subunits, phenylalanyl-tRNA, elongation factors and GTP.The crude cytoplasmic fraction, which does not stimulate the binding of Met-tRNAf, inhibits the purified factor-promoted binding of this substrate; the factor-independent, high magnesium ion-stimulated binding of Met-tRNAf to 40S subunits is also inhibited. The inhibitory activity can be resolved from the binding factor and is extensively purified by chromatography on calcium phosphate gel and carboxymethyl Sephadex and by electrofocusing. In the presence of 40S subunits, crude and purified preparations of the inhibitory activity hydrolyze Met-tRNAf but not Met-tRNAm or acetylphenylalanyl-tRNA. Free Met-tRNAf is not hydrolyzed. Incubation of hydrolase-containing preparations with the preformed 40S-·Met-tRNAf complex results in the rapid and extensive breakdown of the complex with release of acid-insoluble methionine; the formation of an 80S·substrate complex, by the addition of 60S subunits, protects particle-bound Met-tRNAf.  相似文献   

5.
The inhibitory effect of the hemin-controlled translational repressor (HCR) on protein synthesis by rabbit reticulocyte lysates can be overcome by a factor in the post-ribosomal supernatant fraction. When chromatographed on Sepharose 6B, this supernatant factor migrates as a high molecular weight component that is distinct from the precursor of HCR (prorepressor). The supernatant factor does not appear to act by enzymatically degrading the repressor or by forming a stoichiometric complex with it, but may, rather, replace what has become limiting for protein synthesis due to repressor action.  相似文献   

6.
Ternary complex formation was studied in reticulocyte lysate supernatants and using rat liver eukaryotic initiation factor-2 (eIF-2) preparations. Haem-deficiency reduced the rate of formation of ternary (Met-tRNAf · GTP · eIF-2) complexes by the eIF-2 in reticulocyte supernatants, the reduction being more marked when complex formation was assayed in the absence of GTP-regenerating capacity. Pretreatment with the haem-controlled repressor (HCR) reduced the rate of ternary complex formation by crude (liver) eIF-2. In contrast, complex formation by an almost homogeneous eIF-2 preparation was unaffected by HCR: sensitivity to HCR was however restored by a factor which catalyses exchange of guanine nucleotides bound to eIF-2.  相似文献   

7.
A highly purified preparation of the eucaryotic initiation factor eIF-2 from calf liver which forms a ternary complex with GTP and Met-tRNAfMet also exhibits a potent GDP binding activity. The factor preparation specifically forms a binary complex with GDP, other ribonucleoside diphosphates and GTP are inactive. Evidence is presented indicating that the GTP-dependent Met-tRNAfMet binding and binary complex formation with GDP are mediated by the same protein which has an apparent molecular weight of 67,000 as judged by glycerol density gradient centrifugation.  相似文献   

8.
When a reticulocyte lysate, supplemented with hemin, was warmed at 42 °C, its protein-synthesizing activity was greatly decreased. This was accompanied by the reduced formation of the 40 S·Met-tRNAf initiation complex. This complex preformed at 34 °C, however, was stable and combined with added globin mRNA and the 60 S ribosomal subunit to form the 80 S complex at the elevated temperature. When the ribosome-free supernatant fraction of lysates was warmed at 42 °C with hemin and then added to the fresh lysate system, it inhibited protein synthesis by decreasing the formation of the 40 S complex. This decrease in protein synthesis by warmed lysates or warmed supernatant could be overcome by high concentrations of GTP and cyclic AMP. This effect of GTP and cyclic AMP was antagonized by ATP. The results indicate that the inactivation of protein synthesis by the lysate warmed at 42 °C is due to the formation of an inhibitor in the supernatant. The ribosomal KCl extract prepared from the lysate that had been warmed at 34 °C and then incubated at this temperature for protein synthesis supported protein synthesis by the KCl-washed ribosome at both 34 and 42 °C. On the contrary, the extract from lysates that had been warmed at 42 °C and then incubated at 34 °C could not support protein synthesis at 42 °C, although it was almost equally as promotive as the control extract in supporting protein synthesis at 34 °C. The results indicate that the factor which can protect protein synthesis against inactivation at 42 °C is itself inactivated in lysates warmed at 42 °C. However, the activity of this extract to support formation of the ternary complex with Met-tRNAf and GTP was not reduced. Native 40 S ribosomal subunits isolated from lysates that had been warmed at 42 °C and then incubated for protein synthesis indicated that the quantity of subunits of density 1.40 g/cm3 in a CsCl density gradient were decreased while those of density 1.49 g/cm3 were increased. The factor-promoted binding of Met-tRNAf to the 40 S subunit of lower density from the warmed and unwarmed lysates was equal, suggesting that the ribosomal subunit was not inactivated. These results were discussed in terms of the action of the inhibitor formed in the supernatant at 42 °C, which may inactivate a ribosomal factor essential for protein synthesis initiation.  相似文献   

9.
Heme-deficiency and double-stranded RNA (dsRNA) activate distinct cyclic 3':5'-AMP independent protein kinases (HRI and dsI, respectively) in rabbit reticulocyte lysates. These kinases inhibit protein synthesis by phosphorylating the 38,000 daltons (38K) subunit of the initiation factor eIF-2 (eIF-2 alpha). Using separation techniques to obtain a reticulocyte enriched fraction and reticulocyte-free erythrocytes, we have prepared lysates of these fractions from normal human whole blood. Human reticulocyte-enriched lysates contain the hemin-regulated and dsRNA-dependent protein kinases which inhibit protein synthesis and which phosphorylate rabbit eIF-2 alpha. An endogenous 38K polypeptide which co-migrates with rabbit eIF-2 alpha is also phosphorylated. In contrast, human mature erythrocytes contain little or no heme-regulated or dsRNA-dependent eIF-2 alpha kinase activities which are inhibitory of protein synthesis.  相似文献   

10.
The peptide chain initiation factor EIF-1 forms a ternary complex, Met-tRNAf·EIF-1·GTP in the absence of Mg++ and the preformed complex is stable to Mg++. However, with homogeneous preparations of EIF-1, addition of Mg++ during the initial formation of the ternary complex strongly inhibits the complex formation.A heat stable dialyzable factor (EIF-11) which mostly remains associated with the high molecular weight protein complex, EIF-2 (TDF) during purification of the peptide chain initiation factors, has been purified using a phenol extraction procedure. EIF-11 restores the Met-tRNAf binding activity of EIF-1 in the presence of 1 mM Mg++; in the presence of EIF-11, Met-tRNAf binding by EIF-1 shows a sharp Mg++ optimum around 1 mM. EIF-11 is heat stable, alkali stable, dialyzable and pronase sensitive. The same EIF-11 preparation also strongly inhibits Met-tRNAf binding to EIF-1 in the absence of Mg++ and stimulates protein synthesis in a mRNA-dependent rabbit reticulocyte lysate system.  相似文献   

11.
This paper shows that reticuloeyte lysates contain 40 S/Met-tRNAf complexes which are intermediates in the initiation of protein synthesis before the involvement of messenger RNA. More than one third of the native 40 S subunits in the lysate exist as these complexes during periods of linear protein synthesis, but less than a tenth are associated with mRNA.The 40 S/Met-tRNAf complexes disappear in some situations in which initiation is inhibited (by double-stranded RNA, oxidized glutathione, or in the absence of added haemin), but persist in the presence of other inhibitors (e.g. aurintricarboxylate or poly(I)). Inhibitors of chain elongation had little effect on the amount of these complexes.The Met-tRNAf in the 40 S complexes appears to exchange readily with free Met-tRNAf; when lysates were preincubated with sparsomycin or diphtheria toxin and then incubated with [35S]Met-tRNAf, the native 40 S subunits were the only ribosomal particles labelled. This experimental system was used to examine whether 40 S/Met-tRNAf complexes could interact with mRNA; various mRNAs were added shortly after or at the same time as the [35S]Met-tRNAf. This resulted in a conversion of the 40 S/Met-tRNAf complexes into 80 S complexes, which appeared to be true initiation complexes since they were capable of translating the first two codons of the added mRNA. The mRNA-dependent formation of these 80 S complexes was completely inhibited by 0.1 mM-aurintricarboxylate, but the association of Met-tRNAf with the 40 S subunits was not prevented.The 40 S/Met-tRNAf complexes also participated in initiation on endogenous mRNA, and it was shown that the Met-tRNAf in this complex was used in preference to free Met-tRNAf in this process.We propose that the first step in the initiation of protein synthesis in the reticuloeyte lysate is the formation of a 40 S/Met-tRNAf complex. In the second stage the complex binds mRNA at the correct initiation site and, after joining with a 60 S subunit, an 80 S/Met-tRNAf/mRNA initiation complex is formed.  相似文献   

12.
Double stranded RNA (dsRNA) induced inhibitor (dRI) has been partially purified (80–100 fold). The dRI inhibits protein synthesis in rabbit reticulocyte lysates; the inhibition is overcome by the initiation factor eIF-2. The dRI preparations phosphorylate the 38,000-dalton subunit of eIF-2. Heme-deficiency in rabbit reticulocyte lysates also induces a translational inhibitor (HRI) which inhibits protein chain initiation by specifically phosphorylating the 38,000-dalton subunit of eIF-2. To establish correlation of the mechanism of inhibition of protein synthesis by dRI and HRI, the phosphopeptide patterns of eIF-2 phosphorylated by using HRI or dRI are compared. Treatment with various proteases of eIF-2 phosphorylated by HRI or dRI yield identical phosphopeptide patterns. This finding suggests that HRI and dRI phosphorylate the same site(s) of the 38,000-dalton subunit of eIF-2 and raises the possibility that dRI may also inhibit protein chain initiation by the mechanism similar to that of HRI.  相似文献   

13.
Met-tRNAfMet binding factor (EIF-1) has been purified more than 100 fold over crude high salt (0.5 M KCl) ribosomal wash. The purified factor binds 2 nmoles Met-tRNAfMet per mg protein and shows very little poly r(A) binding activity. Crude ribosomal high salt wash possesses significant amounts of poly r(A) binding activity and also binds to other RNAs. The bulk of this unspecific RNA binding protein is separated from EIF-1 by DEAE-cellulose chromatography.  相似文献   

14.
Vaccinia viral core inhibits protein synthesis in reticulocyte lysates. In partial reactions using micrococcal nuclease treated reticulocyte lysates, the viral core inhibits Met-tRNAf binding to 40S ribosomes in response to physiological mRNAs such as globin mRNA, cowpea mosaic viral RNA, and brome mosaic viral RNA but not in response to a trinucleotide codon, AUG. The core has also no effect on Met-tRNAf binding to 40S ribosomes in a partial reaction using partially purified peptide chain initiation factors and AUG codon.The present observation of preferential inhibition by vaccinia viral core of Met-tRNAf·40S initiation complex formation with physiological mRNAs and not with an artificial mRNA such as AUG codon, suggests that the viral core inhibits some step(s) in peptide chain initiation involved in the recognition of structural feature(s) unique to physiological mRNAs.  相似文献   

15.
The assembly of initiation complexes is studied in a protein synthesis initiation assay containing ribosomal subunits, globin [125I]mRNA, [3H]Met-tRNAf, seven purified initiation factors, ATP and GTP. By omitting single components from the initiation assay, specific roles of the initiation factors, ATP and GTP are demonstrated. The initiation factor eIF-2 is required for the binding of Met-tRNAf to the 40 S ribosomal subunit. The initial Met-tRNAf binding to the small ribosomal subunit is a stringent prerequisite for the subsequent mRNA binding. The initiation factors eIF-3, eIF-4A, eIF-4B and eIF-4C together with ATP promote the binding of mRNA to the 40 S initiation complex. The association of the 40 S initiation complex with the 60 S ribosome subunit to form an 80 S initiation complex is mediated by the initiation factor eIF-5 and requires the hydrolysis of GTP. The factor eIF-1 gives a twofold overall stimulation of initiation complex formation. A model of the sequential steps in the assembly of the 80 S initiation complex in mammalian protein synthesis is presented.  相似文献   

16.
Low-molecular-weight RNA (4S to > 5.5S) isolated from nuclear ribonucleo-protein particles of adenovirus-infected HeLa cells inhibited cell-free protein synthesis directed by polyribosomal RNA from rabbit reticulocytes by more than 80%. In a reconstituted system inhibitory RNA did not prevent the binding of Met-tRNAf-GTP-IF ternary complex to 40S subunits; however, it repressed the formation of 80S from 40S-mRNA complex and 60S subunits. In binding assays in which authentic IF-M2A and IF-M2B were present, the inhibitor competed with messenger molecules for binding site(s) in IF-M2B. The inhibitory RNA appears to be a 5.5S RNA.  相似文献   

17.
The effect of elevated temperature on the activity of various components involved in protein synthesis was investigated in extracts from cultured Chinese hamster ovary cells. The translation of exogenous mRNA was markedly inhibited by preincubation of the extract for 15 to 20 minutes at 42°C. However, the following intermediary reactions were not affected, or only slightly inhibited, at 42°C: 1) the incorporation of Met-tRNAf into eIF-2·Met-tRNAf·GTP ternary complex; 2) the interaction of the ternary complex with 40S ribosomal subunits to form the 40S preinitiation intermediate; 3) the binding of mRNA and 60S subunits to form the 80S initiation complex; and 4) the reactions catalyzed by elongation factors EF-1 and EF-2. The activity of Met-tRNA synthetase was markedly inhibited, affecting the formation of initiator Met-tRNAf required for the initiation of protein synthesis and the translation of natural mRNA. Other aminoacyl-tRNA synthetases were not significantly affected by the elevated temperature.  相似文献   

18.
Binding of the Met-tRNAMetf·eIF-2 GTP complex to the 40 S ribosomal subunit is the first step in initiation of eukaryotic protein synthesis. The extent of binding and the stability of the complex are enhanced by initiation factors eIF-3 and eIF-4C, AUG and elevated magnesium concentration. The reversibility of reaction steps occurring during the assembly of the initiation complex is measured as the rate of Met-tRNAMetf exchange in the initiation complex and its intermediates. This rate progressively decreases and Met-tRNAMetf binding becomes irreversible upon binding of mRNA. The association of the 40 S Met-tRNAMetf mRNA initiation complex with the 60 S ribosomal subunit is again reversible as long as elongation does not occur.  相似文献   

19.
Chymotryptic digestion was used to localize the sites in microtubule-associated protein 2 which are preferentially phosphorylated in vitro by MAP kinase, an insulin-stimulated serine/threonine kinase which efficiently utilizes high molecular weight MAPs as substrates. MAP kinase phosphorylates sites in the projection domain almost exclusively; less than 6% of the phosphate incorporated by MAP kinase was found in the tubulin binding domain. This site specificity is in marked contrast to that of the catalytic subunit of cAMP dependent protein kinase, and most other protein kinases phosphorylating MAP-2, which extensively phosphorylate the tubulin binding domain.  相似文献   

20.
A protein synthesis initiation inhibitor, TDI has been partially purified from the reticulocyte cell-supernatant. TDI inhibits the dissociation of the ternary complex, Met-tRNAf·EIF-1·GTP and also Met-tRNAf binding to 40S ribosomes. TDI inhibition requires Mg++ and the inhibition is also observed when GTP is replaced by a non-hydrolyzable analog, GMP-PNP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号