首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Expression of the cholinergic gene locus in the rat placenta   总被引:3,自引:2,他引:3  
High amounts of acetylcholine (ACh) and its synthesising enzyme choline acetyltransferase (ChAT) have been detected in the placenta. Since the placenta is not innervated by extrinsic or intrinsic cholinergic neurons, placental ACh and ChAT originate from non-neuronal sources. In neurons, cytoplasmic ACh is imported into synaptic vesicles by the vesicular acetylcholine transporter (VAChT), and released through vesicular exocytosis. In view of the coordinate expression of VAChT and ChAT from the cholinergic gene locus in neurons, we asked whether VAChT is coexpressed with ChAT in rat placenta, and investigated this issue by means of RT-PCR, in situ hybridisation, western blot and immunohistochemistry. Messenger RNA and protein of the common type of ChAT (cChAT), its splice variant peripheral ChAT (pChAT), and VAChT were detected in rat placenta with RT-PCR and western blot. ChAT in situ hybridisation signal and immunoreactivity for cChAT and pChAT were observed in nearly all placental cell types, while VAChT mRNA and immunolabelling were detected in the trophoblast, mesenchymal cells and the visceral yolk sac epithelial cells. While ChAT is nearly ubiquitously expressed in rat placenta, VAChT immunoreactivity is localised cell type specifically, implying that both vesicular and non-vesicular ACh release machineries prevail in placental cell types.  相似文献   

2.
Choline acetyltransferase and vesicular acetylcholine-transporter genes are adjacent and coregulated. They define a cholinergic locus that can be turned on under the control of several factors, including the neurotrophins and the cytokines. Hirschprung's disease, or congenital megacolon, is characterized by agenesis of intramural cholinergic ganglia in the colorectal region. It results from mutations of the RET (GDNF-activated) and the endothelin-receptor genes, causing a disregulation in the cholinergic locus. Using cultured cells, it was shown that the cholinergic locus and the proteins involved in acetylcholine (ACh) release can be expressed separately ACh release could be demonstrated by means of biochemical and electrophysiological assays even in noncholinergic cells following preloading with the transmitter. Some noncholinergic or even nonneuronal cell types were found to be capable of releasing ACh quanta. In contrast, other cells were incompetent for ACh release. Among them, neuroblastoma N18TG-2 cells were rendered release-competent by transfection with the mediatophore gene. Mediatophore is an ACh-translocating protein that has been purified from plasma membranes ofTorpedo nerve terminal; it confers a specificity for ACh to the release process. The mediatophores are activated by Ca2+; but with a slower time course, they can be desensitized by Ca2+. A strictly regulated calcium microdomain controls the synchronized release of ACh quanta at the active zone. In addition to ACh and ATP, synaptic vesicles have an ATP-dependent Ca2+ uptake system; they transiently accumulate Ca2+ after a brief period of stimulation. Those vesicles that are docked close to Ca2+ channels are therefore in the best position to control the profile and dynamics of the Ca2+ microdomains. Thus, vesicles and their whole set of associated proteins (SNAREs and others) are essential for the regulation of the release mechanism in which the mediatophore seems to play a key role.  相似文献   

3.
Zinc is a trace element necessary for proper development and function of brain cells. However, excessive accumulation of zinc exerts several cytotoxic effects in the brain. The aim of this work was to see whether cytotoxic effects of zinc are quantitatively correlated with changes in acetyl-CoA metabolism. The zinc levels up to 0.20 mmol/L caused concentration-dependent inhibition of pyruvate dehydrogenase (PDH) activity that correlated with the increase in trypan blue-positive fraction and the decrease in cultured cell number (r = 0.96, p = 0.0001). Chronic exposure of cells to 0.15 mmol/L zinc decreased choline acetyltransferase and aconitase activities, cytoplasmic acetyl-CoA and whole cell ATP level by 38%, 57%, 35%, and 62%, respectively but caused no change in mitochondrial acetyl-CoA level and activities of other enzymes of glycolytic and tricarboxylic acid cycle. dl-alpha-lipoamide when added simultaneously with zinc to cultured cells or their homogenates attenuated its chronic or acute suppressive effects. In homogenates of chronically Zn-treated cells, lipoamide overcame PDH but not aconitase inhibition. Presented data indicate that acute-transient elevation of zinc caused reversible inhibition of PDH, aconitase activities and acetyl-CoA metabolism, which when prolonged could lead to irreversible enzyme inactivation yielding decrease in cell viability and secondary suppression of their cholinergic phenotype.  相似文献   

4.
Choline acetyltransferase (ChAT) is the key enzyme for acetylcholine (ACh) synthesis and constitutes a reliable marker for the integrity of cholinergic neurons. Cortical ChAT activity is decreased in the brain of patients suffering from Alzheimer's and Parkinson's diseases. The standard method used to measure the activity of ChAT enzyme relies on a very sensitive radiometric assay, but can only be performed on post‐mortem tissue samples. Here, we demonstrate the possibility to monitor ACh synthesis in rat brain homogenates in real time using NMR spectroscopy. First, the experimental conditions of the radiometric assay were carefully adjusted to produce maximum ACh levels. This was important for translating the assay to NMR, which has a low intrinsic sensitivity. We then used 15N‐choline and a pulse sequence designed to filter proton polarization by nitrogen coupling before 1H‐NMR detection. ACh signal was resolved from choline signal and therefore it was possible to monitor ChAT‐mediated ACh synthesis selectively over time. We propose that the present approach using a labeled precursor to monitor the enzymatic synthesis of ACh in rat brain homogenates through real‐time NMR represents a useful tool to detect neurotransmitter synthesis. This method may be adapted to assess the state of the cholinergic system in the brain in vivo in a non‐invasive manner using NMR spectroscopic techniques.  相似文献   

5.
We use a transgenic mouse model system to elucidate the regulatory regions within the human cholinergic gene locus responsible for vesicular acetylcholine transporter gene expression in vivo. In this report we characterized two transgenes for their ability to confer cholinergic-specific expression of the encoded vesicular acetylcholine transporter. An 11.2 kb transgene (named hV11.2) that spanned from about 5 kb upstream of the start of vesicular acetylcholine transporter translation down to the first choline acetyltransferase coding exon gave expression in the somatomotor neurons and a subpopulation of cholinergic neurons in the medial habenular nucleus. The second transgene (named hV6.7), a 5-prime truncated version of hV11.2 that was devoid of 4.5 kb of gene-regulatory sequences completely lacked vesicular acetylcholine transporter expression in vivo. Our data indicate that vesicular acetylcholine transporter expression in somatomotor neurons and in the medial habenular nucleus is uniquely specified within the cholinergic gene locus, and separable from cholinergic expression elsewhere. The identification of these two subdivisions of the cholinergic nervous system suggests that other cholinergic neurons in the CNS and PNS are similarly regulated by additional discrete domains within the cholinergic gene locus.  相似文献   

6.
In the cockroach, a population of thoracic interneurons (TIs) receives direct inputs from a population of ventral giant interneuons (vGIs). Synaptic potentials in type-A TIs (TIAs) follow vGI action potentials with constant, short latencies at frequencies up to 200 Hz. These connections are important in the integration of directional wind information involved in determining an oriented escape response. The physiological and biochemical properties of these connections that underlie this decision-making process were examined. Injection of hyperpolarizing or depolarizing current into the postsynaptic TIAs resulted in alterations in the amplitude of the postsynaptic potential (PSP) appropriate for a chemical connection. In addition, bathing cells in zero-calcium, high magnesium saline resulted in a gradual decrement of the PSP, and ultimately blocked synaptic transmission, reversibly. Single-cell choline acetyltransferase (ChAT) assays of vGI somata were performed. These assays indicated that the vGIs can synthesize acetylcholine. Further more, the pharmacological specificity of transmission at the vGI to TIA connections was similar to that previously reported for nicotinic, cholinergic synapses in insects, suggesting that the transmitter released by vGIs at these sypapses is acetylcholine. © 1992 John Wiley & Sons, Inc.  相似文献   

7.
Nerve growth factor (NGF) is a trophic and survival factor for cholinergic neurons, and it induces the expression of several genes that are essential for synthesis and storage of acetylcholine (ACh), specifically choline acetyltransferase, vesicular ACh transporter (VAChT), and choline transporter. We have found previously that the phosphatidylinositol 3'-kinase pathway, but not the MEK/MAPK pathway, is the mediator of NGF-induced cholinergic differentiation. Here we demonstrate, in the rat pheochromocytoma cell line PC12 and in primary mouse neuronal cultures, that NGF-evoked up-regulation of these three cholinergic-specific genes is mediated by the anti-apoptotic signaling molecule Akt/protein kinase B. Inhibition of Akt activation by the pharmacological inhibitor 1L-6-hydroxymethyl-chiro-inositol 2(R)-2-O-methyl-3-O-octadecylcarbonate (HIMO), or by a peptide fragment derived from the proto-oncogene TLC1, eliminated NGF-stimulated increases in cholinergic gene expression, as demonstrated by RT-PCR and reporter gene assays. Moreover, treatment with HIMO reversed NGF-evoked increases in choline acetyltransferase activity and ACh production. In co-transfection assays with the reporter construct, a dominant-negative Akt plasmid and Akt1-specific small interfering RNA also attenuated NGF-induced cholinergic promoter activity. Our data indicate that, in addition to its well-described role in promoting neuronal survival, Akt can also mediate signals necessary for neurochemical differentiation.  相似文献   

8.
A rapid and efficient immunoaffinity purification procedure has been developed for human placental choline acetyltransferase (ChAT). Using this procedure, human placental ChAT was purified to homogeneity with high recovery of enzyme activity (50-60%). Purified ChAT was used to raise a monospecific anti-human ChAT polyclonal antibody in rabbits. A comparison of the physical properties of ChAT was made between the enzymes purified from human brain and human placenta. Only one form of the enzyme exists in either tissue, having identical molecular weights of 68,000 and a single apparent pI of 8.1. A more detailed comparison of the two enzymes using peptide mapping and epitope mapping indicates identity between the brain and placental enzymes.  相似文献   

9.
The aim of the present study was to reveal whether reduced cortical cholinergic input affects the acetyl-CoA metabolism in cholinoceptive cortical target regions which may play a causative role for the deficits in cerebral glucose metabolism observed in Alzheimer's disease. The effect of cortical cholinergic denervation produced by a single intracerebroventricular application of the cholinergic immunotoxin 192IgG-saporin, on activities of pyruvate dehydrogenase and adenosine triphosphate (ATP)-citrate lyase as well as on the level of synaptoplasmic and mitochondrial acetyl-CoA and acetylcholine release in cortical target regions was studied. Cholinergic lesion produced 83%, 72% and 32% decreases in the activities of choline acetyltransferase, acetylcholinesterase and ATP-citrate lyase in nerve terminals isolated from rat brain cortex, respectively, but no change in pyruvate dehydrogenase activity. Spontaneous and Ca2+-evoked acetylcholine release from synaptosomes was inhibited by 76% and 73%, respectively, following immunolesion. The lesion-induced 39% decrease of acetyl-CoA level in synaptosomal mitochondria was accompanied by 74% increase in synaptoplasmic fraction. Levels of acetyl-CoA and CoASH assayed in fraction of whole brain mitochondria from lesioned cortex were 61% and 48%, respectively, higher as compared to controls. The data suggest a preferential localization of ATP-citrate lyase in cholinergic nerve terminals, where it may contribute to the transport of acetyl-CoA from the mitochondrial to the cytoplasmic compartment. They provide evidence on differential distribution of acetyl-CoA in subcellular compartments of cholinergic and non-cholinergic nerve terminals. There are also indications that cholinergic activity affects acetyl-CoA level and its intracellular distribution in glial and other non-cholinergic cortical cells.  相似文献   

10.
Human neuroblastoma cholinergic LA-N-2 cells were used as an experimental model to test the possibility that the methylation of phosphoethanolamine (PEtn) to phosphocholine (PCho) and free choline (Cho) (Andriamampandry et al. 1989) could contribute to acetylcholine (AcCho) synthesis. LA-N-2 cells were incubated with [3H]Cho for 90 min and 22.7% of the radioactivity was present in PCho, 18.5% in free Cho and 4.8% as AcCho. The ratio of Cho/AcCho, however, was of about 1 after 16 hours of incubation. The incorporation of 10M [3H]ethanolamine (Etn) into MeEtn, PMeEtn, PMe2Etn and their corresponding phospholipids was reduced in cells incubated in medium containing 7.2M choline as compared to cells incubated in medium devoid of choline indicating that the lack of Cho from the incubation medium stimulated the conversion of PEtn to Cho water soluble derivatives. Incubation of LA-N-2 cells with [3H]Etn led to the labelling of [3H]AcCho. Cultures incubated in parallel with [3H]Cho showed that roughly 10% of [3H]AcCho obtained after 16 hrs of incubation with the Cho label derived from [3H]Etn. The synthesis of Cho and AcCho from Etn may be enhanced after cellular differentiation induced by the growth of the cells in the presence of retinoic acid (RA). The results indicate that the methylation of [3H]Etn and/or of [3H]PEtn may be used by cholinergic neurons as precursor for AcCho.Abbreviations Etn ethanolamine - MeEtn monomethylethanolamine - Me2Etn dimethylethanolamine - P- phosphoryl - AcCho acetylcholine - Ptd phosphatidyl - LPtd lysophosphatidyl - RA retinoic acid  相似文献   

11.
Choline acetyltransferase (ChAT) appears to exist in multiple forms, three of which can be isolated biochemically as cytosolic (cChAT), ionically-membrane bound (ibChAT) and non-ionic membranous (mChAT). In this study, we first examined whether the quantitative distribution of enzyme protein and enzyme activity was the same. Enzyme activity and ChAT protein distributed similarly: the majority of ChAT activity and protein were found in cChAT followed by mChAT and least activity and amount were in ibChAT. Our second objective was to investigate the effects of calyculin A or okadaic acid on the subcellular distribution of ChAT activity and amount from rat hippocampal formation. Calyculin A and okadaic acid decreased significantly (p < 0.01) cytosolic and membranous ChAT activity; ionically-bound ChAT was not significantly (p > 0.67) different from control. Removal of calyculin A or okadaic acid restored cytosolic ChAT activity (p > 0.9 as compared to control), but not membranous enzyme activity (p < 0.05 as compared to control). The immunoreactive cytosolic ChAT was reduced significantly (p < 0.01) by calyculin A and okadaic acid. Enzyme amount of membranous ChAT was decreased significantly by calyculin A (p < 0.01) and okadaic acid (p < 0.001). Enzyme amount of ionically-bound ChAT was not changed (p > 0.99) by either of these two phosphatase inhibitors. This investigation demonstrates that alterations in ChAT activity of each subfraction parallel changes in enzyme amounts in the same fractions.  相似文献   

12.
Choline acetyltransferase (ChAT) activity was reduced by more than 85% in cultured retina cells after 16 h treatment with 150 microM kainate (T(1/2) : 3.5 h). Glutamate, AMPA and quisqualate also inhibited the enzyme in equivalent proportion. Cell lesion measured by lactate dehydrogenase (LDH) release, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide - thiazolyl blue (MTT) reduction and microscopic observation was not detected even after 48 h with kainate. Other retina neurochemical markers were not affected by kainate and full recovery of the enzyme was achieved 9 days after kainate removal. Moreover, hemicolinium-3 sensitive choline uptake and hemicolinium-3 binding sites were maintained intact after kainate treatment. The immunoblot and immunohistochemical analysis of the enzyme revealed that ChAT molecules were maintained in cholinergic neurons. The use of antagonists showed that ionotropic and group 1 metabotropic receptors mediated the effect of glutamate on ChAT inhibition, in a calcium dependent manner. The quisqualate mediated ChAT inhibition and part of the kainate effect (30%) was prevented by 5 mM N(G)-nitro-L-arginine methyl ester (L-NAME). Veratridine (3 microM) also reduced ChAT by a Ca(2+) dependent, but glutamate independent mechanism and was prevented by 1 microM tetrodotoxin.  相似文献   

13.
目的:观察肾胆碱能系统在大鼠侧脑室注射胆碱能激动剂氨甲酰胆碱(CBC)诱导的促钠排泄反应中的作用。方法:通过整体实验和免疫组化的方法观察大鼠侧脑室注射CBC 0.5μg后,肾排纳量的变化和肾的但碱乙酰转移酶(ChAT)免疫反应活性的变化;阿托品(30μg)阻断脑胆碱能M受体后,对上述效应的影响。结果:侧脑室给予CBC后40min,肾排钠量显著增加,肾近曲小管ChAT-IR显著增强(P〈0.05);阿托品阻断后,上述反应显著减弱(P〈0.05)。结论:肾小管上皮细胞的胆碱能系统可能参与脑胆碱能刺激引起的肾促钠排泄反应。  相似文献   

14.
Monoclonal antibodies (mAbs) to chick choline acetyltransferase (ChAT) were obtained from mouse-hybridoma cultures after immunization with partially purified enzyme isolated from optic lobes. Antibodies that bound active enzyme were detected in 11 hybridoma cultures. The mAbs showed cross-reactivity to ChAT from quail and beef but not to ChAT from several other species. An affinity column prepared with one of the mAbs was used to purify ChAT to apparent homogeneity. Polyclonal antiserum to mAb affinity-purified ChAT was produced in a rabbit. This antiserum inhibited chick ChAT activity and quantitatively precipitated ChAT activity from solution. On immunoblots, the antiserum stained ChAT and two other proteins. After preadsorption of the antiserum with effluent from the mAb affinity column, the antiserum became monospecific for ChAT. This antiserum was useful for immunocytochemical localization of ChAT, it selectively stained neuronal cell bodies in chick spinal cord and rat brain at locations known to contain cholinergic neurons.  相似文献   

15.
The autonomic nervous system consists of sympathetic and parasympathetic nerves, which functionally antagonize each other to control physiology and homeostasis of organs. However, it is largely unexplored how the autonomic nervous system is established during development. In particular, early formation of parasympathetic network remains elusive because of its complex anatomical structure. To distinguish between parasympathetic (cholinergic) and sympathetic (adrenergic) ganglia, vesicular acetylcholine transporter (VAChT) and choline O‐acetyltransferase (ChAT), proteins associated with acetylcholine synthesis, are known to be useful markers. Whereas commercially available antibodies against these proteins are widely used for mammalian specimens including mice and rats, these antibodies do not work satisfactorily in chickens, although chicken is an excellent model for the study of autonomic nervous system. Here, we newly raised antibodies against chicken VAChT and ChAT proteins. One monoclonal and three polyclonal antibodies for VAChT, and one polyclonal antibody for ChAT were obtained, which were available for Western blotting analyses and immunohistochemistry. Using these verified antibodies, we detected cholinergic cells in Remak ganglia of autonomic nervous system, which form in the dorsal aspect of the digestive tract of chicken E13 embryos. The antibodies obtained in this study are useful for visualization of cholinergic neurons including parasympathetic ganglia.  相似文献   

16.
Nerve growth factor (NGF) exerts anti-apoptotic, trophic and differentiating actions on sympathetic neurons and cholinergic cells of the basal forebrain and activates the expression of genes regulating the synthesis and storage of the neurotransmitter acetylcholine (ACh). We have been studying the intracellular signaling pathways involved in this process. Although, in the rat pheochromocytoma cell line PC12, NGF strongly activates the mitogen-activated protein kinase (MAPK) pathway, prolonged inhibition of MAPK kinase (MEK) activity by PD98059 or U0126 did not affect the ability of NGF to up-regulate choline acetyltransferase (ChAT) or to increase intracellular ACh levels. In contrast, the treatment with the phosphatidylinositol 3'-kinase (PI3K) inhibitor LY294002, but not with its inactive analogue LY303511, completely abolished the NGF-induced production of ACh. Inhibition of PI3K also eliminated the NGF effect on the intracellular ACh level in primary cultures of septal neurons from E18 mouse embryos. Blocking the PI3K pathway prevented the activation of cholinergic gene expression, as demonstrated in RT/PCR assays and in transient transfections of PC12 cells with cholinergic locus promoter-luciferase reporter constructs. These results indicate that the PI3K pathway, but not the MEK/MAPK pathway, is the mediator of NGF-induced cholinergic differentiation.  相似文献   

17.
Functional Regulation of Choline Acetyltransferase by Phosphorylation   总被引:7,自引:0,他引:7  
Choline acetyltransferase (ChAT) catalyzes synthesis of acetylcholine (ACh) in cholinergic neurons. ACh synthesis is regulated by availability of precursors choline and acetyl coenzyme A or by activity of ChAT; ChAT regulates ACh synthesis under some conditions. Posttranslational phosphorylation is a common mechanism for regulating the function of proteins. Analysis of the primary sequence of 69-kD human ChAT indicates that it has putative phosphorylation consensus sequences for multiple protein kinases. ChAT is phosphorylated on serine-440 and threonine-456 by protein kinase C and CaM kinase II, respectively. These phosphorylation events regulate activity of the enzyme, as well as its binding to plasma membrane and interaction with other cellular proteins. It is relevant to investigate differences in constitutive and inducible patterns of phosphorylation of ChAT under physiological conditions and in response to challenges that cholinergic neurons may be exposed to, and to determine how changes in phosphorylation relate to changes in neurochemical transmission.  相似文献   

18.
目的:观察大鼠侧脑室注射胆碱能激动剂氨甲酰胆碱(CBC)后蓝斑胆碱能神经元活性变化及其与促钠排泄反应的关系。方法:选用SD雄性大鼠通过整体实验和免疫组化方法,观察侧脑室给予氨甲酰胆碱(0.5μg)和俄阿托品(30μg)后肾排钠量的变化及蓝斑胆碱乙酰转移酶(CHAT)免疫反应活性的变化。结果:侧脑室给予氨甲酰胆碱后40min,肾排钠量显著增加,蓝斑的CHAT-IR明显增强(P〈0.05);阿托品预处理后可明显抑制上述反应。结论:蓝斑的胆碱能神经元参与侧脑室注射氨甲酰胆碱引起的促钠排泄反应。  相似文献   

19.
Synthesis of acetylcholine (ACh) by non‐neuronal cells is now well established and plays diverse physiologic roles. In neurons, the Na+‐dependent, high affinity choline transporter (CHT1) is absolutely required for ACh synthesis. In contrast, some non‐neuronal cells synthesize ACh in the absence of CHT1 indicating a fundamental difference in ACh synthesis compared to neurons. The aim of this study was to identify choline transporters, other than CHT1, that play a role in non‐neuronal ACh synthesis. ACh synthesis was studied in lung and colon cancer cell lines focusing on the choline transporter‐like proteins, a five gene family choline‐transporter like protein (CTL)1–5. Supporting a role for CTLs in choline transport in lung cancer cells, choline transport was Na+‐independent and CTL1–5 were expressed in all cells examined. CTL1, 2, and 5 were expressed at highest levels and knockdown of CTL1, 2, and 5 decreased choline transport in H82 lung cancer cells. Knockdowns of CTL1, 2, 3, and 5 had no effect on ACh synthesis in H82 cells. In contrast, knockdown of CTL4 significantly decreased ACh secretion by both lung and colon cancer cells. Conversely, increasing expression of CTL4 increased ACh secretion. These results indicate that CTL4 mediates ACh synthesis in non‐neuronal cell lines and presents a mechanism to target non‐neuronal ACh synthesis without affecting neuronal ACh synthesis.  相似文献   

20.
Membranes of neuron-like NG108-15 hybrid cells bind [3H]quinuclidinyl benzilate (QNB) with high affinity and specificity. Greater than 90% of total [3H]QNB binding is to sites having the pharmacological specificity of muscarinic acetylcholine receptors. Three significant features characterize the interaction of ligands with these sites: (1) Specific binding of [3H]QNB at equilibrium follows a simple adsorption isotherm with an apparent KD of 1 × 10?10 M; (2) Rates of [3H]QNB association and dissociation are biphasic and, as the binding reaction proceeds, the fraction of readily dissociable [3H]QNB decreases; (3) Competition against [3H]QNB for specific binding sites by antagonists gives a slope of 1 when analyzed on Hill plots, but competition for binding sites by agonists gives a slope of less than 1. A simple two-step model for activation is proposed to account for these features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号