首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lectin histochemistry of human skeletal muscle   总被引:3,自引:0,他引:3  
Biotinyl derivatives of seven plant lectins-concanavalin A (Con A), peanut agglutinin (PNA), Ricinus communis agglutinin I (RCA I), Ulex europeus agglutinin I (UEA I), soybean agglutinin (SBA), Dolichos biflorus agglutinin (DBA), and wheat germ agglutinin (WGA)-were bound to cryostat sections of biopsied normal human muscle and visualized with avidin-horseradish peroxidase conjugates. A distinct staining pattern was observed with each lectin. The most general staining was observed with Con A, RCA I, and WGA, which permitted strong visualization of the plasmalemma-basement membrane unit, tubular profiles in the interior of muscle fibers, blood vessels, and connective tissue. PNA gave virtually no intracellular staining, while SBA and UEA I selectively stained blood vessels. DBA was unique in providing good visualization of myonuclei. In each case, lectin staining could be blocked by appropriate sugar inhibitors. Neuraminidase pretreatment of the cryostat sections altered the pattern of staining by all lectins except UEA I and Con A; staining with RCA I became stronger and that with WGA became less intense, while staining with PNA, SBA and DBA became stronger and more generalized, resembling that of RCA I. These effects of neuraminidase pretreatment are in conformity with the known structure of the oligosaccharide chains of membrane glycoproteins and specificities of the lectins involved.  相似文献   

2.
The interaction of several lectins, both native and chemically modified, with mouse peritoneal macrophages was studied. Surface distribution and interiorization of the lectins was assessed quantitatively using their radioactively-labeled derivatives, and qualitatively by employing fluorescein-labeled lectins. On the basis of their effect on the macrophages, the lectins tested fall into two classes: lectins that induce vacuole formation in the cells (concanavalin A (ConA), wax bean agglutinin (WBA) and wheat germ agglutinin (WGA)) and lectins that in their native form do not induce vacuolation (soybean agglutinin (SBA), peanut agglutinin (PNA) and the lectin from Lotus tetragonolobus (LT)). Neuraminidase treatment of the cells did not change their response to the lectins, though in the case of SBA and PNA binding was observed only with neuraminidase-treated macrophages. Incubation of the latter cells with SBA and subsequently with ConA resulted in significantly higher vacuolation than that observed with ConA alone. Glutaraldehyde-crosslinked polymers of SBA and of PNA, which are multivalent with respect to sugar binding, induced vacuolation in neuraminidase-treated macrophages. On the other hand, succinylation of ConA, which reduces the number of sugar binding sites per mole from four to two, abolished its ability to induce vacuole formation. These data suggest that multivalency of lectins and probably also their size are important factors in inducing vacuolation, by causing extensive crosslinkage of membrane receptors which is prerequisite for triggering of vacuole formation. Quantitative binding and internalization data indicate that vacuole formation is not directly related to the number of lectin receptors on the macrophages nor to the extent of their internalization.  相似文献   

3.
Until now, carbohydrate antigens of human megakaryocytes have not been studied very extensively. For this reason, we investigated the staining pattern of 25 lectins and carbohydrate-specific monoclonal antibodies on paraffin-embedded trephine biopsies and acetone-fixed smears from patients with reactive and neoplastic bone marrow lesions. A biotin-streptavidin-alkaline phosphatase assay was used to visualize the binding of lectins or antibodies. Ulex europaeus agglutinin I (UEA-I) stained megakaryocytes in all cases tested. Monoclonal antibodies detecting fucosylated Lewis type 2 chain antigens (19-OLE, 12-4LE and LeuM1) were also reactive. Several lectins detecting backbone and core oligosaccharides [Helix pomatia agglutinin (HPA), peanut agglutinin (PNA), Erythrina cristagalli agglutinin (ECA), soybean agglutinin (SBA)] bound to megakaryocytes only after neuraminidase digestion. Moreover, we investigated human platelet lysates to gain some information about the carbohydrate residues of platelet glycoproteins which are synthesized by megakaryocytes. The carbohydrate expression of platelets showed striking similarities to that of megakaryocytes. Immunoblotting experiments revealed a strong binding of UEA-I, 19-OLE and 12-4LE to a band isographic to glycoprotein (gp) Ib. After desialylation of glycoproteins transblotted to nitrocellulose, ECA and PNA also reacted with a band of this molecular weight. Gp Ib is known to contain a mucin-like peptide core with a great number of potential O-glycosylation sites. Therefore, it is tempting to speculate that carbohydrate residues characterized in this study are involved in the complex biological interactions of gp Ib.  相似文献   

4.
The changes of cell surface carbohydrates were examined with FITC (fluorescein isothiocyanate)‐labeled lectins during the conjugation process of the green alga Zygnema cruciatum. The Ulex europaeus agglutinin (UEA)‐specific materials were detected consistently on the surface of vegetative cells, but were absent on the surface of protruding papillae or conjugation tube. The tips of male and female papillae were labeled with soybean agglutinin (SBA) and peanut agglutinin (PNA) during conjugation. The SBA‐ and PNA‐specific materials appeared first at the tip of male papillae and began to accumulate on the surface of female papillae. No labeling of these lectins was detected on the surface of vegetative filaments throughout the conjugation process. FITC‐ConA (Concanavalin A) and FITC‐RCA (Ricinus communis agglutinin) did not label the vegetative filaments of Z. cruciatum, but a trace labeling of these lectins was observed on the surface of some swollen papillae occasionally. Blocking experiments with various lectins showed that these SBA‐ and PNA‐specific glycoconjugates might be involved in the signaling between male and female papillae.  相似文献   

5.
Abstract. Cell surface carbohydrates in healthy oral mucosa (n = 15), leukoplakias without ( n = 48) and with (n = 62) dysplasia, oral papillomas (n = 6) and squamous cell carcinomas (SCCs) (n – 40) were examined using the lectins peanut agglutinin (PNA), Ulex europaeus agglutinin I (UEA I), soybean agglutinin (SBA), Helix pomatia agglutinin (HPA), and Griffonia simplicifolia agglutinin I (GS I-B4). Binding of these lectins in formalin-fixed, paraffin-embedded tissues was demonstrated using either the peroxidase-anti-peroxidase (PAP) method or the avidin-biotin method. Healthy oral epithelia revealed binding sites for these lectins mostly in the suprabasal keratinocytes with occasional PNA binding also in their basal cells. Unlike healthy mucosa, a number of leukoplakias without and with dysplasia revealed receptor sites for UEA I also in their basal layer. Only those keratinocytes undergoing squamoidal differentiation exhibited SBA binding. Staining patterns of UEA I and SBA did not vary significantly between either leukoplakias without and with dysplasia or papillomas and SCCs. Conversely, a reduction or lack of binding sites for PNA (Galβl-3GalNAc), HPA (D-GalNAcα) and GS I-B4 (αD-Gal) was observed more frequently in leukoplakias with dysplasia and SCCs contrasting their counterparts lacking epithelial dysplasia.
Cell surface glycosyl residues play an important role in the regulation of cell proliferation and epithelial growth. Aberrant glycosylation in oral dysplastic leukoplakias and carcinomas leading to the lack of the relevant terminal sugar residues from their cell surface carbohydrates is probably a major reason for the hyper-/ disordered proliferation.  相似文献   

6.
Cell surface carbohydrates in healthy oral mucosa (n = 15), leukoplakias without (n = 48) and with (n = 62) dysplasia, oral papillomas (n = 6) and squamous cell carcinomas (SCCs) (n = 40) were examined using the lectins peanut agglutinin (PNA), Ulex europaeus agglutinin I (UEA I), soybean agglutinin (SBA), Helix pomatia agglutinin (HPA), and Griffonia simplicifolia agglutinin I (GS I-B4). Binding of these lectins in formalin-fixed, paraffin-embedded tissues was demonstrated using either the peroxidase-anti-peroxidase (PAP) method or the avidin-biotin method. Healthy oral epithelia revealed binding sites for these lectins mostly in the suprabasal keratinocytes with occasional PNA binding also in their basal cells. Unlike healthy mucosa, a number of leukoplakias without and with dysplasia revealed receptor sites for UEA I also in their basal layer. Only those keratinocytes undergoing squamoidal differentiation exhibited SBA binding. Staining patterns of UEA I and SBA did not vary significantly between either leukoplakias without and with dysplasia or papillomas and SCCs. Conversely, a reduction or lack of binding sites for PNA (Gal beta 1-3GalNAc), HPA (D-GalNAc alpha) and GS I-B4 (alpha D-Gal) was observed more frequently in leukoplakias with dysplasia and SCCs contrasting their counterparts lacking epithelial dysplasia. Cell surface glycosyl residues play an important role in the regulation of cell proliferation and epithelial growth. Aberrant glycosylation in oral dysplastic leukoplakias and carcinomas leading to the lack of the relevant terminal sugar residues from their cell surface carbohydrates is probably a major reason for the hyper-/disordered proliferation.  相似文献   

7.
Summary The binding of a panel of eight different fluorescein-conjugated lectins to rat spermatogenic cells was investigated. Particular attention was paid to the effects of different fixation methods and proteolytic enzyme digestion on the staining pattern.Concanavalin A (Con A), wheatgerm agglutinin (WGA), succinylated WGA (s-WGA) and agglutinin from gorse (UEA I) stained the cytoplasm of most germ cells as well as the spermatid acrosome. In contrast, peanut agglutinin (PNA), castor bean agglutinin (RCAI) and soy bean agglutinin (SBA) mainly stained the acrosome. The staining pattern varied depending on the fixation method used. PNA was particularly sensitive to formalin fixation, while SBA, DBA and UEA I showed decreased binding and Con A, WGA, s-WGA and RCA I were insensitive to this type of fixation. Pepsin treatment of the sections before lectin staining caused marked changes in the staining pattern; staining with PNA in formalin-fixed tissue sections was particularly improved but there was also enhanced staining with SBA and horse gram agglutinin (DBA). On the other hand, in Bouin- and particularly in acetone-fixed tissue sections, pepsin treatment decreased the staining with several of the lectins, for example WGA and UEA I.  相似文献   

8.
Mouse blastocysts were exposed to a series of ferritin-conjugated lectins during Day 5 (preadhesive) and Day 6 (adhesive; collected Day 5, 24 hr in vitro) of embryogenesis to determine whether there were any changes in lectin binding characteristics that coincided with the acquisition of adhesiveness. After exposure to lectin, the blastocysts were processed for electron microscopy and lectin binding sites were determined by visualization of ferritin particles with the electron microscope. No binding sites were observed for either Dolichos biflorus agglutinin or soybean agglutinin on blastocysts from either stage examined. Binding sites for Ulex europaeus agglutinin, Con A, and wheat germ agglutinin were seen on blastocysts from both stages without apparent increase or reduction in binding sites from either stage. Ricinus communis agglutinin-I (RCA-I) bound heavily to the surface of Day 5 blastocysts and did not bind at all to 312 Day 6 blastocysts and did bind, though with apparent diminution, to 912 Day 6 blastocysts, as compared with the binding observed on Day 5 blastocysts. Peanut agglutinin (PNA) did not bind at all to Day 5 blastocysts but did bind heavily to the surface of Day 6 blastocysts. Both RCA-I and PNA bound to the surface of embryos during Day 5 of delayed implantation, thus indicating that neither the appearance of PNA binding sites on Day 6 blastocysts nor the apparent reduction of RCA-I binding sites on Day 6 blastocysts could be solely implicated in the acquisition of adhesiveness. PNA binding sites were abolished from the surface of Day 6 blastocysts by treatment with Pronase, indicating that the PNA binding molecule was associated with a glycoprotein rather than a glycolipid.  相似文献   

9.
Fluorescent lectins were used to study the chemical nature of carbohydrate moieties present on the surface of female and male germ cells isolated from mouse gonads during fetal and early posnatal development. Concanavalin A (ConA), lens culinaris agglutinin (LCA), ricinus communis agglutinin (RCAI) and wheat germ agglutinin (WGA) bound intensely to the germ cell plasma membrane at all stages studied. Other lectins such as ulex europaeus agglutinin (UEAI) and agglutinin (SBA) did not bind or bound moderately (SBA to female germ cells only). Distinct developmental-related changes were observed when female germ cells were labeled with fluorescein-conjugated peanut agglutinin (PNA) or dolichos biflorus agglutinin (DBA). DBA and PNA binding was absent or weak in fetal female and male germ cells, but became intensely positive in oocytes in the immediate postnatal period. The percentage of oocytes stained with DBA increased during the first three days after birth, and from day 3–4 onwards all oocytes were strongly labeled. I suggest that these changes in lectin binding reflect changes in biochemical structure of the oocyte surface related to differentiative events occurring in the mouse ovary immediately after birth.  相似文献   

10.
The distribution of structural and secretory glycoconjugates in the gastric region of metamorphosing Xenopus laevis was studied by the avidin-biotin-peroxidase (ABC) histochemical staining method using seven lectins (concanavalin A, Con A; Dolichos biflorus agglutinin, DBA; peanut agglutinin, PNA; Ricinus communis agglutinin I, RCA-I; soybean agglutinin, SBA; Ulex europeus agglutinin I, UEA-I; and wheat germ agglutinin, WGA). Throughout the larval period to stage 60, the epithelium consisting of surface cells and gland cells was stained in various patterns with all lectins examined, whereas the thin layer of connective tissue was positive only for RCA-I. At the beginning of metamorphic climax, the connective tissue became stained with Con A, SBA, and WGA, and its staining pattern varied with different lectins. The region just beneath the surface cells was strongly stained only with RCA-I. With the progression of development, both the epithelium and the connective tissue gradually changed their staining patterns. The surface cells, the gland cells, and the connective tissue conspicuously changed their staining patterns, respectively, for Con A and WGA; for Con A, PNA, RCA-I, SBA, and WGA; and for Con A, RCA-I, and WGA. At the completion of metamorphosis (stage 66), mucous neck cells became clearly identifiable in the epithelium, and their cytoplasm was strongly stained with DBA, PNA, RCA-I, and SBA. These results indicate that lectin histochemistry can provide good criteria for distinguishing among three epithelial cell types, namely, surface cells, gland cells, and mucous neck cells, and between adult and larval cells of each type.  相似文献   

11.
The reciprocal cell biological interaction between mesenchymal and epithelial tissue plays a critical role during nephrogenesis. It is unknown to date whether the tissues interact during nephron induction by pure diffusion of substances or whether cellular contacts via gap junctions or focal adhesion molecules are involved. In neonatal rabbit kidney the interface between both tissues shows unique features. It consists of a distinct space, which is filled with specific extracellular matrix consisting of glycosylated proteins such as fibronectin, laminin, collagen, and proteoglycans. In the present experiments we tested by histochemistry whether it is possible to detect additional glycosylated proteins using Soybean agglutinin (SBA), Dolichos biflorus agglutinin (DBA), Ulex europaeus I agglutinin (UEA I), and Peanut agglutinin (PNA) as molecular markers. All tested lectins showed distinct labeling patterns in embryonic renal tissue. Within the collecting duct ampulla, DBA and UEA I revealed intensive cellular reaction. In contrast, PNA and SBA reacted at the basal aspect of the collecting duct ampulla tip in addition to a cellular reaction. To identify the individual molecules labeled by the lectins, embryonic tissue was fractionated and separated by electrophoretic methods. For the first time, we were able to show by two-dimensional electrophoresis and subsequent western blot experiments that lectins bind to a series of individual protein spots, which have not been identified to date.  相似文献   

12.
Summary Two different receptor sites, located on the cell surface ofAmoeba proteus were detected by using fluorescent analog cytochemistry (FAC) and electron microscopy (EM). Bovine serum albumin labeled with fluoresceine-isothiocyanate (FITC-BSA) and unlabeled ferritin bind, in a pH-dependent manner, as cations at the outer filaments of the mucous layer. The anionic receptor sites show a high affinity for Ca-ions which suppress the binding capacity of FITC-BSA and ferritin at low pH-values. The cation receptors obviously play an important role in the initiation of pinocytosis as demonstrated by the internalization, intracellular translocation and sequestration of the FITC-BSA. FITC- or ferritin-labeled concanavalin A (FITC-Con A, ferritin-Con A) bind predominantly in a pH-independent manner at the tips of the outer filaments and the basal zone of the mucous layer. The binding capacity of FITC-Con A is not influenced by external Ca-ions. Other lectins such asDolichos bifloris agglutinin (DBA), peanut agglutinin (PNA),Ricinus communis agglutinin I (RCA I), soybean agglutinin (SBA),Ulex europaeus agglutinin I (UEA I) and wheat germ agglutinin (WGA) are not specifically bound to the cell surface. So far, no experimental evidence has been gathered for the definitive function of a Con-A receptor in the mucos layer ofAmoeba proteus.Abbreviations BSA bovine serum albumin - Con A concanavalin A - CTC chlorotetracycline - DBA Dolichos bifloris agglutinin - DTE dithioeritritol - FITC fluorosceine-isothiocyanate - IEP iso electric point - PIPES 1-4-piperazine-diethane sulfonic acid - PNA peanut agglutinin - RCA I Ricinus communis agglutinin I - SBA soybean agglutinin - Uac uranylacetat - UEA I Ulex europaeus agglutinin I - WGA wheat germ agglutinin  相似文献   

13.
The galactosyl-binding lectins, soybean agglutinin (SBA) and peanut agglutinin (PNA), exhibit a low mitogenic activity for human peripheral lymphocytes isolated from heparinized blood. We report here that responses of lymphocytes isolated from blood defibrinated by swirling with glass beads, are enhanced up to 100-fold when stimulated with these lectins. Brief incubation of lymphocytes with defibrinated serum also results in a marked potentiation of their responses to SBA and PNA. This augmentation can be mimicked by subjecting purified lymphocytes mixed with washed human erythrocytes to the mechanical process used in defibrination. Mechanical agitation of whole blood or washed erythrocytes results in partial lysis of red blood cells, and brief incubation of lymphocytes with erythrocyte lystates also enhances responses to galactosyl-directed lectins. Sialic acid release and mitogen binding are not markedly altered in cells separated by defibrination or in those treated with erythrocyte lysates. Direct addition of erythrocyte lysates to cell cultures enhances responses to SBA but not to PNA. When neuraminidase is also added to these cultures, responses to both SBA and PNA are markedly enhanced. Our findings suggest that SBA and PNA are rendered supermitogenic by interacting with a particulate fraction that is formed by mechanical shearing of erythrocytes. These findings indicate the importance of the mode of presentation of mitogens to cells in eliciting a blastogenic response.  相似文献   

14.
The saxitoxin-binding component of the excitable membrane sodium channel exhibits glycoprotein characteristics as evidenced by its specific interaction with various agarose-immobilized lectins. The detergent-solubilized saxitoxin-binding component interacts quantitatively with immobilized wheat germ agglutinin and concanavalin A and fractionally with immobilized Lens culinaris hemagglutinin and Ricinus communis agglutinin. These lectins preferentially bind N-acetylglucosamine and sialic acid (wheat germ agglutinin), mannose (concanavalin A and Lens cunilaris and galactose (Ricinus communis). Removal of terminal sialic acid residues by neuraminidase markedly decreases binding to immobilized wheat germ agglutinin but uncovers sites capable of interacting with lectins specific for galactose and N-acetylgalactosamine. β-N-acetylglucosaminidase, an exoglycosidase has no effect on the binding of the channel protein to wheat germ agglutinin. Similarly, phospholipase C has no effect on binding of the solubilized toxin binding component to this lectin. Neither wheat germ agglutinin nor concanavalin A free in solution alters the number of toxin binding sites or their affinity for toxin. The sodium channel saxitoxin-binding component appears to be a glycoprotein containing terminal sialic acid residues and internal mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine residues. The toxin binding site is spatially separated from the binding sites for the lectins studied. The effect of these sugar moieties must be considered when evaluating the biophysical parameters of the sodium channel.  相似文献   

15.
To better understand the general distribution of glycoproteins and the distribution of specific glycoprotein-bound sugar residues in Paramecium, a survey of the binding pattern of selected lectins was carried out in P. tetraurelia, P. caudatum, and P. multimicronucleatum. Lectins studied were concanavalin A (Con A), Griffonia simplicifolia agglutinins I and II (GS I and GS II), wheat germ agglutinin (WGA), Ulex europaeus (UEA I), peanut agglutinin (PNA), Ricinis communis toxin (RCA60) and agglutinin (RCA120), soybean agglutinin (SBA), Bauhinia purpurea agglutinin (BPA), Dolichos biflorus agglutinin (DBA), and Maclura pomifera agglutinin (MPA). Those giving the most distinctive patterns were Con A, GS II, WGA, UEA I, and PNA. No significant differences were found between the three species. Concanavalin A, a mannose/glucose-binding lectin, diffusely labeled the cell surface and cytoplasm and, unexpectedly, the nuclear envelopes. Events of nuclear division, and nuclear size and number were thus revealed. Both WGA and GS II, which are N-acetylglucosamine-binding lectins, labeled trichocyst tips, the cell surface, and the oral region, revealing stages of stomatogenesis. The lectin WGA, in addition, labeled the compartments of the phagosome-lysosome system. The lectin PNA, an N-acetyl galactosamine/galactose-binding protein, was very specific for digestive vacuoles. Finally, UEA I, a fucose-binding lectin, brightly labeled trichocysts, both their tips and body outlines. We conclude that a judicious choice of lectins can be used to localize glycoproteins and specific sugar residues as well as to study certain events of nuclear division, cellular morphogenesis, trichocyst discharge, and events in the digestive cycle of Paramecium.  相似文献   

16.
Fluorescence and stopped-flow spectrophotometric studies on three plant lectins fromPsophocarpus tetragonolobus (winged bean),Glycine max (soybean) andArtocarpus integrifolia (jack fruit) have been studied usingN-dansylgalactosamine as a fluorescent ligand. The best monosaccharide for the winged bean agglutinin I (WBA I) and soybean (SBA) is Me-GalNAc and for jack fruit agglutinin (JFA) is Me-Gal. Examination of the percentage enhancement and association constants (1.51×106, 6.56×106 and 4.17×105 M–1 for SBA, WBA I and JFA, respectively) suggests that the combining regions of the lectins SBA and WBA I are apolar whereas that of JFA is polar. Thermodynamic parameters obtained for the binding of several monosaccharides to these lectins are enthalpically favourable. The binding of monosaccharides to these lectins suggests that the-OH groups at C-1, C-2, C-4 and C-6 in thed-galactose configuration are important loci for interaction with these lectins. An important finding is that the JFA binds specifically to Galß1-3GaINAc with much higher affinity than the other disaccharides which are structurally and topographically similar.The results of stopped-flow spectrometry on the binding ofN-dansylgalactosamine to these lectins are consistent with a bimolecular single step mechanism. The association rate constants (2.4×105, 1.3×104, and 11.7×105 M–1 sec–1 for SBA, WBA I and JFA, respectively) obtained are several orders of magnitude slower than the ones expected for diffusion controlled reactions. The dissociation rate constants (0.2, 3.2×10–2, 83.3 sec–1 for SBA, WBA I and JFA, respectively) obtained for the dissociation ofN-dansylgalactosamine from its lectin complex are slowest for SBA and WBA I when compared with any other lectin-ligand dissociation process.Abbreviations SBA Soybean agglutinin - WBA I Winged bean agglutinin (Basic) - JFA Jack fruit agglutinin - PNA Peanut agglutinin - Con A Concanavalin A - Dansyl (Dns) 5-dimethylaminonaphthalene-I-sulphonyl - 2GaINDns N-dansylgalactosamine - dGal 2-deoxygalactose - l-Ara l-arabinose - d-Fuc d-fucose - l-Rha l-rhamnose - N-acetyllactosamine Galß4GlcNAc - melibiose Gal6Glc  相似文献   

17.
It has previously been shown in our laboratory that wheat germ agglutinin (WGA) binds to Trichoderma viride and inhibits growth of this fungus. Here we report on the effect of WGA, soybean agglutinin (SBA) and peanut agglutinin (PNA) on Penicillia and Aspergilli. Binding of the lectins to the fungi was examined with the aid of their fluorescein isothiocyanate (FITC) conjugated derivatives. FITC-WGA bound to young hyphal walls of all species, in particular to the hyphal tips and septa, in agreement with the chitinous composition of the cell walls of the two genera. Hyphae of all species examined were labelled, though in different patterns, by FITC-SBA and FITC-PNA, suggesting the presence of galactose residues on their surfaces. Young conidiophores, metulae (of the Penicillia), vesicles (of the Aspergilli), sterigmata and young spores, were also labelled. The three lectins inhibited incorporation of [3H]acetate, N-acetyl-D-[3H]glucosamine and D-[14C]galactose into young hyphae of Aspergillus ochraceus, indicating interference with fungal growth. Inhibition of spore germination by the three lectins was also observed. Preincubation of the lectins with their specific saccharide inhibitors prevented binding and the inhibitory effects. We conclude that lectins are useful tools for the study of fungal cell surfaces, and may also serve as an important aid in fungal classification. The present findings also support the suggestion that one role of lectins in plants is protection against fungal pathogens.Abbreviations Con A concanavalin A - PNA peanut agglutinin - SBA soybean agglutinin - WGA wheat germ agglutinin - FITC fluorescein isothiocyanate - GlcNAc N-acetyl-D-glucosamine - GalNAc N-acetyl-D-galactosamine  相似文献   

18.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRATat 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diaminobenzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A < PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WGA, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M. The expression of lectin binding cell surface saccharides of T. rhodesiense WRATat 1 is related to the parasite stage. Sugars resembling α-D-mannose are on the surface of bloodstream trypomastigotes and culture procyclics; n-acetyl-D-galactosamine and D-galactose residues are on bloodstream forms; and n-acetyl-D-glucosamine-like sugars are on procyclic stages.  相似文献   

19.
The ability of seven lectins to bind to newt epidermal cells and influence their motility was examined. Of the seven fluoresceinated lectins applied to frozen sections containing intact newt skin and migrating epidermis (wound epithelium), only Con A (concanavalin A), WGA (wheat germ agglutinin), and PNA (peanut agglutinin) produced detectable epidermal fluorescence. Con A and WGA each heavily labeled all layers of intact epidermis, but PNA bound only to the more superficial layers. In contrast to a single population of labeled cells in migrating epidermal sheets after treatment with Con A, there were both labeled and unlabeled cells after exposure to either WGA or PNA. The wound bed was labeled by both Con A and WGA, but not by PNA. DBA (Dolichos bifloris agglutinin), RCA I (Ricinus communis agglutinin), and UEA (Ulex europaeus agglutinin), did not produce significant fluorescence with either migrating or intact epidermis. In general, inhibitory effects on epidermal motility correlated with the binding studies. Thus, Con A, WGA, and PNA, the lectins which clearly bound to the epidermis, all produced a concentration-dependent depression in the rate of epidermal wound closure. RCA was somewhat paradoxical in that it was moderately inhibitory despite showing essentially no binding. The effects of SBA and UEA were equivocal. DBA had no effect. These results indicate that the inhibition of motility produced by Con A that we have described previously is not peculiar to this mannose-binding lectin, but is shared by at least one lectin with an affinity for D-GlcNAc (WGA), and one with an affinity for B-D-Gal(1-3)-D-GalNAc (PNA).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Lectin binding patterns in normal human skin were studied using five different biotinyl lectins and avidin-horseradish peroxidase. The staining pattern was specific for each lectin. In the epidermis, peanut agglutinin (PNA) and soybean agglutinin (SBA) preferentially stained the cell membranes of keratinocytes in the spinous and granular cell layers, indicating changes in the saccharide residues during keratinocyte differentiation. In the secretory segment of an eccrine sweat gland, the superficial cells gave a strong granular staining with Ricinus communis agglutinin (RCA). Dolichos biflorus agglutinin (DBA) and SBA, on the other hand, strongly stained the basal cells. With these lectins, two types of cells in the secretory segment were clearly distinguished. These results show that (1) PNA and SBA binding sites increase during the course of keratinocyte differentiation, and (2) RCA, DBA, and SBA are good markers to distinguish two types of cells in the secretory segment of an eccrine sweat gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号