首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of various prostaglandins on the uptake of α-aminoisobutylic acid by cultured fibroblasts was studied. All the prostaglandins having an OH functional group in an intramolecular 5-membered ring showed an inhibitory effect on the amino acid uptake. The active compounds can be ranked in potency according to the values for the inhibition of the amino acid uptake per cent of control: prostaglandin F(53 %) >F(54 %) >D2(56 %) >E2(62 %) >thromboxane B2 (66 %). Thus, prostaglandin F was found to be the most potent inhibitor to membrane permeability and the inhibitory effect was dose dependent. The inhibition was maximal after 1 hour of exposure to prostaglandin F, persisted at least up to 6 hours in the presence of prostaglandin F.  相似文献   

2.
We studied the oxidation of [1-14C]phytanic acid, 3-methyl substituted fatty acid, to pristanic acid and 14CO2 in human skin fibroblasts. The specific activity for α-oxidation of phytanic acid in peroxisomes was 29- and 124-fold higher than mitochondria and endoplasmic reticulum. This finding demonstrates for the first time the presence of fatty acid α-oxidation enzyme system in peroxisomes.  相似文献   

3.
4.
Summary On DEAE cellulose column chromatography, -l-iduronidase in cultured skin fibroblasts was resolved into two distinct components, forms A and B. They had similar Km values for 4-methylumbelliferyl--l-iduronide, but differed in pH optima and thermal stability. Form B was more heat-stable than form A.Residual -l-iduronidase activity in Hurler fibroblasts was heat-stable, while that in Scheie fibroblasts was heat-labile, and moreover, that in Hurler-Scheie compound fibroblasts lay intermediate between Hurler and Scheie syndromes. These findings demonstrated that Hurler syndrome, Scheie syndrome and Hurler-Scheie compound were enzymatically distinguishable.  相似文献   

5.
The mammalian degradation of lysine is believed to proceed via two distinct routes, the saccharopine and the pipecolic acid routes, that ultimately converge at the level of α-aminoadipic semialdehyde (α-AASA). α-AASA dehydrogenase-deficient fibroblasts were grown in cell culture medium supplemented with either l-[α-15N]lysine or l-[ε-15N]lysine to explore the exact route of lysine degradation. l-[α-15N]lysine was catabolised into [15N]saccharopine, [15N]α-AASA, [15N]Δ1-piperideine-6-carboxylate, and surprisingly in [15N]pipecolic acid, whereas l-[ε-15N]lysine resulted only in the formation of [15N]saccharopine. These results imply that lysine is exclusively degraded in fibroblasts via the saccharopine branch, and pipecolic acid originates from an alternative precursor. We hypothesize that pipecolic acid derives from Δ1-piperideine-6-carboxylate by the action of Δ1-pyrroline-5-carboxylic acid reductase, an enzyme involved in proline metabolism.  相似文献   

6.
Galactose-1-phosphate uridyl transferase activity of normal, heterozygous and galactosemic strains is determined throughout the culture cycle of human fibroblasts using a new direct method of assay. The enzyme activities of high-density, stationary-phase cultures define three nonoverlapping classes, which correspond to the genotypes of the donors. During rapid growth, however, galactosemic strains show near-normal transferase activity. The incorporation of 14C from 14C1-galactose by living cells is measured. While heterozygous strains do not appear to differ from normal controls, homozygous mutant cells incorporate 14C at about one-half the normal rate throughout the culture cycle. Variables affecting the assay are investigated and the implications of our results for further genetic studies of mutations affecting transferase are discussed.Paper # 1105 from the Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin. This work was supported by the National Institutes of Health (Grants # GM-08217, # GM-398, and # GM-06983).  相似文献   

7.
α-Synuclein becomes misfolded and aggregated upon damage by various factors, for example, by reactive oxygen species. These aggregated forms have been proposed to have differential toxicities and their interaction with mitochondria may cause dysfunction within this organelle that contributes to the pathogenesis of Parkinson''s disease (PD). In particular, the association of α-synuclein with mitochondria occurs through interaction with mitochondrial complex I and importantly defects of this protein have been linked to the pathogenesis of PD. Therefore, we investigated the relationship between aggregated α-synuclein and mitochondrial dysfunction, and the consequences of this interaction on cell survival. To do this, we studied the effects of α-synuclein on cybrid cell lines harbouring mutations in either mitochondrial complex I or IV. We found that aggregated α-synuclein inhibited mitochondrial complex I in control and complex IV-deficient cells. However, when aggregated α-synuclein was applied to complex I-deficient cells, there was no additional inhibition of mitochondrial function or increase in cell death. This would suggest that as complex I-deficient cells have already adapted to their mitochondrial defect, the subsequent toxic effects of α-synuclein are reduced.The pathological hallmark of Parkinson''s disease (PD) is the presence of α-synuclein aggregates, particularly within the substantia nigra (SN). These aggregations take the form of intracellular Lewy bodies, and also neuritic aggregations. However, both the effect of these inclusions on neuronal survival and the toxicity of different forms of α-synuclein are still debated. To aggregate α-synuclein must undergo a conformational change, however, the mechanism behind this change and subsequent aggregation in PD remains to be determined.Mutations within the α-synuclein gene (SNCA (MIM 163890)) were the first to be associated with autosomal dominant PD, while more recently genome-wide association studies have suggested that single-nucleotide polymorphisms in this gene are important for sporadic PD. A widely expressed protein α-synuclein is important for synaptic vesicle recycling and the modulation of dopamine transmission within SN neurons.1, 2, 3, 4, 5, 6, 7, 8 It interacts with curved cellular membranes including those of mitochondria suggesting a possible mode of its toxicity,9, 10, 11 and can be imported into mitochondria in an energy-dependent manner.9 The accumulation of α-synuclein within mitochondria leads to complex I impairment, decreased mitochondrial membrane potential (ΔΨm) and increased reactive oxygen species (ROS) production. The occurrence of these changes is also dependent on calcium homoeostasis.9, 12, 13Mitochondrial dysfunction has also been heavily implicated in the pathogenesis of PD. Early studies showed a decrease in mitochondrial complex I in the SN of PD patients and studies involving the inhibition of this complex replicate many of the features of this disease. In addition, SN neurons show high levels of mitochondrial DNA deletions in old age,14, 15 which lead to respiratory deficiency, and the environment of the SN is believed to be particularly oxidative due to a number of processes, including the metabolism of dopamine. More recently a number of genes known to cause autosomal recessive forms of PD have been shown to encode proteins with functions associated with mitochondrial turnover (Parkin/Pink1 (MIM 602544, MIM 608309)) or oxidative stress (DJ-1 (MIM 602533)). However, the link between these two processes and the loss of dopaminergic neurons in PD remains to be elucidated.Several hypotheses have been suggested for what might cause α-synuclein to undergo the conformational change into more aggregate prone forms, from oxidative stress to gene mutations. Furthermore, the accumulation of mitochondrial DNA (mtDNA) mutations and dysfunctional mitochondria with advancing age are likely to have an effect on oxidative stress levels within the SN, which might contribute further to the misfolding and accumulation of this protein. Numerous studies have used rotenone and other toxins to induce mitochondrial dysfunction and monitor the accumulation of α-synuclein, despite the wealth of information that these studies provide they often do not reflect the subtleties of the slow accumulation of mitochondrial dysfunction within ageing SN neurons.Therefore, we investigated the relationship between mitochondria and aggregated α-synuclein, focussing on how these forms affect neurons with and without mitochondrial dysfunction. We wanted to understand how aggregated α-synuclein impacted on the survival of cells with mitochondrial dysfunction, to enable a deeper understanding of the effect of these two processes on neuronal survival. To investigate this we used cells with mutations in and partial inhibition of complexes I and IV.  相似文献   

8.
Summary 4-Methylumbelliferyl neuraminidase activity was studied in fibroblasts, leukocytes, and frozen tissues from adult patients with -galactosidase-neuraminidase deficiency and specific clinical manifestations. This enzyme was almost completely deficient in fibroblasts, but the residual activity was relatively high (20% of the control mean) in the leukocytes from the patients. The frozen liver from one patient showed the enzyme activity as high as controls.This enzyme consisted of two components, freeze-labile and freeze-stable, and it was demonstrated that only the labile enzyme was deficient in fibroblasts and leukocytes. The apparently normal activity of neuraminidase in frozen autopsy tissues of a patient may be explained by the loss of the labile component in control tissues after a long-term freezing. The neuraminidase activity was variable in parents and no definite conclusion was drawn on the hereditary nature of the disease.  相似文献   

9.
10.
  • 1.1. β2-Glycoprotein I is a sialic acid microheterogeneous protein and contains on the average 11 mol sialic acid/mol.
  • 2.2. Linear correlation was found between sialic acid content and pI of isolated subfractions.
  • 3.3. Asialo-β22-glycoprotein I consists of 2 isoforms. Each of which can originate from the same subfraction.
  • 4.4. The isolated subfractions exhibited almost the same amino acid composition.
  相似文献   

11.
The metabolites of linoleic (LA) and -linolenic (ALA) acids are involved in coronary heart disease. Both n-6 and n-3 essential fatty acids (EFAs) are likely to be important in prevention of atherosclerosis since the common risk factors are associated with their reduced 6-desaturation. We previously demonstrated the ability of heart tissue to desaturate LA. In this study we examined the ability of cultured cardiomyocytes to metabolize both LA and ALA in vivo, in the absence and in the presence of gamma linolenic acid (GLA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) alone or combined together. In control conditions, about 25% of LA and about 90% of ALA were converted in PUFAs. GLA supplementation had no influence on LA conversion to more unsaturated fatty acids, while the addition of n-3 fatty acids, alone or combined together, significantly decreased the formation of interconversion products from LA. Using the combination of n-6 and n-3 PUFAs, GLA seemed to counterbalance partially the inhibitory effect of EPA and DHA on LA desaturation/elongation. The conversion of ALA to more unsaturated metabolites was greatly affected by GLA supplementation. Each supplemented fatty acid was incorporated to a significant extent into cardiomyocyte lipids, as revealed by gas chromatographic analysis. The n-6/n-3 fatty acid ratio was greatly influenced by the different supplementations; the ratio in GLA+EPA+DHA supplemented cardiomyocytes was the most similar to that recorded in control cardiomyocytes. Since important risk factors for coronary disease may be associated with reduced 6-desaturation of the parent EFAs, administration of n-6 or n-3 EFA metabolites alone could cause undesirable effects. Since they appear to have different and synergistic roles, only combined treatment with both n-6 and n-3 metabolites is likely to achieve optimum results.  相似文献   

12.
Sj?gren-Larsson syndrome (SLS) is an inherited disorder associated with deficient oxidation of long-chain aliphatic alcohols. Previous studies have reported modest elevations in total (free + esterified) fatty alcohols in SLS, but free fatty alcohols have not been selectively measured, in part because of their low concentrations in most tissues and the presence of trace fatty alcohol contaminants in some solvents used for their analysis. We adapted methods to measure free fatty alcohols in cultured cells and plasma that minimize exogenous alcohol contamination. Fatty alcohols were analyzed as acetate derivatives, using capillary column gas chromatography. By this method, cultured skin fibroblasts from SLS patients were found to have 7- and 8-fold elevations in the mean content of hexadecanol (16:0-OH) and octadecanol (18:0-OH), respectively. The mean plasma 16:0-OH and 18:0-OH concentrations in SLS patients (n = 11) were 9- and 22-fold higher than in normal controls, respectively. In SLS fibroblasts, most of the fatty alcohol (59%) that accumulated was free rather than esterified alcohol, whereas free alcohol accounted for 23% of the total alcohol in normal cells. These results indicate that elevations in free fatty alcohols provide a sensitive marker for the enzymatic defect in SLS. The ability to measure free fatty alcohols in cultured cells and plasma should prove useful for investigations of normal fatty alcohol metabolism and the deranged metabolism in SLS.  相似文献   

13.
The uptake and degradation of GM1 ganglioside (GM1) and asialoGM1 ganglioside (GA1) were studied in cultured fibroblasts from normal individuals and patients with β-galactosidase deficiency, using the lipid-loading test. The glycolipids were incorporated from the media into the fibroblasts and the terminal galactose was hydrolyzed in normal cells. The hydrolysis rates of GA1 were 80–86% of normal on the 3rd day after loading, while GM1 was hydrolyzed slowly; 35–54% on the 14th day. In infantile GM1 gangliosidosis and I-cell disease, little GM1 and GA1 was hydrolyzed on any day of culture, while fibroblasts from patients with adult GM1 gangliosidosis, Morquio disease type B and galactosialidosis hydrolyzed the lipids at nearly normal rates. The intracellular accumulation of the glycolipids, on the basis of protein content, was abnormally high in the case of infantile GM1 gangliosidosis and I-cell disease, but normal in the other disorders examined. These observations indicate that the in situ metabolism of GM1 and GA1 is probably normal in fibroblasts from patients with adult GM1 gangliosidosis, Morquio disease type B and galactosialidosis, although in vitro β-galactosidase activities in these disorders are very low. The results are compatible with findings that GM1 and GA1 do not accumulate in the somatic organs of patients with adult GM1 gangliosidosis and galactosialidosis. In I-cell disease, however, the results of the loading test did not agree with the finding that there is little accumulation of glycolipids in postmortem tissues.  相似文献   

14.
In the course of a study of possible mechanisms for chemical evolution in the primeval sea, we found the novel formation of -amino acids and N-acylamino acids from -oxo acids and ammonia in an aqueous medium. Glyoxylic acid reacted with ammonia to form N-oxalylglycine, which gave glycine in a 5–39% yield after hydrolysis with 6N HCl. Pyruvic acid and ammonia reacted to give N-acetylalanine, which formed alanine in a 3–7% overall yield upon hydrolysis. The pH optima in these reactions were between pH 3 and 4. These reactions were further extended to the formation of other amino acids. Glutamic acid, phenylalanine and alanine were formed from -ketoglutaric acid, phenylpyruvic acid and oxaloacetic acid, respectively, under similar conditions. N-Succinylglutamic acid was obtained as an intermediate in glutamic acid synthesis. Phenylacetylphenyl-alanineamide was also isolated as an intermediate in phenylalanine synthesis. Alanine, rather than aspartic acid, was produced from oxaloacetic acid. These reactions provide a novel route for the prebiotic synthesis of amino acids. A mechanism for the reactions will be proposed.  相似文献   

15.
The mechanism of collagen biosynthesis regulation is not fully understood. The finding that prolidase plays an important role in collagen biosynthesis and phosphoenolpyruvate inhibits prolidase activity "in vitro" led to evaluate its effect on collagen biosynthesis in cultured human skin fibroblasts. Confluent fibroblasts were treated with millimolar concentrations (1-4 mM) of phosphoenolpyruvate monopotassium salt (PEP) for 24 h. It was found that PEP-dependent decrease in prolidase activity and expression was accompanied by parallel decrease in collagen biosynthesis. However, the experiments with inhibitor of PEP production, 3-mercaptopicolinate revealed no direct correlation between collagen biosynthesis and prolidase activity and expression. Since insulin-like growth factor (IGF-I) is the most potent stimulator of both collagen biosynthesis and prolidase activity, and prolidase is regulated by beta(1) integrin signaling, the effect of PEP on IGF-I receptor (IGF-IR) and beta(1) integrin receptor expressions were evaluated. It was found that the exposure of the cells to 4 mM PEP contributed to a decrease in IGF-IR and beta(1) integrin receptor expressions. The data suggest that PEP-dependent decrease of collagen biosynthesis in cultured human skin fibroblasts may undergo through depression of alpha(2)beta(1) integrin and IGF-IR signaling. The hypothetical mechanism of the role of prolidase in IGF-IR, beta(1) integrin receptor expressions, and clinical significance of the process are discussed.  相似文献   

16.
The crystal structure of the pentapeptide p-toluene-sulfonyl-(α-aminoisobutyryl)5-methyl ester (Tosyl-(Aib)5-OMe) has been determined in the space group PI. Pentapeptide molecules are folded in the 310 helical conformation and packed together, so as to yield a hydrophobic channel with a minimim diameter of 5.2 Å. The channel contains crystallographically disordered material. This structure provides a model for channel formation by hydrophobic peptide aggregates and should prove useful in studies of alamethicin, suzukacillin and related Aib containing membrane channels. Triclinic (PI) crystals of the pentapeptide are obtained in the presence of LiClO4 in aqueous methanol, whereas crystallization from methanol alone yields crystals in the space group Pbca. The conformations of the peptide in the two crystal forms are very similar and only the molecular packing is dramatically different.  相似文献   

17.
Apoptosis in B cells is induced through the B cell antigen receptor (BCR) and affects the sialic acid recognition molecules on B cells. We investigated the effects of 1-acid glycoprotein (AGP), which mainly contains 2,6-linked sialic acid, on anti-IgM antibody (Ab)-induced apoptosis in Ramos cells, which are derived from Burkitt's lymphoma. When Ramos cells were incubated with anti-IgM-Ab in plates coated with AGP, neuraminidase-digested AGP (asAGP) or 2,3-sialylated AGP (2,3AGP), apoptosis was suppressed only in those coated with AGP. We also studied the effects of CD22, which is expressed on the surface of mature B cells and binds to sugar chains containing 2,6-linked sialic acid, with anti-CD22 monoclonal antibody (mAb). Anti-CD22mAb enhanced anti-IgM Ab-induced apoptosis in Ramos cells. These contradictory results suggested that the recognition molecules for 2,6-linked sialic acid on AGP, which inhibits B-cell apoptosis, is distinct from CD22, or that different binding domains of CD22 between 2,6-linked sialic acid and anti-CD22 mAb exert opposite functions of suppression or enhancement to anti-IgM Ab-induced B cells.  相似文献   

18.
H. Veen 《Planta》1972,103(1):35-44
Summary Transportand metabolism of -naphthaleneacetic acid -naphthaleneacetic acid, and -decalylacetic acid, all labelled with 14C in the carboxyl, group, were studied. Only -naphthaleneacetic acid is transported in a polar way. Most of the radioactivity in the tissue is in a low molecular form, either free or as immobilization products. The immobilization of -naphthaleneacetic acid is similar to that of -naphthaleneacetic acid. Immobilization of -decalylacetic acid is typically different. Bioassays showed -naphthaleneacetic acid as the sole biologically active component. It is concluded that stereo requirements necessary for biological activity are also required for polar auxin transport. It is further concluded that the observed specificity of the transport system is not related to the formation of immobilization products.  相似文献   

19.
The mechanism of action of the glutamate analogue α-aminoadipic (A A A) acid was investigated in terms of its toxicity to cultured astrocytes. A A A was more toxic to type 1 astrocytes than type 2 astrocytes. Also the higher toxicity of the L-isomer as compared to the D-isomer was seen on type 1 astrocytes but not type 2. The toxicity of A A A can be reduced by co-culture of type 1 astrocytes with microglia. This inhibition may be due to glutamate release by microglia. No such effect is seen for type 2 astrocytes. The major uptake route for A A A by type 1 astrocytes is through the sodium dependent glutamate port. Both isomers of A A A are toxic to dividing astrocytes. The D-isomer appears to be toxic only for mitotic cells. The mechanism of this toxicity is protein synthesis dependent. It is suggested that A A A is toxic to mitotic astrocytes by interference with protein synthesis needed for cell division. D-A A A as opposed to L-A A A may prove a valuable tool for investigation of astrocyte proliferation in development and disease.  相似文献   

20.
Mature coconut embryos were germinated in a modified Murashige and Skoog medium and then cultured on BMY3 medium incorporating sucrose in the range of 4 to 8%. -Naphthaleneacetic acid (NAA) was added into the medium at concentrations ranging from 0 to 800 M for periods of 4 to 24 weeks. Application of NAA for 4 weeks stimulated shoot growth, whereas application periods greater than 4 weeks had no significant effect. NAA in the range of 100–300 M stimulated elongation of the primary root and the optimum concentration increased with increases in sucrose levels. Production of adventitious roots was stimulated by the addition of NAA with levels of 200 M and above being the most effective. Increasing the sucrose concentration from 4% through to 8% stimulated root elongation in the absence of NAA and inhibited shoot growth whether NAA was present or absent.Abbreviations IAA indole-acetic acid - NAA -naphthaleneacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号