首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To identify the mechanisms responsible for the paucity of recently synthesized collagen in connective tissues during diabetes, in vitro procollagen metabolism was studied in non-diabetic (control) and diabetic rats. Achilles tendons from the two groups were incubated for 1-8 h (35 degrees C) in medium containing [14C]proline and the radiolabeled collagen in the tissue, and that released into the media, were examined by SDS-polyacrylamide gel electrophoresis and fluorography. The bulk of the radiolabeled collagen in tendon from the diabetics was recovered as degradation products; these, but also procollagen and collagen components, were prominent in the control tissues. Moreover, the collagenous components synthesized by the diabetic rat tendons were more readily digested in vitro by trypsin than those produced by control tissues. We conclude that diabetes reduces collagen accretion in connective tissues in part due to increased intracellular degradation of procollagen.  相似文献   

2.
We have studied the structure and metabolism of type I procollagen in a case of perinatal lethal osteogenesis imperfecta (OI) type II. Cultured skin fibroblasts from the proband synthesized both normal and abnormal forms of type I procollagen. Some abnormal, overmodified molecules were secreted by OI cells, although less efficiently than normal molecules from control cells. The OI fibroblasts accumulated large amounts of abnormal proalpha1(I) and proalpha2(I) chains intracellularly. The extracellular collagenolytic activity was decreased compared to control cells. Furthermore, OI cells produced less type I procollagen and demonstrated lower capacity to synthesize DNA than control cells. We have found that in contrast to prolinase activity, the activity of prolidase (an enzyme essential for collagen synthesis and cell growth) is also significantly reduced in OI cells. No differences were found in the amount of the enzyme protein recovered from both the OI and control cells. However, we found that expressions of beta1 integrin and insulin-like growth factor-I receptor (receptors known to play an important role in up regulation of prolidase activity) were decreased in OI cells compared to control cells. The decrease in prolidase activity may provide an important mechanism of altered cell growth and collagen metabolism involved in producing the perinatal lethal form of the OI phenotype.  相似文献   

3.
Cultured dermal fibroblasts from an infant with the lethal perinatal form of osteogenesis imperfecta (type II) synthesize normal and abnormal forms of type I procollagen. The abnormal type I procollagen molecules are excessively modified during their intracellular stay, have a lower than normal melting transition temperature, are secreted at a reduced rate, and form abnormally thin collagen fibrils in the extracellular matrix in vitro. Overmodification of the abnormal type I procollagen molecules was limited to the NH2-terminal three-fourths of the triple helical domain. Two-dimensional mapping of modified and unmodified alpha chains of type I collagen demonstrated neither charge alterations nor large insertions or deletions in the region of alpha 1(I) and alpha 2(I) in which overmodification begins. Both the structure and function of type I procollagen synthesized by cells from the parents of this infant were normal. The simplest interpretation of the results of this study is that the osteogenesis imperfecta phenotype arose from a new dominant mutation in one of the genes encoding the chains of type I procollagen. Given the requirement for glycine in every third position of the triple helical domain, the mutation may represent a single amino acid substitution for a glycine residue. These findings demonstrate further heterogeneity in the biochemical basis of osteogenesis imperfecta type II and suggest that the nature and location of mutations in type I procollagen may determine phenotypic variation.  相似文献   

4.
Hsp47 is a molecular chaperone that specifically recognizes procollagen in the endoplasmic reticulum. Hsp47-null mouse embryos produce immature type I collagen and form discontinuous basement membranes. We established Hsp47-/- embryonic stem cell lines and examined formation of basement membrane and production of type IV collagen in embryoid bodies, a model for postimplantation egg-cylinder stage embryos. The visceral endodermal cell layers surrounding Hsp47-/- embryoid bodies were often disorganized, a result that suggested abnormal function of the basement membrane under the visceral endoderm. Rate of type IV collagen secretion by Hsp47-/- cells was fourfold lower than that of Hsp47+/+ cells. Furthermore, type IV collagen secreted from Hsp47-/- cells was much more sensitive to protease digestion than was type IV collagen secreted from Hsp47+/+ cells, which suggested insufficient or incorrect triple helix formation in type IV collagen in the absence of Hsp47. These results indicate for the first time that Hsp47 is required for the molecular maturation of type IV collagen and suggest that misfolded type IV collagen causes abnormal morphology of embryoid bodies.  相似文献   

5.
Hepatocytes were obtained from rat liver and maintained in primary culture for periods up to 14 days. Collagen synthesis was maximal after 3–5 days and declined thereafter. The rate of collagen production was appox. one-tenth that observed by the rat skin fibroblasts of the same animals after 3–5 passages. Type I procollagen, the major macromolecular collagenous species, was identified as a 450 000 dalton molecule which was converted to 120 000 dalton, denatured, reduced procollagen chains. Prior pepsin digestion of the native procollagen released 95 000 dalton collagen chains identified as α1(I) and α2(I) by co-migration with carrier rat skin type I collagen chains. The production of type III procollagen was also tentatively identified by DEAE-cellulose chromatography. This material was isolated and identified with type-specific antibodies developed against the amino-terminal extension peptide of bovine skin type III procollagen. The relative distribution of type I:type III procollagen was estimated at 7:3 similar to the ratio previously found in whole rat liver. No evidence of type IV or type V procollagen biosynthesis was observed. These results suggest that rat hepatocytes in primary culture are capable of interstitial type I and type III collagen biosynthesis in a ratio similar to that found in their parent hepatic tissue in situ. They also suggest that the less abundant type IV (basement membrane-associated) or type V are nor major collagenous products of these cells.  相似文献   

6.
Chick embryo skull bones incorporated radioactive proline and cystein into procollagen in short term organ culture. Pulse-chase experiments showed that individual precursor chains (pro-alpha1 and pro-alpha2) were formed first and that these were subsequently linked by disulfide bounds into trimers. Radioautography showed that labeled material was secreted 30 min after adding label to the cells, and electrophoretic analyses showed that after this time completed labeled collagen molecules appeared. Conversion from disulfide-linked procollagen to collagen proceeded in more than one step. An intermediate form consisting of shorter chains, which were still trimerically linked, was found.  相似文献   

7.
8.
Summary We have screened type I procollagen synthesized in vitro by skin fibroblasts from several patients with the severe non-lethal form of osteogenesis imperfecta. Cells from one patient synthesized and secreted both normal and a larger amount of abnormal type I procollagen. The abnormal alpha chains are larger in size due to post-translational overmodifications involving the whole triple helical domain. Abnormal collagen heterotrimers had a melting temperature 2.5°–3°C lower than normal ones or from controls. Chemical analysis of collagen in the medium showed a greater degree of both lysyl hydroxylation and hydroxylysyl glycosylation, the major increase in molecular mass of overmodified alpha chains being due to the higher hydroxylysine-bound hexose content. The proband's cells modify proteoglycan metabolism and mineral proband's cells modify proteoglycan metabolism and mineral crystals form in the dermis, possibly a response to abnormal collagen-proteoglycan interactions. These findings can be explained by a small defect in the product of one allele for pro-1(I) chains: three-quarters of the synthesized type I procollagen molecules are composed of trimers containing one or two chains defective near the C-terminus of the triple helix or in the C-propeptide. The data obtained for this patient confirmed that the severity of clinical manifestations in osteogenesis imperfecta strongly depends on the location and nature of the mutations, and that the phenotype could be a consequence of a collagen defect(s) and its influence on collagen-collagen interactions and collagen interactions with other connective tissue components.  相似文献   

9.
Collagen synthesis by bovine aortic endothelial cells in culture.   总被引:8,自引:0,他引:8  
H Sage  E Crouch  P Bornstein 《Biochemistry》1979,18(24):5433-5442
Endothelial cells isolated from bovine aorta synthesize and secrete type III procollagen in culture. The procollagen, which represents the major collagenous protein in culture medium, was specifically precipitated by antibodies to bovine type III procollagen and was purified by diethyl-aminoethylcellulose chromatography. Unequivocal identification of the pepsin-treated collagen was made by direct comparison with type III collagen isolated by pepsin digestion of bovine skin, utilizing peptide cleavage patterns generated by vertebrate collagenase, CNBr, and mast cell protease. The type III collagen was hydroxylated to a high degree, having a hydroxyproline/proline ratio of 1.5:1.0. Pulse-chase studies indicated that the procollagen was not processed to procollagen intermediates or to collagen. Pepsin treatment of cell layers, followed by salt fractionation at acidic and neutral pH, produced several components which were sensitive to bacterial collagenase and which comigrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with alpha A, alpha B, and type IV collagen chains purified from human placenta by similar techniques. Bovine aortic endothelial cells also secreted fibronectin and a bacterial collagenase-insensitive glycoprotein which, after reduction, had a molecular weight of 135,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (using procollagen molecular weight standards) and which was not precipitable by antibodies to cold-insoluble globulin or to alpha 2-macroglobulin. Collagen biosynthesis by these cells provides an interesting model system for studying the polarity of protein secretion and the attachment of cells to an extracellular matrix. The presence of type III collagen in the subendothelium and the specific interaction of this protein with fibronectin and platelets suggest the involvement of this collagen in thrombus formation following endothelial cell injury.  相似文献   

10.
R H Kramer  G M Fuh  M A Karasek 《Biochemistry》1985,24(25):7423-7430
Cultured microvascular endothelial cells isolated from human dermis were examined for the synthesis of basement membrane specific (type IV) collagen and its deposition in subendothelial matrix. Biosynthetically radiolabeled proteins secreted into the culture medium were analyzed by sodium dodecyl sulfate gel electrophoresis after reduction, revealing a single collagenous component with an approximate Mr of 180 000 that could be resolved into two closely migrating polypeptide chains. Prior to reduction, the 180 000 bands migrated as a high molecular weight complex, indicating the presence of intermolecular disulfide bonding. The 180 000 material was identified as type IV procollagen on the basis of its selective degradation by purified bacterial collagenase, moderate sensitivity to pepsin digestion, immunoprecipitation with antibodies to human type IV collagen, and comigration with type IV procollagen purified from human and murine sources. In the basement membrane like matrix elaborated by the microvascular endothelial cells at their basal surface, type IV procollagen was the predominant constituent. This matrix-associated type IV procollagen was present as a highly cross-linked and insoluble complex that was solubilized only after denaturation and reduction of disulfide bonds. In addition, there was evidence of nonreducible dimers and higher molecular weight aggregates of type IV procollagen. These findings support the suggestion that the presence of intermolecular disulfide bonds and other covalent interactions stabilizes the incorporation of the type IV procollagen into the basement membrane matrix. Cultured microvascular endothelial cells therefore appear to deposit a basal lamina-like structure that is biochemically similar to that formed in vivo, providing a unique model system that should be useful for understanding microvascular basement membrane metabolism, especially as it relates to wound healing, tissue remodeling, and disease processes.  相似文献   

11.
We have shown that a child with Ehlers Danlos syndrome (EDS) type VII has a G to A transition at the first nucleotide of intron 6 in one of her COL1A2 alleles. Half of the cDNA clones prepared from the proband's pro alpha 2(I) mRNA lacked exon 6. The type I procollagen secreted by the proband's dermal fibroblasts in culture was purified, and collagen fibrils were generated in vitro by cleavage of the procollagen with the procollagen N- and C-proteinases. Incubation of the procollagen with N-proteinase resulted in a 1:1 mixture of pCcollagen and uncleaved procollagen. Incubation of this mixture with C-proteinase generated collagen and abnormal pNcollagen (pNcollagen-ex6) that readily copolymerized into fibrils. By electron microscopy these fibrils resembled the hieroglyphic fibrils seen in the N-proteinase-deficient skin of dermatosparactic animals and humans and were distinct from the near circular cross-section fibrils seen in the tissues of individuals with EDS type VII. Further incubation of the hieroglyphic fibrils with N-proteinase resulted in partial cleavage of the pNcollagen-ex6 in which the abnormal pN alpha 2(I) chains remained intact. These fibrils were not hieroglyphic but were near circular in cross-section. Fibrils formed from collagen and pNcollagen-ex6 that had been partially cleaved with elevated amounts of N-proteinase prior to fibril formation were also near circular in cross-section. The results are consistent with a model of collagen fibril formation in which the intact N-propeptides are located exclusively at the surface of the hieroglyphic fibrils. Partial cleavage of the pNcollagen-ex6 by N-proteinase allows the N-propeptides to be incorporated within the body of the fibrils. The model provides an explanation for the morphology and molecular composition of collagen fibrils in the tissues of patients with EDS type VII.  相似文献   

12.
We have previously demonstrated that cell lines derived from a mouse teratocarcinoma source or a mouse blastocyst source produce procollagen and collagen, and suggested that this material may represent a new form of collagen specifically related to early embryonic development. We have now obtained further evidence using carboxymethyl cellulose chromatography, analytical isoelectric focusing, cyanogen bromide peptide analysis, amino acid analysis, and carbohydrate analysis that these two cell lines produce identical collagen molecular types which are distinctly different from types I, II, III, and IV collagen and thus probably represent a new type of collagen, called type V. All of these new data add support to the contention that these teratocarcinoma and blastocyst derived cells correspond to a cell present in the mouse embryo which may be a primitive or mesenchymal connective tissue cell type. Thus, these collagen and procollagen molecules may serve as a marker for cells of the early mouse embryo which are committed to the lineage of connective tissue.  相似文献   

13.
Cardiac tissue from mice that do not express secreted protein acidic and rich in cysteine (SPARC) have reduced amounts of insoluble collagen content at baseline and in response to pressure overload hypertrophy compared with wild-type (WT) mice. However, the cellular mechanism by which SPARC affects myocardial collagen is not clearly defined. Although expression of SPARC by cardiac myocytes has been detected in vitro, immunohistochemistry of hearts demonstrated SPARC staining primarily associated with interstitial fibroblastic cells. Primary cardiac fibroblasts isolated from SPARC-null and WT mice were assayed for collagen I synthesis by [(3)H]proline incorporation into procollagen and by immunoblot analysis of procollagen processing. Bacterial collagenase was used to discern intracellular from extracellular forms of collagen I. Increased amounts of collagen I were found associated with SPARC-null versus WT cells, and the proportion of total collagen I detected on SPARC-null fibroblasts without propeptides [collagen-α(1)(I)] was higher than in WT cells. In addition, the amount of total collagen sensitive to collagenase digestion (extracellular) was greater in SPARC-null cells than in WT cells, indicating an increase in cell surface-associated collagen in the absence of SPARC. Furthermore, higher levels of collagen type V, a fibrillar collagen implicated in collagen fibril initiation, were found in SPARC-null fibroblasts. The absence of SPARC did not result in significant differences in proliferation or in decreased production of procollagen I by cardiac fibroblasts. We conclude that SPARC regulates collagen in the heart by modulating procollagen processing and interactions with fibroblast cell surfaces. These results are consistent with decreased levels of interstitial collagen in the hearts of SPARC-null mice being due primarily to inefficient collagen deposition into the extracellular matrix rather than to differences in collagen production.  相似文献   

14.
Primary cultures of chick embryo fibroblasts were used to study ribosomal events in the processing of procollagen. Polyribosomes from radiolabeled cells were subjected to enzyme probe analysis using collagenase and pepsin digestion to assess both the amount of procollagen present on the polyribosomes and the conformation of the molecule. The peptides rendered dialyzable by each enzyme treatment were analyzed for radioactive proline and hydroxyproline. Approximately 30% of the nascent proteins were collagenous. Although some hydroxyproline was dialyzable in the pepsin-treated material, a low ratio of hydroxyproline to proline (0.04) indicated that considerable amounts of noncollagenous proteins were digested. Polyribosomal material, previously treated with pepsin, was digested with purified collagenase. Similarly, collagenase-digested polyribosomes were treated with pepsin. The pepsin pretreatment released noncollagenous protein and served to purify the remaining ribosomally bound pepsin-resistant collagenous protein. Collagenase treatment of the pepsin-resistant ribosomally bound peptides released peptides with a hydroxyproline to proline ratio of 0.65, indicating that considerable hydroxylation of proline occurs on nascent ribosomally bound procollagen. This finding combined with the well documented stabilizing effect of hydroxyproline on the collagen triple helix and the demonstrated resistance of ribosomally bound procollagen to pepsin digestion indicates that the collagen triple helix may well form on the polyribosome.  相似文献   

15.
To investigate the molecular mechanism of intracellular degradation of type I collagen in normal corneal endothelial cells (CEC), we studied the role of prolyl 4-hydroxylase (P4-H) and protein disulfide-isomerase (PDI; the beta subunit of P4-H) during procollagen I biosynthesis. When the subcellular localization of P4-H and PDI was determined, P4-H demonstrated a characteristic diffuse endoplasmic reticulum (ER) pattern, whereas PDI showed a slightly more restricted distribution within the ER. When colocalization of procollagen I with the enzymes was examined, procollagen I and PDI showed a large degree of colocalization. P4-H and procollagen I were predominantly colocalized at the perinuclear site. When colocalization of type IV collagen with PDI and P4-H was examined, type IV collagen was largely colocalized with PDI, which showed a wider distribution than type IV collagen. Type IV collagen is similarly colocalized with P4-H, except in some perinuclear sites. The colocalization profiles of procollagen I with both PDI and P4-H were not altered in cells treated with alpha,alpha'-dipyridyl compared to those of the untreated cells. The underhydroxylated type IV collagen demonstrated a colocalization profile with PDI similar to that observed with procollagen I, while the underhydroxylated type IV collagen was predominantly colocalized with P4-H at the perinuclear sites. Immunoblot analysis showed no real differences in the amounts of the beta subunit/PDI and the catalytic alpha subunit of P4-H in CEC compared to those of corneal stromal fibroblasts (CSF). When protein-protein association was determined, procollagen I was associated with PDI much more in CEC than it was in CSF, whereas type IV collagen showed no differential association specificity to PDI in both cells. Limited proteolysis of the newly synthesized intracellular procollagen I with pepsin showed that procollagen I in CEC was degraded by pepsin, whereas CSF contained type I collagen composed of alpha1(I) and alpha2(I). These findings suggest that procollagen I synthesized in CEC is not in triple helical conformation and that the improperly folded procollagen I may be preferentially associated with PDI before targeting to the intracellular degradation.  相似文献   

16.
Rats were administered CCl4, a well-defined nephrotoxin, for 20 weeks to produce glomerular sclerosis. Tubular degeneration and necrosis with interstitial fibrosis was clearly evident by histological examination. Kidneys were homogenized in phosphate-buffered saline and a collagen synthesis-stimulating factor was isolated by Sephadex G-50 gel filtration. The 5 kDa component stimulated both type I and type IV procollagen synthesis by mesangial cells and type I procollagen synthesis by rat skin fibroblasts. In each cell type, 2-6-fold increases in procollagen protein production or cell proliferation was noted. The steady-state levels of mRNA encoding for procollagen alpha 1(I) and procollagen alpha 1(IV) chains in mesangial cells were determined by by hybridization to their corresponding cDNA clones. The type I procollagen mRNA was elevated 1.4-fold compared to a 1.6-fold increase in mRNA encoding for type IV procollagen. The similar properties and chemical characteristics of this fibrogenic factor with a factor from fibrotic liver suggests they are the same and that a common endogenous collagen synthesis stimulator may be present in fibrosing organs, thus providing a driving force for collagen over-production.  相似文献   

17.
A quantitative determination of collagen expression was carried out in cultured chondrocytes obtained from a tissue that undergoes endochondral bone replacement (ventral vertebra) and one that does not (caudal sterna). The "short chain" collagen, type X is only expressed in the former while the other "short chain" collagen type IX, was primarily expressed in the latter. These two tissues also differ in that vertebral chondrocytes express moderate levels of both type I procollagen mRNAs which were translated into full length procollagen chains both in vivo and in vitro, while caudal sternal chondrocytes did not. The percent of collagen synthesis was about 50% in both cell types, but sternal cells expressed twice as much collagen as vertebral cells even though type II procollagen was more efficiently processed to alpha-chains in vertebral chondrocytes than in sternal chondrocytes. The number of type II procollagen mRNA molecules/cell was found to be about 2300 in vertebral chondrocytes and about 8000 in sternal cells, in good agreement with the results reported by Kravis and Upholt (Kravis, D., and Upholt, W. B. (1985) Dev. Biol. 108, 164-172). There were about 630 copies of type I procollagen mRNAs with an alpha 1/alpha 2 ratio of 1.6 in vertebral chondrocytes compared with 5100 copies and an alpha 1/alpha 2 ratio of 2.2 in osteoblasts, and less than 40 copies in sternal cells. Since the rate of type I collagen chain synthesis was 50 times greater in osteoblasts than in vertebral cells, type I procollagen mRNAs were about six times less efficiently translated in vertebral cells than in osteoblasts. The type I mRNAs in vertebral chondrocytes were polyadenylated and had 5' ends that were identical in osteoblasts, fibroblasts, and myoblasts. Moreover, type I mRNAs isolated from vertebral chondrocytes were translated into full length preprocollagen chains in vitro in rabbit reticulocyte lysates. Thus, chondrocytes isolated from cartilage tissues with different developmental fates differed quantitatively and qualitatively in total collagen synthesis, procollagen processing, and distribution of collagen types.  相似文献   

18.
The rate of biosynthesis of procollagen IV, the principal collagen of basement membranes, and the concentration of specific RNAs coding for procollagen IV were measured in neonatal rat lungs. Both decreased sharply at birth and then recovered again a few days later. The supramolecular assembly of procollagen IV was followed in neonatal rat, mouse, and chick lungs, which actively elaborate endothelial and alveolar basement membranes, and in chick embryo gizzard which is rich in smooth muscle. The tetramer of four procollagen IV molecules linked covalently through their amino ends was isolated as an assembly intermediate from all these tissues. While noncovalent association of the carboxyl ends of two procollagen IV molecules occurred readily, the subsequent establishment of covalent cross-links was substantially slower in the junctional complexes of the carboxyl ends than of the amino ends. Both disulfide bonds and other, unidentified covalent links formed. The six component carboxyl peptides of a junctional complex became progressively covalently linked into two kinds of carboxyl peptide pairs. We conclude that both amino-linked tetramers and carboxyl-linked dimers of procollagen IV molecules are intermediates in the biological assembly of the collagen networks of these basement membranes.  相似文献   

19.
Matrix-free cells were prepared from sternal cartilages of 17-day-old chick embryos, and procollagen synthesized and secreted by the cells was isolated by ion exchange chromatography on carboxymethyl cellulose and by gel filtration. The isolated protein was homogeneous by polyacrylamide gel electrophoresis in sodium dodecyl sulfate and it appeared to consist of identical pro-α chains linked by interchain disulfide bonds. Amino acid analysis and cyanogen bromide peptide mapping of the purified procollagen demonstrated that it had structures similar to Type II collagen. The amino acid composition was also consistent with the conclusion that the peptide extensions on the pro-α chains of procollagen contained amino acid sequences not found in the collagen portion of the molecule. Segment-long-spacing aggregates were prepared from the procollagen, and aggregates demonstrated the same banding pattern as is found in segment-long-spacing aggregates prepared from Type II collagen. The segment-long-spacing aggregates from procollagen revealed, however, the presence of NH2-terminal extensions of about 150 Å in length. In addition, the procollagen molecules contained irregularly shaped, large extension peptides at the COOH-terminal end of the molecule.  相似文献   

20.
Polysomes prepared from cultured Chinese hamster lung cells direct the synthesis of procollagen alpha chains in an heterologous cell-free system containing the postribosomal supernatant fraction prepared from wheat germ. Total protein synthesis requires both subcellular components and an exogenous energy source, and is inhibited by the antibiotics puromycin and aurin tricarboxylic acid. The ratio of collagenase-digestible to nondigestible material produced depends upon the wheat germ and not the polysome level in the reaction. Under optimal conditions, a significant fraction of the total product migrates on denaturing sodium dodecyl sulfate-polyacrylamide gels as a single molecular weight collagenase-digestible species corresponding in size to the procollagen alpha chain (Mr approximately equal to 170,000). Approximately one-third of this high molecular weight material represents products whose synthesis results from cell-free mRNA initiation, and no distinct product larger than the 170,000-dalton material is observed. These studies confirm the initial observation that collagen represents one of the major gene products of Chinese hamster lung cells and demonstrate the usefulness of this cell line for the study of mammalian collagen biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号