首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The human adenoviruses types 2, 5 and 12 code for the production of a single strand specific DNA binding protein. The molecular weights of these proteins were 72,000 for types 2 and 5 and 60,000 for type 12. In all three cases proteolytic breakdown fragments of these binding proteins (48,000 MW) were also observed. 2. Analysis of the methionine containing tryptic peptides of these proteins indicate that the types 2 and 5 proteins are similar and clearly distinguishable from the type 12 protein. The peptide maps of these three viral proteins are clearly different from a similar protein found in mock infected cells. 3. Temperature sensitive mutants of type 5 (H5ts125) and type 12(H12tsA275) adenoviruses fail to produce these proteins at the nonpermissive temperature. H5ts125 infected cells grown at the permissive temperature produce a 72,000 MW protein that is thermolabile, for continued binding to DNA, when compared to type 5 wild type adenovirus 72,000 MW protein. An analysis of the phenotype of this adenovirus mutant indicates that it codes for a viral function at early times after infection that is required for viral DNA replication. 4. The in vitro translation of adenovirus specific m-RNA results in the synthesis of a small amount of a 72,000 MW protein that binds to single stranded DNA just like the authentic adenovirus DNA binding proteins produced in infected cells. 5. Adenovirus anti-Tumor antigen (T) anti-serum from hamsters carrying independently derived adenovirus tumors, have been tested for the presence of antibody to purified DNA binding proteins. One antiserum is positive for these antibodies while the other is negative. These results indicate that some, but not all, adenovirus tumors contain large enough levels of the DNA binding proteins to elicit an antibody response. 6. The type 5 adenovirus temperature sensitive mutant, H5ts125, that codes for a thermolabile DNA binding protein, was complemented or suppressed at the nonpermissive temperature, for the replication of adenovirus DNA, by SV40. SV40tsA temperature sensitive mutants, defective in SV40 DNA replication, do not suppress or complement H5ts125 at the nonpermissive temperature.  相似文献   

2.
Nuclear factor I from HeLa cells, a protein with enhancing function in adenovirus DNA replication, and the chicken TGGCA protein are specific DNA-binding proteins that were first detected by independent methods and that appeared to have similar DNA sequence specificity. To test whether they are homologous proteins from different species we have compared (i) their DNA binding properties and (ii) their function in reconstituted adenovirus DNA replication systems. Using deletion and substitution mutants derived from the DNA binding site on the adenovirus 2 inverted terminal repeat, it was found that the two proteins protect the same 24-nucleotide region of both strands against DNase I digestion and that they have identical minimal recognition sequences of 15 bp containing dyad symmetry. Like nuclear factor I, the TGGCA protein enhances the initiation reaction of adenovirus 2 DNA replication in vitro in a DNA recognition site-dependent manner.  相似文献   

3.
4.
The interaction of the human adenovirus proteinase (AVP) with various DNAs was characterized. AVP requires two cofactors for maximal activity, the 11-amino acid residue peptide from the C-terminus of adenovirus precursor protein pVI (pVIc) and the viral DNA. DNA binding was monitored by changes in enzyme activity or by fluorescence anisotropy. The equilibrium dissociation constants for the binding of AVP and AVP-pVIc complexes to 12-mer double-stranded (ds) DNA were 63 and 2.9 nM, respectively. DNA binding was not sequence specific; the stoichiometry of binding was proportional to the length of the DNA. Three molecules of the AVP-pVIc complex bound to 18-mer dsDNA and six molecules to 36-mer dsDNA. When AVP-pVIc complexes bound to 12-mer dsDNA, two sodium ions were displaced from the DNA. A Delta of -4.6 kcal for the nonelectrostatic free energy of binding indicated that a substantial component of the binding free energy results from nonspecific interactions between the AVP-pVIc complex and DNA. The cofactors altered the interaction of the enzyme with the fluorogenic substrate (Leu-Arg-Gly-Gly-NH)2-rhodamine. In the absence of any cofactor, the Km was 94.8 microM and the kcat was 0.002 s(-1). In the presence of adenovirus DNA, the Km decreased 10-fold and the kcat increased 11-fold. In the presence of pVIc, the Km decreased 10-fold and the kcat increased 118-fold. With both cofactors present, the kcat/Km ratio increased 34000-fold, compared to that with AVP alone. Binding to DNA was coincident with stimulation of proteinase activity by DNA. Although other proteinases have been shown to bind to DNA, stimulation of proteinase activity by DNA is unprecedented. A model is presented suggesting that AVP moves along the viral DNA looking for precursor protein cleavage sites much like RNA polymerase moves along DNA looking for a promoter.  相似文献   

5.
The 72-kilodalton adenovirus DNA-binding protein (DBP) binds to single-stranded DNA as well as to RNA and double-stranded DNA and is essential for the replication of viral DNA. We investigated the binding of DBP to double-stranded DNA by gel retardation analysis. By using a 114-base-pair DNA fragment, five or six different complexes were observed by gel retardation. The mobility of these complexes is dependent on the DBP concentration, suggesting that the complexes arise by sequential binding of DBP molecules to the DNA. In contrast to binding to single-stranded DNA, the binding of DBP to double-stranded DNA appears to be noncooperative. DBP binds to linear DNA as well as to circular DNA, while linear DNA containing the adenovirus terminal protein was also recognized. No specificity for adenovirus origin sequences was observed. To study whether the binding of DBP could influence initiation of DNA replication, we analyzed the effect of DBP on the binding of nuclear factor I (NFI) and NFIII, two sequence-specific origin-recognizing proteins that enhance initiation. At subsaturating levels of NFI, DBP increases the rate of binding of NFI considerably, while no effect was seen on NFIII. This stimulation of NFI binding is specific for DBP and was not observed with another protein (NFIV), which forms a similar DNA-multimeric protein complex. In agreement with enhanced NFI binding, DBP stimulates initiation of adenovirus DNA replication in vitro especially strongly at subsaturating NFI concentrations. We explain our results by assuming that DBP forms a complex with origin DNA that promotes formation of an alternative DNA structure, thereby facilitating the binding of NFI as well as the initiation of DNA replication via NFI.  相似文献   

6.
Initiation of adenovirus DNA replication is dependent on a complex of the precursor of the terminal protein and the adenovirus-coded DNA polymerase (pTP-pol complex). This complex catalyzes the formation of a covalent linkage between dCMP and pTP in the presence of a functional origin of DNA replication residing in the terminal nucleotide sequence of adenovirus DNA. We have purified the pTP-pol complex of adenovirus type 5 and studied its binding to double-stranded DNA. Using DNA-cellulose chromatography it could be shown that the pTP-pol complex has a higher affinity for adenovirus DNA than for calf thymus or pBR322 DNA. From the differential binding of the pTP-pol complex to plasmids containing adenovirus terminal sequences with different deletions, it has been concluded that a sequence of 14 nucleotide pairs at positions 9-22 plays a crucial role in the binding of pTP-pol to adenovirus DNA. This region is conserved in the DNA's of all human adenovirus serotypes and is obviously an important structural element of the adenovirus origin of DNA replication. Comparative binding studies with adenovirus DNA polymerase and pTP-pol indicated that pTP is responsible for the binding. The nature of the binding of pTP-pol to the conserved sequence will be discussed.  相似文献   

7.
8.
The molecular mechanism for packaging of the adenovirus (Ad) genome into the capsid is likely similar to that of DNA bacteriophages and herpesviruses-the insertion of viral DNA through a portal structure into a preformed prohead driven by an ATP-hydrolyzing molecular machine. It is speculated that the IVa2 protein of adenovirus is the ATPase providing the power stroke of the packaging machinery. Purified IVa2 binds ATP in vitro and, along with a second Ad protein, the L4 22-kilodalton protein (L4-22K), binds specifically to sequences in the Ad genome that are essential for packaging. The efficiency of binding of these proteins in vitro was correlated with the efficiency of packaging in vivo. By utilizing a virus unable to express IVa2, pm8002, it was reported that IVa2 plays a role in assembly of the empty virion. We wanted to address the question of whether the ATP binding, and hence the putative ATPase activity, of IVa2 was required for its role in virus assembly. Our results show that ATPase activity was not required for the assembly of empty virus particles. In addition, we present evidence that particles were assembled in the absence of IVa2 by using two viruses null for IVa2-a deletion mutant virus, ΔIVa2, and the previously described mutant virus, pm8002. Empty virus particles produced by these IVa2 mutant viruses did not contain detectable viral DNA. We conclude that the major role of IVa2 is in viral DNA packaging. A characterization of the empty particles obtained from the IVa2 mutant viruses compared to wild-type empty particles is presented.  相似文献   

9.
An extract from Adenovirus type 4 infected HeLa cells was fractionated by ion-exchange and DNA affinity chromatography. One fraction, which bound tightly to single stranded DNA, contained predominantly a protein of apparent molecular weight 65,000 and three less abundant proteins. Immunological cross-reactivity with adenovirus type 2 proteins confirmed the presence of preterminal protein and indicated that the abundant species was the virus coded DNA binding protein. This fraction contained an aphidicolin resistant DNA polymerase activity and in the presence of a linearised plasmid containing the adenovirus type 4 origin of DNA replication efficient transfer of dCMP onto preterminal protein, indicative of initiation, was observed. Furthermore, addition of all four deoxyribonucleotide triphosphates and an ATP regenerating system resulted in the elongation of initiated molecules to generate plasmid molecules covalently attached to preterminal protein. Adenovirus type 4 DNA binding protein was extensively purified from crude adenovirus-4 infected HeLa extract by immunoaffinity chromatography using a monoclonal antibody raised against adenovirus type 2 DNA binding protein. A low level of initiation of DNA replication was detected in the fraction depleted of DNA binding protein but activity was restored by addition of purified DNA binding protein. DNA binding protein therefore plays an important role in the initiation of Ad4 DNA replication.  相似文献   

10.
P H Cleat  R T Hay 《The EMBO journal》1989,8(6):1841-1848
The DNA-protein and protein-protein interactions proposed for the stability of nucleoprotein complexes at the origin of replication in prokaryotes are also thought to impart regulatory precision in eukaryotic DNA replication. This type of specificity can be observed, for example, during adenovirus DNA replication where efficient initiation requires that nuclear factor I (NFI) binds to the origin of DNA replication. Addition of purified NFI stimulates the initiation of adenovirus DNA replication in vitro in a reaction that is dependent on the concentration of the adenovirus DNA binding protein (DBP). However, the molecular basis for the synergistic action of NFI and DBP during replication is at present unknown. We report here that DBP increases the affinity of NFI for its binding site in the replication origin. DBP did not, however, increase the affinity of another eukaryotic sequence-specific DNA binding protein, EBP1, for its recognition site. Other single-stranded DNA binding proteins could not substitute for DBP in increasing NFI affinity for its binding site. In addition, DBP was found to alter the binding kinetics of NFI, both by increasing the rate of association and decreasing the rate of dissociation of NFI with the DNA template. The co-operativity between NFI and DBP was also demonstrated on another DNA template, a human NFI site (FIB2), suggesting that this interaction is of general occurrence and not restricted to the adenovirus origin of replication.  相似文献   

11.
12.
DNA-binding properties of an adenovirus 289R E1A protein.   总被引:19,自引:4,他引:15       下载免费PDF全文
An adenovirus 2 289 amino acid (289R) E1A protein purified from Escherichia coli has been shown to interact with DNA by two independent methods. UV-crosslinking of complexes containing unmodified, uniformly 32P-labelled DNA and purified E1A protein induced efficient labelling of the protein with covalently attached oligonucleotides, indicating that the E1A protein itself contacts DNA. Discrete nucleoprotein species were also observed when E1A protein--DNA complexes were analysed by gel electrophoresis. Although the 289R E1A protein exhibited no significant binding to single-stranded DNA or to RNA, no evidence for its sequence-specific binding to double-stranded DNA was obtained with either assay. Identification of the sites of covalent attachment of 32P-labelled oligonucleotides by partial proteolysis of the crosslinked E1A protein indicated that the interaction of this protein with DNA is mediated via domain(s) in the C-terminal half of the protein. Such previously unrecognized DNA-binding activity is likely to contribute to the regulatory activities of this important adenoviral protein.  相似文献   

13.
14.
Domain organization of the adenovirus preterminal protein.   总被引:3,自引:1,他引:2       下载免费PDF全文
In adenovirus-infected cells, the virus-encoded preterminal protein and DNA polymerase form a heterodimer that is directly involved in initiation of DNA replication. Monoclonal antibodies were raised against preterminal protein, and epitopes recognized by the antibodies were identified by using synthetic peptides. Partial proteolysis of preterminal protein reveals that it has a tripartite structure, with the three domains being separated by two protease-sensitive areas, located at sites processed by adenovirus protease. These areas of protease sensitivity are probably surface-exposed loops, as they are the sites, along with the C-terminal region of preterminal protein, recognized by the monoclonal antibodies. Preterminal protein is protected from proteolytic cleavage when bound to adenovirus DNA polymerase, suggesting either multiple contact points between the proteins or a DNA polymerase-induced conformational change in preterminal protein. Two of the preterminal protein-specific antibodies induced dissociation of the preterminal protein-adenovirus DNA polymerase heterodimer and inhibited initiation of adenovirus DNA replication in vitro. Antibodies binding close to the primary processing sites of adenovirus protease inhibited DNA binding, consistent with UV cross-linking results which reveal that an N-terminal, protease-resistant domain of preterminal protein contacts DNA. Monoclonal antibodies recognizing epitopes within the C-terminal 60 amino acids of preterminal protein stimulate DNA binding, an effect mediated through a decrease in the dissociation rate constant. These results suggest that preterminal protein contains a large, noncontiguous surface required for interaction with DNA polymerase, an N-terminal DNA binding domain, and a C-terminal regulatory domain.  相似文献   

15.
16.
17.
The template requirements for efficient adenovirus DNA replication were studied in vitro in a reconstituted system with cloned DNA fragments, containing the Ad2 origin region, as templates. Replication is enhanced by nuclear factor I, a cellular protein that binds specifically to the Ad2 origin. This stimulation is shown to be strongly dependent on the concentration of the adenovirus DNA binding protein. Using synthetic oligonucleotides we have constructed plasmids with base substitutions in the nuclear factor I binding region. Footprint analysis and competition filter binding studies show that two of the three small blocks of conserved nucleotides in this region are involved in the binding of nuclear factor I. The binding affinity can be influenced by the base composition of the degenerate region just outside these two blocks. In vitro initiation and DNA chain elongation experiments with the mutants demonstrate that binding of nuclear factor I to the Ad2 origin is necessary for stimulation. However, binding alone is not always sufficient since a mutation which only slightly disturbs binding is strongly impaired in stimulation of DNA replication by nuclear factor I.  相似文献   

18.
Human adenovirus proteinase (AVP) requires two cofactors for maximal activity: pVIc, a peptide derived from the C terminus of adenovirus precursor protein pVI, and the viral DNA. Synchrotron protein footprinting was used to map the solvent accessible cofactor binding sites and to identify conformational changes associated with the binding of cofactors to AVP. The binding of pVIc alone or pVIc and DNA together to AVP triggered significant conformational changes adjacent to the active site cleft sandwiched between the two AVP subdomains. In addition, upon binding of DNA to AVP, it was observed that specific residues on each of the two major subdomains were significantly protected from hydroxyl radicals. Based on the locations of these protected side-chain residues and conserved aromatic and positively charged residues within AVP, a three-dimensional model of DNA binding was constructed. The model indicated that DNA binding can alter the relative orientation of the two AVP domains leading to the partial activation of AVP by DNA. In addition, both pVIc and DNA may independently alter the active site conformation as well as drive it cooperatively to fully activate AVP.  相似文献   

19.
Structure and function of the adenovirus origin of replication   总被引:30,自引:0,他引:30  
Efficient initiation of adenovirus DNA replication requires the presence of specific terminal nucleotide sequences that collectively constitute the viral origin of replication. Using plasmids with deletions or base substitutions in a cloned segment of DNA derived from the terminus of the adenovirus 2 genome, we have demonstrated that the origin contains two functionally distinct regions. The first 18 bp of the viral genome are sufficient to support a limited degree of initiation. However, the presence of a sequence in the region between nucleotides 19 and 67 greatly enhances the efficiency of the initiation reaction. This region contains a specific binding site for a protein present in uninfected cells (KD = 2 X 10(-11) M). The bound protein protects the DNA segment between base pairs 19 and 43 from attack by DNAase I. Studies with deletion mutants indicate that binding of the cellular protein is responsible for the enhancement of initiation.  相似文献   

20.
During adenovirus virion assembly, the packaging sequence mediates the encapsidation of the viral genome. This sequence is composed of seven functional units, termed A repeats. Recent evidence suggests that the adenovirus IVa2 protein binds the packaging sequence and is involved in packaging of the genome. Study of the IVa2-packaging sequence interaction has been hindered by difficulty in purifying the protein produced in virus-infected cells or by recombinant techniques. We report the first purification of a recombinant untagged version of the adenovirus IVa2 protein and characterize its binding to the packaging sequence in vitro. Our data indicate that there is more than one IVa2 binding site within the packaging sequence and that IVa2 binding to DNA requires the A-repeat consensus, 5'-TTTG-(N(8))-CG-3'. Furthermore, we present evidence that IVa2 forms a multimeric complex on the packaging sequence. These data support a model in which adenovirus DNA packaging occurs via the formation of a IVa2 multiprotein complex on the packaging sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号